1
|
LaSarre B, Morlen R, Neumann GC, Harwood CS, McKinlay JB. Nitrous oxide reduction by two partial denitrifying bacteria requires denitrification intermediates that cannot be respired. Appl Environ Microbiol 2024; 90:e0174123. [PMID: 38078768 PMCID: PMC10807417 DOI: 10.1128/aem.01741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 01/25/2024] Open
Abstract
Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ryan Morlen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Gina C. Neumann
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
3
|
McCully AL, Onyeziri MC, LaSarre B, Gliessman JR, McKinlay JB. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a Rhodospirillum rubrum Calvin-cycle mutant. MICROBIOLOGY-SGM 2020; 166:199-211. [PMID: 31774392 DOI: 10.1099/mic.0.000877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purple non-sulfur bacteria (PNSB) use light for energy and organic substrates for carbon and electrons when growing photoheterotrophically. This lifestyle generates more reduced electron carriers than are required for biosynthesis, even during consumption of some of the most oxidized organic substrates like malate and fumarate. Reduced electron carriers not used in biosynthesis must still be oxidized for photoheterotrophic growth to occur. Diverse PNSB commonly rely on the CO2-fixing Calvin cycle to oxidize reduced electron carriers. Some PNSB also produce H2 or reduce terminal electron acceptors as alternatives to the Calvin cycle. Rhodospirillum rubrum Calvin-cycle mutants defy this trend by growing phototrophically on malate or fumarate without H2 production or access to terminal electron acceptors. We used 13C-tracer experiments to examine how a Rs. rubrum Calvin-cycle mutant maintains electron balance under such conditions. We detected the reversal of some tricarboxylic acid cycle enzymes, carrying reductive flux from malate or fumarate to αKG. This pathway and the reductive synthesis of αKG-derived amino acids are likely important for electron balance, as supplementing the growth medium with αKG-derived amino acids prevented Rs. rubrum Calvin-cycle-mutant growth unless a terminal electron acceptor was provided. Flux estimates also suggested that the Calvin-cycle mutant preferentially synthesized isoleucine using the reductive threonine-dependent pathway instead of the less-reductive citramalate-dependent pathway. Collectively, our results suggest that alternative biosynthetic pathways can contribute to electron balance within the constraints of a relatively constant biomass composition.
Collapse
Affiliation(s)
- Alexandra L McCully
- Present address: Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Luxem KE, Kraepiel AML, Zhang L, Waldbauer JR, Zhang X. Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation. Environ Microbiol 2020; 22:1397-1408. [PMID: 32090445 PMCID: PMC7187303 DOI: 10.1111/1462-2920.14955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/07/2020] [Indexed: 01/21/2023]
Abstract
Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)‐only nitrogenase metalloenzymes. Studies with purified enzymes have found that the ‘alternative’ V‐ and Fe‐nitrogenases generally reduce N2 more slowly and produce more byproduct H2 than the Mo‐nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V‐nitrogenase supports growth as fast as the Mo‐nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V‐nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V‐nitrogenase on acetate, the wild‐type strain uses exclusively the Mo‐nitrogenase on both carbon substrates. Notably, the differences in H2:N2 stoichiometry by alternative nitrogenases (~1.5 for V‐nitrogenase, ~4–7 for Fe‐nitrogenase) and Mo‐nitrogenase (~1) measured here are lower than prior in vitro estimates. These results indicate that the metabolic costs of V‐based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment.
Collapse
Affiliation(s)
- Katja E Luxem
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Anne M L Kraepiel
- Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA.,Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
5
|
Shimizu T, Teramoto H, Inui M. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Appl Microbiol Biotechnol 2019; 103:9739-9749. [DOI: 10.1007/s00253-019-10199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
|
6
|
Satagopan S, North JA, Arbing MA, Varaljay VA, Haines SN, Wildenthal JA, Byerly KM, Shin A, Tabita FR. Structural Perturbations of Rhodopseudomonas palustris Form II RuBisCO Mutant Enzymes That Affect CO2 Fixation. Biochemistry 2019; 58:3880-3892. [DOI: 10.1021/acs.biochem.9b00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark A. Arbing
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Vanessa A. Varaljay
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sidney N. Haines
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kathryn M. Byerly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Annie Shin
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Strodtman KN, Frank S, Stevenson S, Thelen JJ, Emerich DW. Proteomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules. Int J Mol Sci 2018; 19:E3947. [PMID: 30544819 PMCID: PMC6320959 DOI: 10.3390/ijms19123947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
The form and physiology of Bradyrhizobium diazoefficiens after the decline of symbiotic nitrogen fixation has been characterized. Proteomic analyses showed that post-symbiotic B. diazoefficiens underwent metabolic remodeling as well-defined groups of proteins declined, increased or remained unchanged from 56 to 119 days after planting, suggesting a transition to a hemibiotrophic-like lifestyle. Enzymatic analysis showed distinct patterns in both the cytoplasm and the periplasm. Similar to the bacteroid, the post-symbiotic bacteria rely on a non-citric acid cycle supply of succinate and, although viable, they did not demonstrate the ability to grow within the senescent nodule.
Collapse
Affiliation(s)
- Kent N Strodtman
- Department of Science, Columbia College, Columbia, MO 65216, USA.
| | - Sooyoung Frank
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - David W Emerich
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Liu D, Ramya RCS, Mueller-Cajar O. Surveying the expanding prokaryotic Rubisco multiverse. FEMS Microbiol Lett 2018; 364:3983162. [PMID: 28854711 DOI: 10.1093/femsle/fnx156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022] Open
Abstract
The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.
Collapse
Affiliation(s)
- Di Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
9
|
Wei L, Wang Q, Xin Y, Lu Y, Xu J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Antonovsky N, Gleizer S, Milo R. Engineering carbon fixation in E. coli : from heterologous RuBisCO expression to the Calvin–Benson–Bassham cycle. Curr Opin Biotechnol 2017; 47:83-91. [DOI: 10.1016/j.copbio.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/13/2017] [Indexed: 11/26/2022]
|
11
|
Leroy B, De Meur Q, Moulin C, Wegria G, Wattiez R. New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. MICROBIOLOGY-SGM 2015; 161:1061-1072. [PMID: 25737481 DOI: 10.1099/mic.0.000067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022]
Abstract
Purple non-sulfur bacteria are well known for their metabolic versatility. One of these bacteria, Rhodospirillum rubrum S1H, has been selected by the European Space Agency to ensure the photoheterotrophic assimilation of volatile fatty acids in its regenerative life support system, MELiSSA. Here, we combined proteomic analysis with bacterial growth analysis and enzymatic activity assays in order to better understand acetate photoassimilation. In this isocitrate lyase-lacking organism, the assimilation of two-carbon compounds cannot occur through the glyoxylate shunt, and the citramalate cycle has been proposed to fill this role, while, in Rhodobacter sphaeroides, the ethylmalonyl-CoA pathway is used for acetate assimilation. Using proteomic analysis, we were able to identify and quantify more than 1700 unique proteins, representing almost one-half of the theoretical proteome of the strain. Our data reveal that a pyruvate : ferredoxin oxidoreductase (NifJ) could be used for the direct assimilation of acetyl-CoA through pyruvate, potentially representing a new redox-balancing reaction. We additionally propose that the ethylmalonyl-CoA pathway could also be involved in acetate assimilation by the examined strain, since specific enzymes of this pathway were all upregulated and activity of crotonyl-CoA reductase/carboxylase was increased in acetate conditions. Surprisingly, we also observed marked upregulation of glutaryl-CoA dehydrogenase, which could be a component of a new pathway for acetate photoassimilation. Finally, our data suggest that citramalate could be an intermediate of the branched-chain amino acid biosynthesis pathway, which is activated during acetate assimilation, rather than a metabolite of the so-called citramalate cycle.
Collapse
Affiliation(s)
- B Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Q De Meur
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - C Moulin
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - G Wegria
- Biotech Materia Nova, Parc Initialis, Avenue Copernic 1, 7000 Mons, Belgium
| | - R Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
12
|
Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides. J Bacteriol 2014; 196:3179-90. [PMID: 24957624 DOI: 10.1128/jb.01842-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the Calvin-Benson-Bassham (CBB) CO2 fixation pathway (cbbI and cbbII) operons of Rhodobacter sphaeroides. The CbbR and RegA proteins interact, but CbbR must be bound to the promoter DNA in order for RegA-CbbR protein-protein interactions to occur. RegA greatly enhances the ability of CbbR to bind the cbbI promoter or greatly enhances the stability of the CbbR/promoter complex. The N-terminal receiver domain and the DNA binding domain of RegA were shown to interact with CbbR. Residues in α-helix 7 and α-helix 8 of the DNA binding domain (helix-turn-helix) of RegA directly interacted with CbbR, with α-helix 7 positioned immediately above the DNA and α-helix 8 located in the major groove of the DNA. A CbbR protein containing only the DNA binding motif and the linker helix was capable of binding to RegA. In contrast, a truncated CbbR containing only the linker helix and recognition domains I and II (required for effector binding) was not able to interact with RegA. The accumulated results strongly suggest that the DNA binding domains of both proteins interact to facilitate optimal transcriptional control over the cbb operons. In vivo analysis, using constitutively active mutant CbbR proteins, further indicated that CbbR must interact with phosphorylated RegA in order to accomplish transcriptional activation.
Collapse
|
13
|
Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J Bacteriol 2014; 196:1231-7. [PMID: 24415727 DOI: 10.1128/jb.01299-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purple nonsulfur bacteria grow photoheterotrophically by using light for energy and organic compounds for carbon and electrons. Disrupting the activity of the CO2-fixing Calvin cycle enzyme, ribulose 1,5-bisphosphate carboxylase (RubisCO), prevents photoheterotrophic growth unless an electron acceptor is provided or if cells can dispose of electrons as H2. Such observations led to the long-standing model wherein the Calvin cycle is necessary during photoheterotrophic growth to maintain a pool of oxidized electron carriers. This model was recently challenged with an alternative model wherein disrupting RubisCO activity prevents photoheterotrophic growth due to the accumulation of toxic ribulose-1,5-bisphosphate (RuBP) (D. Wang, Y. Zhang, E. L. Pohlmann, J. Li, and G. P. Roberts, J. Bacteriol. 193:3293-3303, 2011, http://dx.doi.org/10.1128/JB.00265-11). Here, we confirm that RuBP accumulation can impede the growth of Rhodospirillum rubrum (Rs. rubrum) and Rhodopseudomonas palustris (Rp. palustris) RubisCO-deficient (ΔRubisCO) mutants under conditions where electron carrier oxidation is coupled to H2 production. However, we also demonstrate that Rs. rubrum and Rp. palustris Calvin cycle phosphoribulokinase mutants that cannot produce RuBP cannot grow photoheterotrophically on succinate unless an electron acceptor is provided or H2 production is permitted. Thus, the Calvin cycle is still needed to oxidize electron carriers even in the absence of toxic RuBP. Surprisingly, Calvin cycle mutants of Rs. rubrum, but not of Rp. palustris, grew photoheterotrophically on malate without electron acceptors or H2 production. The mechanism by which Rs. rubrum grows under these conditions remains to be elucidated.
Collapse
|
14
|
Farmer RM, Laguna R, Panescu J, McCoy A, Logsdon B, Zianni M, Moskvin OV, Gomelsky M, Tabita FR. Altered residues in key proteins influence the expression and activity of the nitrogenase complex in an adaptive CO2 fixation-deficient mutant strain of Rhodobacter sphaeroides. Microbiology (Reading) 2014; 160:198-208. [PMID: 24126349 DOI: 10.1099/mic.0.073031-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, the RubisCO-compromised spontaneous adaptive Rhodobacter sphaeroides mutant, strain 16PHC, was shown to derepress the expression of genes that encode the nitrogenase complex under normal repressive conditions. As a result of this adaptation, the active nitrogenase complex restored redox balance, thus allowing strain 16PHC to grow under photoheterotrophic conditions in the absence of an exogenous electron acceptor. A combination of whole genome pyrosequencing and whole genome microarray analyses was employed to identify possible loci responsible for the observed phenotype. Mutations were found in two genes, glnA and nifA, whose products are involved in the regulatory cascade that controls nitrogenase complex gene expression. In addition, a nucleotide reversion within the nifK gene, which encodes a subunit of the nitrogenase complex, was also identified. Subsequent genetic, physiological and biochemical studies revealed alterations that led to derepression of the synthesis of an active nitrogenase complex in strain 16PHC.
Collapse
Affiliation(s)
- Ryan M. Farmer
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Rick Laguna
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Jenny Panescu
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Anthony McCoy
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Beth Logsdon
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Mike Zianni
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Oleg V. Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - F. Robert Tabita
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
16
|
Abstract
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO₂). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.
Collapse
|
17
|
Hädicke O, Grammel H, Klamt S. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC SYSTEMS BIOLOGY 2011; 5:150. [PMID: 21943387 PMCID: PMC3203349 DOI: 10.1186/1752-0509-5-150] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/25/2011] [Indexed: 02/05/2023]
Abstract
Background Purple nonsulfur bacteria (PNSB) are facultative photosynthetic bacteria and exhibit an extremely versatile metabolism. A central focus of research on PNSB dealt with the elucidation of mechanisms by which they manage to balance cellular redox under diverse conditions, in particular under photoheterotrophic growth. Results Given the complexity of the central metabolism of PNSB, metabolic modeling becomes crucial for an integrated analysis of the accumulated biological knowledge. We reconstructed a stoichiometric model capturing the central metabolism of three important representatives of PNSB (Rhodospirillum rubrum, Rhodobacter sphaeroides and Rhodopseudomonas palustris). Using flux variability analysis, the model reveals key metabolic constraints related to redox homeostasis in these bacteria. With the help of the model we can (i) give quantitative explanations for non-intuitive, partially species-specific phenomena of photoheterotrophic growth of PNSB, (ii) reproduce various quantitative experimental data, and (iii) formulate several new hypotheses. For example, model analysis of photoheterotrophic growth reveals that - despite a large number of utilizable catabolic pathways - substrate-specific biomass and CO2 yields are fixed constraints, irrespective of the assumption of optimal growth. Furthermore, our model explains quantitatively why a CO2 fixing pathway such as the Calvin cycle is required by PNSB for many substrates (even if CO2 is released). We also analyze the role of other pathways potentially involved in redox metabolism and how they affect quantitatively the required capacity of the Calvin cycle. Our model also enables us to discriminate between different acetate assimilation pathways that were proposed recently for R. sphaeroides and R. rubrum, both lacking the isocitrate lyase. Finally, we demonstrate the value of the metabolic model also for potential biotechnological applications: we examine the theoretical capabilities of PNSB for photoheterotrophic hydrogen production and identify suitable genetic interventions to increase the hydrogen yield. Conclusions Taken together, the metabolic model (i) explains various redox-related phenomena of the versatile metabolism of PNSB, (ii) delivers new hypotheses on the operation and relevance of several metabolic pathways, and (iii) holds significant potential as a tool for rational metabolic engineering of PNSB in biotechnological applications.
Collapse
Affiliation(s)
- Oliver Hädicke
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, D-39106 Magdeburg, Germany
| | | | | |
Collapse
|
18
|
|
19
|
Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2011; 2:165. [PMID: 21866228 PMCID: PMC3149686 DOI: 10.3389/fmicb.2011.00165] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and (13)C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO(2) assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Yinjie J. Tang
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. LouisSt. Louis, MO, USA
| | - Robert Eugene Blankenship
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
20
|
Gourion B, Delmotte N, Bonaldi K, Nouwen N, Vorholt JA, Giraud E. Bacterial RuBisCO is required for efficient Bradyrhizobium/Aeschynomene symbiosis. PLoS One 2011; 6:e21900. [PMID: 21750740 PMCID: PMC3130060 DOI: 10.1371/journal.pone.0021900] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Rhizobia and legume plants establish symbiotic associations resulting in the formation of organs specialized in nitrogen fixation. In such organs, termed nodules, bacteria differentiate into bacteroids which convert atmospheric nitrogen and supply the plant with organic nitrogen. As a counterpart, bacteroids receive carbon substrates from the plant. This rather simple model of metabolite exchange underlies symbiosis but does not describe the complexity of bacteroids' central metabolism. A previous study using the tropical symbiotic model Aeschynomene indica/photosynthetic Bradyrhizobium sp. ORS278 suggested a role of the bacterial Calvin cycle during the symbiotic process. Herein we investigated the role of two RuBisCO gene clusters of Bradyrhizobium sp. ORS278 during symbiosis. Using gene reporter fusion strains, we showed that cbbL1 but not the paralogous cbbL2 is expressed during symbiosis. Congruently, CbbL1 was detected in bacteroids by proteome analysis. The importance of CbbL1 for symbiotic nitrogen fixation was proven by a reverse genetic approach. Interestingly, despite its symbiotic nitrogen fixation defect, the cbbL1 mutant was not affected in nitrogen fixation activity under free living state. This study demonstrates a critical role for bacterial RuBisCO during a rhizobia/legume symbiotic interaction.
Collapse
Affiliation(s)
- Benjamin Gourion
- Laboratoire des Symbioses Tropicales et Méditerranéennes, SupAgro/Institut National de la Recherche Agronomique/Université Montpellier 2/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
21
|
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 2011; 193:3293-303. [PMID: 21531802 DOI: 10.1128/jb.00265-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.
Collapse
|
22
|
Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria. mBio 2011; 2:mBio.00323-10. [PMID: 21427286 PMCID: PMC3063381 DOI: 10.1128/mbio.00323-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hydrogen gas (H(2)) is a possible future transportation fuel that can be produced by anoxygenic phototrophic bacteria via nitrogenase. The electrons for H(2) are usually derived from organic compounds. Thus, one would expect more H(2) to be produced when anoxygenic phototrophs are supplied with increasingly reduced (electron-rich) organic compounds. However, the H(2) yield does not always differ according to the substrate oxidation state. To understand other factors that influence the H(2) yield, we determined metabolic fluxes in Rhodopseudomonas palustris grown on (13)C-labeled fumarate, succinate, acetate, and butyrate (in order from most oxidized to most reduced). The flux maps revealed that the H(2) yield was influenced by two main factors in addition to substrate oxidation state. The first factor was the route that a substrate took to biosynthetic precursors. For example, succinate took a different route to acetyl-coenzyme A (CoA) than acetate. As a result, R. palustris generated similar amounts of reducing equivalents and similar amounts of H(2) from both succinate and acetate, even though succinate is more oxidized than acetate. The second factor affecting the H(2) yield was the amount of Calvin cycle flux competing for electrons. When nitrogenase was active, electrons were diverted away from the Calvin cycle towards H(2), but to various extents, depending on the substrate. When Calvin cycle flux was blocked, the H(2) yield increased during growth on all substrates. In general, this increase in H(2) yield could be predicted from the initial Calvin cycle flux. IMPORTANCE Photoheterotrophic bacteria, like Rhodopseudomonas palustris, obtain energy from light and carbon from organic compounds during anaerobic growth. Cells can naturally produce the biofuel H(2) as a way of disposing of excess electrons. Unexpectedly, feeding cells organic compounds with more electrons does not necessarily result in more H(2). Despite repeated observations over the last 40 years, the reasons for this discrepancy have remained unclear. In this paper, we identified two metabolic factors that influence the H(2) yield, (i) the route taken to make biosynthetic precursors and (ii) the amount of CO(2)-fixing Calvin cycle flux that competes against H(2) production for electrons. We show that the H(2) yield can be improved on all substrates by using a strain that is incapable of Calvin cycle flux. We also contributed quantitative knowledge to the long-standing question of why photoheterotrophs must produce H(2) or fix CO(2) even on relatively oxidized substrates.
Collapse
|
23
|
Rizk ML, Laguna R, Smith KM, Tabita FR, Liao JC. Redox homeostasis phenotypes in RubisCO-deficient Rhodobacter sphaeroides via ensemble modeling. Biotechnol Prog 2010; 27:15-22. [DOI: 10.1002/btpr.506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022]
|
24
|
Wang D, Zhang Y, Welch E, Li J, Roberts GP. Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2010; 35:7377-7385. [PMID: 20652089 PMCID: PMC2905822 DOI: 10.1016/j.ijhydene.2010.04.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nitrogenase not only reduces atmospheric nitrogen to ammonia, but also reduces protons to hydrogen (H(2)). The nitrogenase system is the primary means of H(2) production under photosynthetic and nitrogen-limiting conditions in many photosynthetic bacteria, including Rhodospirillum rubrum. The efficiency of this biological H(2) production largely depends on the nitrogenase enzyme and the availability of ATP and electrons in the cell. Previous studies showed that blockage of the CO(2) fixation pathway in R. rubrum induced nitrogenase activity even in the presence of ammonium, presumably to remove excess reductant in the cell. We report here the re-characterization of cbbM mutants in R. rubrum to study the effect of Rubisco on H(2) production. Our newly constructed cbbM mutants grew poorly in malate medium under anaerobic conditions. However, the introduction of constitutively active NifA (NifA*), the transcriptional activator of the nitrogen fixation (nif) genes, allows cbbM mutants to dissipate the excess reductant through the nitrogenase system and improves their growth. Interestingly, we found that the deletion of cbbM alters the posttranslational regulation of nitrogenase activity, resulting in partially active nitrogenase in the presence of ammonium. The combination of mutations in nifA, draT and cbbM greatly increased H(2) production of R. rubrum, especially in the presence of excess of ammonium. Furthermore, these mutants are able to produce H(2) over a much longer time frame than the wild type, increasing the potential of these recombinant strains for the biological production of H(2).
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yaoping Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Emily Welch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 2010; 107:11669-75. [PMID: 20558750 DOI: 10.1073/pnas.1006175107] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Calvin-Benson-Bassham cycle (Calvin cycle) catalyzes virtually all primary productivity on Earth and is the major sink for atmospheric CO(2). A less appreciated function of CO(2) fixation is as an electron-accepting process. It is known that anoxygenic phototrophic bacteria require the Calvin cycle to accept electrons when growing with light as their sole energy source and organic substrates as their sole carbon source. However, it was unclear why and to what extent CO(2) fixation is required when the organic substrates are more oxidized than biomass. To address these questions we measured metabolic fluxes in the photosynthetic bacterium Rhodopseudomonas palustris grown with (13)C-labeled acetate. R. palustris metabolized 22% of acetate provided to CO(2) and then fixed 68% of this CO(2) into cell material using the Calvin cycle. This Calvin cycle flux enabled R. palustris to reoxidize nearly half of the reduced cofactors generated during conversion of acetate to biomass, revealing that CO(2) fixation plays a major role in cofactor recycling. When H(2) production via nitrogenase was used as an alternative cofactor recycling mechanism, a similar amount of CO(2) was released from acetate, but only 12% of it was reassimilated by the Calvin cycle. These results underscore that N(2) fixation and CO(2) fixation have electron-accepting roles separate from their better-known roles in ammonia production and biomass generation. Some nonphotosynthetic heterotrophic bacteria have Calvin cycle genes, and their potential to use CO(2) fixation to recycle reduced cofactors deserves closer scrutiny.
Collapse
|
26
|
Integrative Control of Carbon, Nitrogen, Hydrogen, and Sulfur Metabolism: The Central Role of the Calvin–Benson–Bassham Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-1528-3_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
27
|
Satagopan S, Scott SS, Smith TG, Tabita FR. A Rubisco mutant that confers growth under a normally "inhibitory" oxygen concentration. Biochemistry 2009; 48:9076-83. [PMID: 19705820 PMCID: PMC2753866 DOI: 10.1021/bi9006385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) is a globally significant biocatalyst that facilitates the removal and sequestration of CO2 from the biosphere. Rubisco-catalyzed CO2 reduction thus provides virtually all of the organic carbon utilized by living organisms. Despite catalyzing the rate-limiting step of photosynthetic and chemoautotrophic CO2 assimilation, Rubisco is markedly inefficient as the competition between O2 and CO2 for the same substrate limits the ability of aerobic organisms to obtain maximum amounts of organic carbon for CO2-dependent growth. Random and site-directed mutagenesis procedures were coupled with genetic selection to identify an "oxygen-insensitive" mutant cyanobacterial (Synechococcus sp. strain PCC 6301) Rubisco that allowed for CO2-dependent growth of a host bacterium at an oxygen concentration that inhibited growth of the host containing wild-type Synechococcus Rubisco. The mutant substitution, A375V, was identified as an intragenic suppressor of D103V, a negative mutant enzyme incapable of supporting autotrophic growth. Ala-375 (Ala-378 of spinach Rubisco) is a conserved residue in all form I (plant-like) Rubiscos. Structure-function analyses indicate that the A375V substitution decreased the enzyme's oxygen sensitivity (and not CO2/O2 specificity), possibly by rearranging a network of interactions in a fairly conserved hydrophobic pocket near the active site. These studies point to the potential of engineering plants and other significant aerobic organisms to fix CO2 unfettered by the presence of O2.
Collapse
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program1, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210-1292, USA
| | - Stephanie S. Scott
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program1, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210-1292, USA
| | - Todd G. Smith
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program1, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210-1292, USA
| | - F. Robert Tabita
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program1, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210-1292, USA
| |
Collapse
|
28
|
Karpinets TV, Pelletier DA, Pan C, Uberbacher EC, Melnichenko GV, Hettich RL, Samatova NF. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. PLoS One 2009; 4:e4615. [PMID: 19242537 PMCID: PMC2643473 DOI: 10.1371/journal.pone.0004615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/07/2009] [Indexed: 11/18/2022] Open
Abstract
Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Computational Biology Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yoshida S, Inui M, Yukawa H, Kanao T, Tomizawa KI, Atomi H, Imanaka T. Phototrophic growth of a Rubisco-deficient mesophilic purple nonsulfur bacterium harboring a Type III Rubisco from a hyperthermophilic archaeon. J Biotechnol 2006; 124:532-44. [PMID: 16530868 DOI: 10.1016/j.jbiotec.2006.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 01/24/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
The hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 harbors a structurally novel, Type III Rubisco (Rbc(Tk)). In terms of protein engineering of Rubiscos, the enzyme may provide an alternative target to the conventional Type I and Type II enzymes. With a future aim to improve the catalytic properties of Rbc(Tk), here we examined whether or not the enzyme could support growth of a mesophilic organism dependent on CO2 fixation. Via double-crossover homologous recombination, we first deleted three Rubisco genes present on the chromosome of the photosynthetic mesophile Rhodopseudomonas palustris No. 7. The mutant strain (delta3) could neither grow under photoautotrophic nor photoheterotrophic conditions. We introduced the rbc(Tk) gene into strain delta3 either on a plasmid, or by integrating the gene onto the chromosome. The two transformant strains harboring rbc(Tk) displayed growth under photoautotrophic and photoheterotrophic conditions, both dependent on CO2 fixation. Specific growth rates and Rubisco activity levels were compared under photoheterotrophic conditions among the two transformants and the wild-type strain. We observed that the levels of Rubisco activity in the respective cell-free extracts correlated well with the specific growth rates. Immunoprecipitation experiments revealed that Rubisco activity detected in the transformants was derived solely from Rbc(Tk). These results demonstrated that the Type III Rbc(Tk) from a hyperthermophile could support CO2 fixation in a mesophilic organism, and that the specific growth rate of the transformant can be used as a convenient parameter for selection of engineered proteins with improved Rubisco activity.
Collapse
Affiliation(s)
- Shosuke Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Ivanovsky RN, Krasilnikova EN, Berg IA. A proposed citramalate cycle for acetate assimilation in the purple non-sulfur bacterium Rhodospirillum rubrum. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb12602.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Dangel AW, Gibson JL, Janssen AP, Tabita FR. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol 2005; 57:1397-414. [PMID: 16102008 DOI: 10.1111/j.1365-2958.2005.04783.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CbbR is a LysR-type transcriptional regulator (LTTR) that is required to activate transcription of the cbb operons, responsible for CO2 fixation, in Rhodobacter sphaeroides. LTTR proteins often require a co-inducer to regulate transcription. Previous studies suggested that ribulose 1,5-bisphosphate (RuBP) is a positive effector for CbbR function in this organism. In the current study, RuBP was found to increase the electrophoretic mobility of the CbbR/cbb(I) promoter complex. To define and analyse the co-inducer recognition region of CbbR, constitutively active mutant CbbR proteins were isolated. Under growth conditions that normally maintain transcriptionally inactive cbb operons, the mutant CbbR proteins activated transcription. Fourteen of the constitutively active mutants resulted from a single amino acid substitution. One mutant was derived from amino acid substitutions at two separate residues that appeared to act synergistically. Different mutant proteins showed both sensitivity and insensitivity to RuBP and residues that conferred constitutive transcriptional activity could be highlighted on a three-dimensional model, with several residues unique to CbbR shown to be at locations critical to LTTR function. Many of the constitutive residues clustered in or near two specific loops in the LTTR tertiary structure, corresponding to a proposed site of co-inducer binding.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
32
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
33
|
Oda Y, Meijer WG, Gibson JL, Gottschal JC, Forney LJ. Analysis of diversity among 3-chlorobenzoate-degrading strains of Rhodopseudomonas palustris. MICROBIAL ECOLOGY 2004; 47:68-79. [PMID: 15259271 DOI: 10.1007/s00248-003-1028-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The phenotypic and genetic characteristics of 14 strains of the purple nonsulfur bacterium Rhodopseudomonas palustris were studied to assess diversity within this species. While all strains had certain phenotypic characteristics in common, including the ability to metabolize benzoate and degrade 2- and 3-chlorobenzoate, there were also significant differences among the strains such as the rate of growth in media containing benzoate as a carbon source. Genetic characterization of the strains revealed there were three divergent lineages in the species. Based on 16S rRNA gene sequences, the 14 strains could be grouped into three distinct clusters (A, B, and C), and this clustering was congruent with that based on gene sequences of form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Although BOX-PCR genomic DNA fingerprints of all 14 strains exhibited differences, analysis of the fingerprint images and UPGMA/product-moment analysis of similarities showed there were three groupings that were entirely consistent with clusters based on other characteristics of the strains. Thus, regardless of the method of analysis used, strains in groups A and B consistently clustered together and were separate from those of group C. These results suggest that strains in groups A-B and C represent phylogenetically related clones that have diverged from one another. This indicates that at least three lineages of Rhodopseudomonas palustris exist among the strains included in this study, and that each may be particularly well adapted to a distinct ecological niche.
Collapse
Affiliation(s)
- Y Oda
- Laboratory of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Robert Tabita F. Research on Carbon Dioxide Fixation in Photosynthetic Microorganisms (1971-present). PHOTOSYNTHESIS RESEARCH 2004; 80:315-32. [PMID: 16328829 DOI: 10.1023/b:pres.0000030455.46192.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents my personal account of research on CO(2) fixation from when I began these studies as a postdoctoral student in the early 1970s. It traces interests in microbial ribulose bisphosphate carboxylase/oxygenase (Rubisco) and considers early breakthroughs on the isolation, characterization, and significance of this enzyme from nonsulfur purple photosynthetic bacteria and other phototrophic organisms. This article also develops a historical perspective as to how recent efforts may lead to an understanding of molecular mechanisms by which the synthesis of this enzyme and other proteins of the pathway are regulated at the molecular level. In addition, how these studies impinge on the interactive control of CO(2) fixation, along with nitrogen fixation and hydrogen metabolism, is also considered. Finally, CO(2)-fixation studies in green sulfur photosynthetic bacteria and the discovery of the rather surprising Rubisco-like protein are described.
Collapse
Affiliation(s)
- F Robert Tabita
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210-1292, USA,
| |
Collapse
|
35
|
Smith SA, Tabita FR. Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. J Mol Biol 2003; 331:557-69. [PMID: 12899828 DOI: 10.1016/s0022-2836(03)00786-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A system for biological selection of randomly mutagenized ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) genes from the cyanobacterium Synechococcus PCC6301 was designed in which a Rubisco deletion mutant of the photosynthetic bacterium Rhodobacter capsulatus served as a host. Trans-complementation with the Synechococcus PCC6301 rbcLS genes enabled anaerobic photoautotrophic growth of the R.capsulatus deletion strain with 5% CO(2), but not with 1.5% CO(2) in the atmosphere, and this strain could not grow under aerobic chemoautotrophic conditions. Phenotypic differences between the R.capsulatus host strain complemented with the wild-type rbcLS genes and transconjugates carrying mutated genes were used to identify mutants that were able to complement to photoautotrophic growth with 1.5% CO(2). These "positive" mutant proteins were unaffected for any measured kinetic properties, with a single exception. A mutant with a valine substitution at phenylalanine 342 had an increased affinity for ribulose-1,5-bisphosphate. Mutants with changes in the affinity for CO(2) were isolated through negative selection, in which mutants incapable of complementing R.capsulatus to photoautotrophic growth with 5% CO(2) were identified. Mutations at aspartate 103 resulted in enzymes that were greatly affected for different kinetic parameters, including an increased K(m) for CO(2). This study demonstrated that random mutagenesis and bioselection procedures could be used to identify mutations that influence important properties of bacterial Rubisco; these residues would not have been identified by other methods.
Collapse
Affiliation(s)
- Stephanie A Smith
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
36
|
Du C, Zhou J, Wang J, Yan B, Lu H, Hou H. Construction of a genetically engineered microorganism for CO2 fixation using a Rhodopseudomonas/Escherichia coli shuttle vector. FEMS Microbiol Lett 2003; 225:69-73. [PMID: 12900023 DOI: 10.1016/s0378-1097(03)00482-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The CO2 fixation ability of Rhodopseudomonas palustris DH was enhanced by introducing the recombinant plasmid pMG-CBBM containing the form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbM) isolated from Rps. palustris NO. 7. Sequencing of a 3.0-kb PstI fragment containing the cbbM gene revealed an open reading frame encoding 461 amino acids, homologous to known cbbM genes, with a ribosome binding site upstream of cbbM and a terminator downstream of cbbM, without promoter. pMG-CBBM, a Rhodopseudomonas/Escherichia coli shuttle expression plasmid, was derived from the Rhodopseudomonas/E. coli shuttle cloning vector pMG105, by inserting the promoter of the pckA gene and the cbbM gene into its multiple cloning site. Plasmid pMG-CBBM was transformed into Rps. palustris DH by electroporation, and was stably maintained when transformants were grown either photoheterotrophically or photolithoautotrophically in the absence of antibiotics. This is the first report of an expression plasmid containing a Rps. palustris-specific promoter that allows stable expression of a foreign gene in the absence of antibiotic selection.
Collapse
Affiliation(s)
- Cuihong Du
- School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023, PR China.
| | | | | | | | | | | |
Collapse
|
37
|
Dubbs JM, Tabita FR. Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 2003; 278:16443-50. [PMID: 12601011 DOI: 10.1074/jbc.m211267200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study (Dubbs, J. M., Bird, T. H., Bauer, C. E., and Tabita, F. R. (2000) J. Biol. Chem. 275, 19224-19230), it was demonstrated that the regulators CbbR and RegA (PrrA) interacted with both promoter proximal and promoter distal regions of the form I (cbb(I)) promoter operon specifying genes of the Calvin-Benson-Bassham cycle of Rhodobacter sphaeroides. To determine how these regulators interact with the form II (cbb(II)) promoter, three cbbF(II)::lacZ translational fusion plasmids were constructed containing various lengths of sequence 5' to the cbb(II) operon of R. sphaeroides CAC. Expression of beta-galactosidase was monitored under a variety of growth conditions in both the parental strain and knock-out strains that contain mutations that affect synthesis of CbbR and RegA. The binding sites for both CbbR and RegA were determined by DNase I footprinting. A region of the cbb(II) promoter from +38 to -227 bp contained a CbbR binding site and conferred low level regulated cbb(II) expression. The region from -227 to -1025 bp contained six RegA binding sites and conferred enhanced cbb(II) expression under all growth conditions. Unlike the cbb(I) operon, the region between -227 and -545 bp that contains one RegA binding site, was responsible for the majority of the observed enhancement. Both RegA and CbbR were required for maximal cbb(II) expression. Two potentially novel and specific cbb(II) promoter-binding proteins that did not interact with the cbb(I) promoter region were detected in crude extracts of R. sphaeroides. These results, combined with the observation that chemoautotrophic expression of the cbb(I) operon is RegA independent, indicated that the mechanisms controlling cbb(I) and cbb(II) operon expression during chemoautotrophic growth are quite different.
Collapse
Affiliation(s)
- James M Dubbs
- Department of Microbiology, Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
38
|
Finn MW, Tabita FR. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. J Bacteriol 2003; 185:3049-59. [PMID: 12730164 PMCID: PMC154057 DOI: 10.1128/jb.185.10.3049-3059.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose 1,5 bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the biological reduction and assimilation of carbon dioxide gas to organic carbon; it is the key enzyme responsible for the bulk of organic matter found on earth. Until recently it was believed that there are only two forms of RubisCO, form I and form II. However, the recent completion of several genome-sequencing projects uncovered open reading frames resembling RubisCO in the third domain of life, the archaea. Previous work and homology comparisons suggest that these enzymes represent a third form of RubisCO, form III. While earlier work indicated that two structurally distinct recombinant archaeal RubisCO proteins catalyzed bona fide RubisCO reactions, it was not established that the rbcL genes of anaerobic archaea can be transcribed and translated to an active enzyme in the native organisms. In this report, it is shown not only that Methanococcus jannaschii, Archaeoglobus fulgidus, Methanosarcina acetivorans, and Methanosarcina barkeri possess open reading frames with the residues required for catalysis but also that the RubisCO protein from these archaea accumulates in an active form under normal growth conditions. In addition, the form III RubisCO gene (rbcL) from M. acetivorans was shown to complement RubisCO deletion strains of Rhodobacter capsulatus and Rhodobacter sphaeroides under both photoheterotrophic and photoautotrophic growth conditions. These studies thus indicate for the first time that archaeal form III RubisCO functions in a physiologically significant fashion to fix CO(2). Furthermore, recombinant M. jannaschii, M. acetivorans, and A. fulgidus RubisCO possess unique properties with respect to quaternary structure, temperature optima, and activity in the presence of molecular oxygen compared to the previously described Thermococcus kodakaraensis and halophile proteins.
Collapse
Affiliation(s)
- Michael W Finn
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
39
|
Tichi MA, Tabita FR. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus. J Bacteriol 2002; 184:1905-15. [PMID: 11889097 PMCID: PMC134932 DOI: 10.1128/jb.184.7.1905-1915.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various mutant strains were used to examine the regulation and metabolic control of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway in Rhodobacter capsulatus. Previously, a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient strain (strain SBI/II) was found to show enhanced levels of cbb(I) and cbb(II) promoter activities during photoheterotrophic growth in the presence of dimethyl sulfoxide. With this strain as the starting point, additional mutations were made in genes encoding phosphoribulokinase and transketolase and in the gene encoding the LysR-type transcriptional activator, CbbR(II). These strains revealed that a product generated by phosphoribulokinase was involved in control of CbbR-mediated cbb gene expression in SBI/II. Additionally, heterologous expression experiments indicated that Rhodobacter sphaeroides CbbR responded to the same metabolic signal in R. capsulatus SBI/II and mutant strain backgrounds.
Collapse
Affiliation(s)
- Mary A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
40
|
Spreitzer RJ, Salvucci ME. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:449-75. [PMID: 12221984 DOI: 10.1146/annurev.arplant.53.100301.135233] [Citation(s) in RCA: 468] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes the first step in net photosynthetic CO2 assimilation and photorespiratory carbon oxidation. The enzyme is notoriously inefficient as a catalyst for the carboxylation of RuBP and is subject to competitive inhibition by O2, inactivation by loss of carbamylation, and dead-end inhibition by RuBP. These inadequacies make Rubisco rate limiting for photosynthesis and an obvious target for increasing agricultural productivity. Resolution of X-ray crystal structures and detailed analysis of divergent, mutant, and hybrid enzymes have increased our insight into the structure/function relationships of Rubisco. The interactions and associations relatively far from the Rubisco active site, including regulatory interactions with Rubisco activase, may present new approaches and strategies for understanding and ultimately improving this complex enzyme.
Collapse
Affiliation(s)
- Robert J Spreitzer
- Department of Biochemistry, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
| | | |
Collapse
|
41
|
Tichi MA, Meijer WG, Tabita FR. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus. J Bacteriol 2001; 183:7285-94. [PMID: 11717288 PMCID: PMC95578 DOI: 10.1128/jb.183.24.7285-7294.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transposon mutant of Rhodobacter capsulatus, strain Mal7, that was incapable of photoautotrophic and chemoautotrophic growth and could not grow photoheterotrophically in the absence of an exogenous electron acceptor was isolated. The phenotype of strain Mal7 suggested that the mutation was in some gene(s) not previously shown to be involved in CO(2) fixation control. The site of transposition in strain Mal7 was identified and shown to be in the gene nuoF, which encodes one of the 14 subunits for NADH ubiquinone-oxidoreductase, or complex I. To confirm the role of complex I and nuoF for CO(2)-dependent growth, a site-directed nuoF mutant was constructed (strain SBC1) in wild-type strain SB1003. The complex I-deficient strains Mal7 and SBC1 exhibited identical phenotypes, and the pattern of CO(2) fixation control through the Calvin-Benson-Bassham pathway was the same for both strains. It addition, it was shown that electron transport through complex I led to differential control of the two major cbb operons of this organism. Complex I was further shown to be linked to the control of nitrogen metabolism during anaerobic photosynthetic growth of R. capsulatus.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
42
|
Tichi MA, Tabita FR. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. J Bacteriol 2001; 183:6344-54. [PMID: 11591679 PMCID: PMC100130 DOI: 10.1128/jb.183.21.6344-6354.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In nonsulfur purple bacteria, redox homeostasis is achieved by the coordinate control of various oxidation-reduction balancing mechanisms during phototrophic anaerobic respiration. In this study, the ability of Rhodobacter capsulatus to maintain a balanced intracellular oxidation-reduction potential was considered; in addition, interrelationships between the control of known redox-balancing systems, the Calvin-Benson-Bassham, dinitrogenase and dimethyl sulfoxide reductase systems, were probed in strains grown under both photoheterotrophic and photoautotrophic growth conditions. By using cbb(I) (cbb form I operon)-, cbb(II)-, nifH-, and dorC-reporter gene fusions, it was demonstrated that each redox-balancing system responds to specific metabolic circumstances under phototrophic growth conditions. In specific mutant strains of R. capsulatus, expression of both the Calvin-Benson-Bassham and dinitrogenase systems was influenced by dimethyl sulfoxide respiration. Under photoheterotrophic growth conditions, coordinate control of redox-balancing systems was further manifested in ribulose 1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase deletion strains. These findings demonstrated the existence of interactive control mechanisms that govern the diverse means by which R. capsulatus maintains redox poise during photoheterotrophic and photoautotrophic growth.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
43
|
Vichivanives P, Bird TH, Bauer CE, Robert Tabita F. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol 2000; 300:1079-99. [PMID: 10903856 DOI: 10.1006/jmbi.2000.3914] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cbb(I) and cbb(II) operons encode structural genes which are important for carbon dioxide fixation via the Calvin-Benson-Bassham reductive pentose phosphate pathway in Rhodobacter capsulatus. Each operon is regulated by cognate LysR-type transcriptional activators, CbbR(I) and CbbR(II), with the product of the cbbR(I) gene, CbbR(I), able to control its own transcription under some growth conditions. Furthermore, CbbR(I) may at least partially regulate the cbb(II) operon, with significant, yet regulated transcription of the cbb(II) operon occurring in the absence of any CbbR. These results suggested the importance of additional regulators. Thus, in addition to the rather specific control exerted by CbbR, a more globally significant regulatory system, the RegA-RegB (PrrA-PrrB) two-component system, was found to contribute to transcriptional regulation of each cbb operon. The regA and regB mutant strains were found to contain constitutive levels of form I and form II RubisCO, the major proteins encoded by the cbb(I) and cbb(II) operons, respectively. In addition, DNaseI footprint analyses indicated that RegA*, a constitutively active mutant form of RegA, binds specifically to cbb(I) and cbb(II) promoter-operator regions. CbbR(I), CbbR(II), and RegA binding loci were localized relative to transcription start sites, leading to a coherent picture of how each of these regulators interacts with specific promoter-operator sequences of the cbb operons.
Collapse
Affiliation(s)
- P Vichivanives
- Department of Microbiology and Plant Biotechnology Center, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | | | |
Collapse
|
44
|
Dubbs JM, Bird TH, Bauer CE, Tabita FR. Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbIPromoter-operator region. J Biol Chem 2000; 275:19224-30. [PMID: 10748066 DOI: 10.1074/jbc.m002125200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The form I (cbb(I)) Calvin-Benson-Bassham (CBB) reductive pentose phosphate cycle operon of Rhodobacter sphaeroides is regulated by both the transcriptional activator CbbR and the RegA/PrrA (RegB/PrrB) two-component signal transduction system. DNase I footprint analyses indicated that R. sphaeroides CbbR binds to the cbb(I) promoter between -10 and -70 base pairs (bp) relative to the cbb(I) transcription start. A cosmid carrying the R. capsulatus reg locus was capable of complementing an R. sphaeroides regA-deficient mutant to phototrophic growth with restored regulated synthesis of both photopigments and ribulose-bisphosphate carboxylase/oxygenase (Rubisco). DNase I footprint analyses, using R. capsulatus RegA*, a constitutively active mutant version of RegA, detected four RegA* binding sites within the cbb(I) promoter. Two sites were found within a previously identified cbb(I) promoter proximal regulatory region from -61 to -110 bp. One of these proximal RegA* binding sites overlapped that of CbbR. Two sites were within a previously identified promoter distal positive regulatory region between -301 and -415 bp. Expression from promoter insertion mutants showed that the function of the promoter distal regulatory region was helical phase-dependent. These results indicated that RegA exerts its regulatory affect on cbb(I) expression through direct interaction with the cbb(I) promoter.
Collapse
Affiliation(s)
- J M Dubbs
- Department of Microbiology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Novak JS, Tabita FR. Molecular approaches to probe differential NADH activation of phosphoribulokinase isozymes from Rhodobacter sphaeroides. Arch Biochem Biophys 1999; 363:273-82. [PMID: 10068449 DOI: 10.1006/abbi.1998.1084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cbbPI and cbbPII genes from Rhodobacter sphaeroides, encoding highly similar phosphoribulokinase (PRK) isozymes, PRK I and PRK II, respectively, exhibited differential allosteric activation by NADH. The two cbbP genes were cloned into expression vectors and homogeneous recombinant protein prepared. PRK II was found to be inherently less stable than PRK I; however, the addition of substrate ATP resulted in the complete protection of both isozymes to a 15-min incubation at 50 degrees C. The relative molecular masses for both octameric isozymes were determined to be approximately 230,000; however, the protective effect of ATP was in accordance with aggregation of monomers to a molecular mass of approximately 750,000. While PRK I exhibited a nearly absolute dependence upon NADH for activity, PRK II retained substantial activity in the absence of NADH. PRK chimeras were thus constructed to facilitate elucidation of the basis for the differential effect of NADH, with advantage taken of the relative sequence identity of about 90% between the two isozymes. Chimeras were constructed either by in vivo homologous recombination, using the sacB gene from Bacillus subtilis as a conditionally lethal marker, or by using convenient restriction sites to combine different parts of the two cbbP genes. The PRK chimeras generated contained either the amino-terminal domain of PRK II and the carboxy-terminal domain of PRK I or the opposite configuration. Subsequent analyses of the chimeras pointed to particular regions and residue(s) as likely being important for NADH activation.
Collapse
Affiliation(s)
- J S Novak
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210-1292, USA
| | | |
Collapse
|
47
|
Dubbs JM, Tabita FR. Two functionally distinct regions upstream of the cbbI operon of Rhodobacter sphaeroides regulate gene expression. J Bacteriol 1998; 180:4903-11. [PMID: 9733694 PMCID: PMC107516 DOI: 10.1128/jb.180.18.4903-4911.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Accepted: 07/21/1998] [Indexed: 11/20/2022] Open
Abstract
A number of cbbFI::lacZ translational fusion plasmids containing various lengths of sequence 5' to the form I (cbbI) Calvin-Benson-Bassham cycle operon (cbbFIcbbPIcbbAIcbbLIcbbSI) of Rhodobacter sphaeroides were constructed. Expression of beta-galactosidase was monitored under a variety of growth conditions. It was found that 103 bp of sequence upstream of the cbbFI transcription start was sufficient to confer low levels of regulated cbbI promoter expression; this activity was dependent on the presence of an intact cbbR gene. Additionally, R. sphaeroides CbbR was shown to bind to the region between 9 and 100 bp 5' to the cbbFI transcription start. Inclusion of an additional upstream sequence, from 280 to 636 bp 5' to cbbFI, resulted in a significant increase in regulated cbbI promoter expression under all growth conditions tested. A 50-bp region responsible for the majority of this increase occurs between 280 and 330 bp 5' to cbbFI. The additional 306 bp of upstream sequence from 330 to 636 bp also appears to play a positive regulatory role. A 4-bp deletion 281 to 284 bp 5' to cbbFI significantly reduced cbbI expression while the proper regulatory pattern was retained. These studies provide evidence for the presence of two functionally distinct regions of the cbbI promoter, with the distal domain providing significant regulated promoter activity that adheres to the normal pattern of expression.
Collapse
Affiliation(s)
- J M Dubbs
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
48
|
Qian Y, Tabita FR. Expression of glnB and a glnB-like gene (glnK) in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 1998; 180:4644-9. [PMID: 9721307 PMCID: PMC107479 DOI: 10.1128/jb.180.17.4644-4649.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 06/18/1998] [Indexed: 11/20/2022] Open
Abstract
In a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient mutant of Rhodobacter sphaeroides, strain 16PHC, nitrogenase activity was derepressed in the presence of ammonia under photoheterotrophic growth conditions. Previous studies also showed that reintroduction of a functional RubisCO and Calvin-Benson-Bassham (CBB) pathway suppressed the deregulation of nitrogenase synthesis in this strain. In this study, the derepression of nitrogenase synthesis in the presence of ammonia in strain 16PHC was further explored by using a glnB::lacZ fusion, since the product of the glnB gene is known to have a negative effect on ammonia-regulated nif control. It was found that glnB expression was repressed in strain 16PHC under photoheterotrophic growth conditions with either ammonia or glutamate as the nitrogen source; glutamine synthetase (GS) levels were also affected in this strain. However, when cells regained a functional CBB pathway by trans complementation of the deleted genes, wild-type levels of GS and glnB expression were restored. Furthermore, a glnB-like gene, glnK, was isolated from this organism, and its expression was found to be under tight nitrogen control in the wild type. Surprisingly, glnK expression was found to be derepressed in strain 16PHC under photoheterotrophic conditions in the presence of ammonia.
Collapse
Affiliation(s)
- Y Qian
- The Biochemistry Program and The, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
49
|
Paoli GC, Vichivanives P, Tabita FR. Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J Bacteriol 1998; 180:4258-69. [PMID: 9696777 PMCID: PMC107425 DOI: 10.1128/jb.180.16.4258-4269.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 06/03/1998] [Indexed: 11/20/2022] Open
Abstract
The genes encoding enzymes of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway in Rhodobacter capsulatus are organized in at least two operons, each preceded by a separate cbbR gene, encoding potential LysR-type transcriptional activators. As a prelude to studies of cbb gene regulation in R. capsulatus, the nucleotide sequence of a 4,537-bp region, which included cbbRII, was determined. This region contained the following open reading frames: a partial pgm gene (encoding phosphoglucomutase) and a complete qor gene (encoding NADPH:quinone oxidoreductase), followed by cbbRII, cbbF (encoding fructose 1,6-bisphosphatase), cbbP (encoding phosphoribulokinase), and part of cbbT (encoding transketolase). Physiological control of the CBB pathway and regulation of the R. capsulatus cbb genes were studied by using a combination of mutant strains and promoter fusion constructs. Characterization of mutant strains revealed that either form I or form II ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO), encoded by the cbbLS and cbbM genes, respectively, could support photoheterotrophic and autotrophic growth. A strain with disruptions in both cbbL and cbbM could not grow autotrophically and grew photoheterotrophically only when dimethyl sulfoxide was added to the culture medium. Disruption of cbbP resulted in a strain that did not synthesize form II RubisCO and had a phenotype similar to that observed in the RubisCO-minus strain, suggesting that there is only one cbbP gene in R. capsulatus and that this gene is cotranscribed with cbbM. Analysis of RubisCO activity and synthesis in strains with disruptions in either cbbRI or cbbRII, and beta-galactosidase determinations from wild-type and mutant strains containing cbbIp- and cbbIIp-lacZ fusion constructs, indicated that the cbbI and cbbII operons of R. capsulatus are within separate CbbR regulons.
Collapse
Affiliation(s)
- G C Paoli
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
50
|
Barber RD, Donohue TJ. Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 1998; 37:530-7. [PMID: 9425073 DOI: 10.1021/bi971463t] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite its reactivity with many biological molecules, formaldehyde can be commonly encountered by virtually all cells. The widespread existence of glutathione-dependent formaldehyde dehydrogenases (GSH-FDH) in procaryotes and eucaryotes suggests this enzyme plays a central and universal role in biological formaldehyde oxidation. This work sought to determine the role of GSH-FDH in the facultative phototrophic bacterium Rhodobacter sphaeroides. Growth phenotypes of wild-type and mutant cells, changes in enzyme specific activities, and the pattern of 13C-labeled compounds detected by NMR spectroscopy cumulatively suggest that R. sphaeroides GSH-FDH can play a critical role in formaldehyde metabolism under both photosynthetic and aerobic respiratory conditions. In photosynthetic cells, the data indicate that GSH-FDH generates reducing power, in the form of NADH, and one-carbon skeletons that are oxidized to carbon dioxide for subsequent assimilation by the Calvin-Benson-Bassham cycle. For example, use of methanol as a sole photosynthetic carbon source increases the specific activities of GSH-FDH, an NAD-dependent formate dehydrogenase, and the key Calvin-Benson-Bassham cycle enzyme, ribulose-1,5-bisphosphate carboxylase. This role of GSH-FDH is also supported by the pattern of [13C]formaldehyde oxidation products that accumulate in photosynthetic cells and the inability of defined GSH-FDH or Calvin cycle mutants to use methanol as a sole carbon source. Our data also suggest that GSH-FDH acts in formaldehyde dissimilation when aerobic respiratory cultures cometabolize methanol and succinate.
Collapse
Affiliation(s)
- R D Barber
- Graduate Program in Cell and Molecular Biology and Department of Bacteriology, University of Wisconsin--Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|