1
|
Kanno T, Takekawa D, Miyakawa Y. Analysis of the essentiality of ROM2
genes in the pathogenic yeasts Candida glabrata
and Candida albicans
using temperature-sensitive mutants. J Appl Microbiol 2015; 118:851-63. [DOI: 10.1111/jam.12745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/26/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022]
Affiliation(s)
- T. Kanno
- Division of Biotechnology; Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Kofu Yamanashi Japan
| | - D. Takekawa
- Division of Biotechnology; Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Kofu Yamanashi Japan
| | - Y. Miyakawa
- Division of Biotechnology; Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; Kofu Yamanashi Japan
| |
Collapse
|
2
|
Enhanced Extracellular Production of Heterologous Proteins in Bacillus subtilis by Deleting the C-terminal Region of the SecA Secretory Machinery. Mol Biotechnol 2010; 46:250-7. [DOI: 10.1007/s12033-010-9295-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Miyakawa Y, Hara T, Iimura Y. Establishment of a screening system for essential genes from the pathogenic yeastCandida glabrata: identification of a putativeTEM1homologue. Lett Appl Microbiol 2009; 49:317-23. [DOI: 10.1111/j.1472-765x.2009.02661.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Meining W, Scheuring J, Fischer M, Weinkauf S. Cloning, purification, crystallization and preliminary crystallographic analysis of SecA from Enterococcus faecalis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:583-5. [PMID: 16754988 PMCID: PMC2243102 DOI: 10.1107/s1744309106017544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/11/2006] [Indexed: 11/10/2022]
Abstract
The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 A resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 A, alpha = gamma = 90.0, beta = 119.1 degrees. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.
Collapse
Affiliation(s)
- Winfried Meining
- Karolinska Institutet, Department of Biosciences, Center of Structural Biochemistry, Sweden.
| | | | | | | |
Collapse
|
5
|
Ding H, Hunt JF, Mukerji I, Oliver D. Bacillus subtilis SecA ATPase exists as an antiparallel dimer in solution. Biochemistry 2003; 42:8729-38. [PMID: 12873133 DOI: 10.1021/bi0342057] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA ATPase promotes the biogenesis of membrane and secretory proteins into and across the cytoplasmic membrane of Eubacteria. SecA binds to translocon component SecYE and substrate proteins and undergoes ATP-dependent conformational cycles that are coupled to the stepwise translocation of proteins. Our recent crystal structure of B. subtilis SecA [Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026] showed two different dimer interactions in the lattice which both buried significant solvent-accessible surface area in their interface and could potentially be responsible for formation of the physiological dimer in solution. In this paper, we utilize fluorescence resonance energy transfer methodology with genetically engineered SecA proteins containing unique pairs of tryptophan and fluorophore-labeled cysteine residues to determine the oligomeric structure of SecA protein in solution. Our results show that of the two dimers interactions observed in the crystal structure, SecA forms an antiparallel dimer in solution that maximizes the buried solvent-accessible surface area and intermolecular contacts. At the submicromolar protein concentrations used in the fluorescence experiments, we saw no evidence for the formation of higher-order oligomers of SecA based on either the alternative dimer or the 3(1) helical fiber observed in the crystal lattice. Our studies are consistent with previous ones demonstrating the existence of a dimerization determinant within the C-domain of SecA as well as those documenting the interaction of N- and C-domains of SecA. Our results also provide a valuable starting point for a determination of whether the subunit status of SecA changes during the protein translocation as well as studies designed to elucidate the conformational dynamics of this multidomain protein during its translocation cycle.
Collapse
Affiliation(s)
- Haiyuan Ding
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | |
Collapse
|
6
|
Chiba K, Mori H, Ito K. Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli. J Bacteriol 2002; 184:2243-50. [PMID: 11914356 PMCID: PMC134956 DOI: 10.1128/jb.184.8.2243-2250.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 01/20/2002] [Indexed: 11/20/2022] Open
Abstract
SecY, a central component of the membrane-embedded sector of protein translocase, contains six cytosolic domains. Here, we examined the importance of the C-terminal cytosolic region of SecY by systematically shortening the C-terminal end and examining the functional consequences of these mutations in vivo and in vitro. It was indicated that the C-terminal five residues are dispensable without any appreciable functional defects in SecY. Mutants missing the C-terminal six to seven residues were partially compromised, especially at low temperature or in the absence of SecG. In vitro analyses indicated that the initial phase of the translocation reaction, in which the signal sequence region of the preprotein is inserted into the membrane, was affected by the lack of the C-terminal residues. SecA binding was normal, but SecA insertion in response to ATP and a preprotein was impaired. It is suggested that the C-terminal SecY residues are required for SecA-dependent translocation initiation.
Collapse
Affiliation(s)
- Kazuhiko Chiba
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
7
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 603] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Novak KF, Nonnemacher MR, Pourhamidi J. Molecular characterization and functional analysis of a secA gene homolog in Actinobacillus actinomycetemcomitans. Microbiol Immunol 2000; 44:143-8. [PMID: 10803501 DOI: 10.1111/j.1348-0421.2000.tb01257.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Results of Southern blot analyses and polymerase chain reaction revealed that the Gram-negative pathogen, Actinobacillus actinomycetemcomitans, harbored DNA homologous to the secA gene of Escherichia coli. In E. coli, the secA gene product is essential for translocation of proteins across the inner membrane via the Sec system. This A. actinomycetemcomitans secA homolog was cloned and its nucleotide sequence determined. Amino acid sequence analysis of the cloned gene revealed significant homology to the SecA proteins of Haemophilus influenzae, E. coli, Caulobacter crescentus and Bacillus subtilis. Although the cloned gene did not complement a temperature sensitive mutation in the E. coli secA gene, strains harboring the cloned gene did produce a protein that cross-reacted with anti-SecA antibody. In addition, the cloned gene did restore sensitivity to sodium azide in an E. coli azide mutant. These data support the hypothesis that A. actinomycetemcomitans may use a system similar to the Sec system of E. coli to transport proteins across the cytoplasmic membrane, but suggest that the A. actinomycetemcomitans gene product may require genera-specific Sec proteins to complement some Sec mutations in E. coli.
Collapse
Affiliation(s)
- K F Novak
- Department of Dental Public Health, University of Pittsburgh School of Dental Medicine, PA 15261, USA. kfn+@pitt.edu
| | | | | |
Collapse
|
9
|
Alksne LE, Burgio P, Hu W, Feld B, Singh MP, Tuckman M, Petersen PJ, Labthavikul P, McGlynn M, Barbieri L, McDonald L, Bradford P, Dushin RG, Rothstein D, Projan SJ. Identification and analysis of bacterial protein secretion inhibitors utilizing a SecA-LacZ reporter fusion system. Antimicrob Agents Chemother 2000; 44:1418-27. [PMID: 10817687 PMCID: PMC89891 DOI: 10.1128/aac.44.6.1418-1427.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein secretion is an essential process for bacterial growth, yet there are few if any antimicrobial agents which inhibit secretion. An in vivo, high-throughput screen to detect secretion inhibitors was developed based on the translational autoregulation of one of the central protein components, SecA. The assay makes use of a SecA-LacZ fusion reporter construct in Escherichia coli which is induced when secretion is perturbed. Several compounds, including two natural product extracts, which had the ability to induce the reporter fusion were identified and the MICs of these compounds for Staphylococcus aureus strain MN8 were found to be < or =128 microg/ml. Enzyme-linked immunosorbent assay, Western blotting, and immunoprecipitation techniques were used to analyze the affects of these compounds on protein secretion. Six representative compounds presented here appear to be bona fide secretion inhibitors but were found to have deleterious effects on membranes. It was concluded that, while the method described here for identifying inhibitors of secretion is valid, screens such as this, which are directed against the membrane-bound portion of a pathway, may preferentially identify compounds which affect membrane integrity.
Collapse
Affiliation(s)
- L E Alksne
- Wyeth-Ayerst Research, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K. Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):65-75. [PMID: 10658653 DOI: 10.1099/00221287-146-1-65] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To analyse the proteome of Bacillus subtilis extracellular proteins, extracellular protein samples were prepared from culture media (minimal medium containing 0.4% glucose) of parental B. subtilis 168, a secA-temperature sensitive mutant and an ffh conditional mutant, and examined by two-dimensional gel electrophoresis. Approximately 100 to 110 spots were visualized in a gel of B. subtilis 168 extracellular proteins. Over 90% and 80% of these disappeared in the absence of SecA and Ffh, respectively. Thirty-eight obvious spots on the gel of the B. subtilis 168 preparation were selected and compared with spots obtained under SecA- or Ffh-deficient conditions. The appearance of 36 of these 38 spots depended on SecA and Ffh. Nineteen additional extracellular proteins were detected in cultures maintained in cellobiose, maltose and soluble starch. Among 23 proteins of which the N-terminal amino acid sequences were determined, 17 were extracellular proteins having signal peptides in their precursor form. Two membrane proteins, Yfnl and YflE, were cleaved behind 226Ala-Tyr-Ala228 and 213Ala-Leu-Ala215, respectively, and of which products seemed to be liberated into the culture medium. The production of Yfnl and YflE were also dependent on SecA and Ffh. These results indicate that most extracellular proteins target to and translocate across the cytoplasmic membrane by co-operation between the signal-recognition particle and Sec protein-secretion pathways. In contrast, a spot for Hag appeared independent from SecA and Ffh. Intracellular proteins Gap, SodA and KatA were identified in the extracellular protein samples. On the basis of these results and computer searches, it was predicted that B. subtilis produces 150 to 180 proteins extracellularly.
Collapse
Affiliation(s)
- Isao Hirose
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan1
| | - Kazuyoshi Sano
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan1
| | - Izumi Shioda
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan1
| | - Miyuki Kumano
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan1
| | - Kouji Nakamura
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan1
| | - Kunio Yamane
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan1
| |
Collapse
|
11
|
Müller JP, Wagner M. Localisation of the cell wall-associated phosphodiesterase PhoD of Bacillus subtilis. FEMS Microbiol Lett 1999; 180:287-96. [PMID: 10556724 DOI: 10.1111/j.1574-6968.1999.tb08808.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The localisation of phosphate-starvation-induced phosphodiesterase PhoD from Bacillus subtilis was studied by analysing processing, release and immunogold labelling of the sections. Although the processing of the pre-protein was extremely slow, the major fraction of PhoD could be detected at the surface of the cell wall. The results indicate that inefficient processing of the translocated pre-protein keeps PhoD in a cell wall-associated location. The uncleaved signal peptide might function as a membrane anchor.
Collapse
Affiliation(s)
- J P Müller
- Institute of Molecular Biology, Jena University, Winzerlaer Str. 10, D-07745, Jena, Germany.
| | | |
Collapse
|
12
|
Swaving J, van Wely KH, Driessen AJ. Preprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. J Bacteriol 1999; 181:7021-7. [PMID: 10559168 PMCID: PMC94177 DOI: 10.1128/jb.181.22.7021-7027.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial protein translocation is mediated by translocase, a multisubunit membrane protein complex that consists of a peripheral ATPase SecA and a preprotein-conducting channel with SecY, SecE, and SecG as subunits. Like Escherichia coli SecG, the Bacillus subtilis homologue, YvaL, dramatically stimulated the ATP-dependent translocation of precursor PhoB (prePhoB) by the B. subtilis SecA-SecYE complex. To systematically determine the functional exchangeability of translocase subunits, all of the relevant combinations of the E. coli and B. subtilis secY, secE, and secG genes were expressed in E. coli. Hybrid SecYEG complexes were overexpressed at high levels. Since SecY could not be overproduced without SecE, these data indicate a stable interaction between the heterologous SecY and SecE subunits. E. coli SecA, but not B. subtilis SecA, supported efficient ATP-dependent translocation of the E. coli precursor OmpA (proOmpA) into inner membrane vesicles containing the hybrid SecYEG complexes, if E. coli SecY and either E. coli SecE or E. coli SecG were present. Translocation of B. subtilis prePhoB, on the other hand, showed a strict dependence on the translocase subunit composition and occurred efficiently only with the homologous translocase. In contrast to E. coli SecA, B. subtilis SecA binds the SecYEG complexes only with low affinity. These results suggest that each translocase subunit contributes in an exclusive manner to the specificity and functionality of the complex.
Collapse
Affiliation(s)
- J Swaving
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
13
|
Leloup L, Driessen AJ, Freudl R, Chambert R, Petit-Glatron MF. Differential dependence of levansucrase and alpha-amylase secretion on SecA (Div) during the exponential phase of growth of Bacillus subtilis. J Bacteriol 1999; 181:1820-6. [PMID: 10074074 PMCID: PMC93580 DOI: 10.1128/jb.181.6.1820-1826.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA, the translocation ATPase of the preprotein translocase, accounts for 0.25% of the total protein in a degU32(Hy) Bacillus subtilis strain in logarithmic phase. The SecA level remained constant irrespective of the demand for exoprotein production but dropped about 12-fold during the late stationary phase. Modulation of the level of functional SecA during the exponential phase of growth affected differently the secretion of levansucrase and alpha-amylase overexpressed under the control of the sacB leader region. The level of SecA was reduced in the presence of sodium azide and in the div341 thermosensitive mutant at nonpermissive temperatures. Overproduction of SecA was obtained with a multicopy plasmid bearing secA. The gradual decrease of the SecA level reduced the yield of secreted levansucrase with a concomitant accumulation of unprocessed precursor in the cells, while an increase in the SecA level resulted in an elevation of the production of exocellular levansucrase. In contrast, alpha-amylase secretion was almost unaffected by high concentrations of sodium azide or by very low levels of SecA. Secretion defects were apparent only under conditions of strong SecA deprivation of the cell. These data demonstrate that the alpha-amylase and levansucrase precursors markedly differ in their dependency on SecA for secretion. It is suggested that these precursors differ in their binding affinities for SecA.
Collapse
Affiliation(s)
- L Leloup
- Laboratoire Génétique et Membranes, Institut Jacques Monod, CNRS-Universités Paris 6 et 7, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
14
|
Kobayashi M, Fugono N, Asai Y, Yukawa H. Cloning and nucleotide sequencing of the secA gene from coryneform bacteria. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:9-13. [PMID: 10084122 DOI: 10.1016/s1050-3862(98)00010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Taking advantage of highly conserved domains present in the secA gene from Escherichia coli and Bacillus subtilis, we designed degenerate oligonucleotides (oligos) corresponding to these regions. These oligos were used as primers in PCR in order to amplify DNA sequences from Brevibacterium flavum MJ233 chromosomal DNA. The PCR product was used as a probe to recover genomic fragments from a lambda library of Br. flavum MJ233. The complete nucleotide sequence (nt) of the cloned 5.3-kb EcoR1 fragment containing the secA homolog from Br. flavum MJ233 indicated that the deduced gene product of the Br. flavum secA homolog is composed of 845 amino acids (aa) with a deduced molecular weight (MW) of 95429. Comparison of this aa sequence to the corresponding sequences from E. coli and B. subtilis revealed a high degree of conservation and suggested that the Br. flavum secA homolog has putative ATP binding regions.
Collapse
Affiliation(s)
- M Kobayashi
- Tsukuba Research Center, Mitsubishi Chemical Corporation, Ibaraki, Japan.
| | | | | | | |
Collapse
|
15
|
van Wely KH, Swaving J, Broekhuizen CP, Rose M, Quax WJ, Driessen AJ. Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J Bacteriol 1999; 181:1786-92. [PMID: 10074070 PMCID: PMC93576 DOI: 10.1128/jb.181.6.1786-1792.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identified through genetic analysis. Sequence comparison of the Bacillus chromosome identified a potential homologue of SecG, termed YvaL. A chromosomal disruption of the yvaL gene results in mild cold sensitivity and causes a beta-lactamase secretion defect. The cold sensitivity is exacerbated by overexpression of the secretory protein alpha-amylase, whereas growth and beta-lactamase secretion are restored by coexpression of yvaL or the E. coli secG gene. These results indicate that the yvaL gene codes for a protein that is functionally homologous to SecG.
Collapse
Affiliation(s)
- K H van Wely
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Herbort M, Klein M, Manting EH, Driessen AJ, Freudl R. Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. J Bacteriol 1999; 181:493-500. [PMID: 9882663 PMCID: PMC93403 DOI: 10.1128/jb.181.2.493-500.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the secretion of extracellular proteins strongly increases upon transition from exponential growth to the stationary growth phase. It is not known whether the amounts of some or all components of the protein translocation apparatus are concomitantly increased in relation to the increased export activity. In this study, we analyzed the transcriptional organization and temporal expression of the secA gene, encoding a central component of the B. subtilis preprotein translocase. We found that secA and the downstream gene (prfB) constitute an operon that is transcribed from a vegetative (sigmaA-dependent) promoter located upstream of secA. Furthermore, using different independent methods, we found that secA expression occurred mainly in the exponential growth phase, reaching a maximal value almost precisely at the transition from exponential growth to the stationary growth phase. Following to this maximum, the de novo transcription of secA sharply decreased to a low basal level. Since at the time of maximal secA transcription the secretion activity of B. subtilis strongly increases, our results clearly demonstrate that the expression of at least one of the central components of the B. subtilis protein export apparatus is adapted to the increased demand for protein secretion. Possible mechanistic consequences are discussed.
Collapse
Affiliation(s)
- M Herbort
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
17
|
Guina T, Helfet-Hilliker D, Ramamurthy V, Oliver D. Sequence and phylogenetic analysis of the Borrelia burgdorferi secA gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1371:24-30. [PMID: 9565653 DOI: 10.1016/s0005-2736(97)00277-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Borrelia burgdorferi secA homologue was cloned and the complete DNA sequence was determined. The deduced protein sequence consists of 899 amino acids and shows a high degree of homology to SecA homologues from other Bacteria and photosynthetic plastids. The presence of the secA gene in Spirochetes suggests that this gene is present in most if not all major lineages within Bacteria. The ease of isolation of secA by conservation of its ATP-binding motifs combined with its extreme conservation in protein secretion pathways and the presence of a phylogenetic sequence marker in one of its ATP-binding domains makes this gene useful for phylogenetic analysis of Bacteria and photosynthetic plastids.
Collapse
Affiliation(s)
- T Guina
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
18
|
Helde R, Wiesler B, Wachter E, Neubüser A, Hoffschulte HK, Hengelage T, Schimz KL, Stuart RA, Müller M. Comparative characterization of SecA from the alpha-subclass purple bacterium Rhodobacter capsulatus and Escherichia coli reveals differences in membrane and precursor specificity. J Bacteriol 1997; 179:4003-12. [PMID: 9190818 PMCID: PMC179211 DOI: 10.1128/jb.179.12.4003-4012.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have cloned the secA gene of the alpha-subclass purple bacterium Rhodobacter capsulatus, a close relative to the mitochondrial ancestor, and purified the protein after expression in Escherichia coli. R. capsulatus SecA contains 904 amino acids with 53% identity to E. coli and 54% identity to Caulobacter crescentus SecA. In contrast to the nearly equal partitioning of E. coli SecA between the cytosol and plasma membrane, R. capsulatus SecA is recovered predominantly from the membrane fraction. A SecA-deficient, cell-free synthesis-translocation system prepared from R. capsulatus is used to demonstrate translocation activity of the purified R. capsulatus SecA. This translocation activity is then compared to that of the E. coli counterpart by using various precursor proteins and inside-out membrane vesicles prepared from both bacteria. We find a preference of the R. capsulatus SecA for the homologous membrane vesicles whereas E. coli SecA is active with either type of membrane. Furthermore, the two SecA proteins clearly select between distinct precursor proteins. In addition, we show here for the first time that a bacterial c-type cytochrome utilizes the canonical, Sec-dependent export pathway.
Collapse
Affiliation(s)
- R Helde
- Adolf Butenandt Institut für Physikalische Biochemie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Asai K, Kawamura F, Sadaie Y, Takahashi H. Isolation and characterization of a sporulation initiation mutation in the Bacillus subtilis secA gene. J Bacteriol 1997; 179:544-7. [PMID: 8990310 PMCID: PMC178728 DOI: 10.1128/jb.179.2.544-547.1997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A Bacillus subtilis secA mutant, secA12, which is blocked at an early stage of sporulation, is able to grow as well as the wild-type strain at all temperatures tested. Experiments with lacZ fusion genes showed that the induction of kinA expression, as well as the sporulation-specific transcription of the spo0A gene, was not observed in the secA12 mutant. However, transcription of the spo0H gene (coding for sigmaH, which is required for the transcription of kinA and spo0A) and accumulation of the sigmaH protein were not affected in secA12. These results suggested that mutations in secA affect a factor required for efficient transcription of kinA as well as for the activation of the phosphorelay pathway.
Collapse
Affiliation(s)
- K Asai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
20
|
den Blaauwen T, Fekkes P, de Wit JG, Kuiper W, Driessen AJ. Domain interactions of the peripheral preprotein Translocase subunit SecA. Biochemistry 1996; 35:11994-2004. [PMID: 8810904 DOI: 10.1021/bi9605088] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The homodimeric SecA protein is the peripheral subunit of the preprotein translocase in bacteria. It binds the preprotein and promotes its translocation across the bacterial cytoplasmic membrane by nucleotide modulated coinsertion and deinsertion into the membrane. SecA has two essential nucleotide binding sites (NBS; Mitchell & Oliver, 1993): The high-affinity NBS-I resides in the amino-terminal domain of the protein, and the low-affinity NBS-II is localized at 2/3 of the protein sequence. The nucleotide-bound states of soluble SecA were studied by site directed tryptophan fluorescence spectroscopy, tryptic digestion, differential scanning calorimetry, and dynamic light scattering. A nucleotide-induced conformational change of a carboxy-terminal domain of SecA was revealed by Trp fluorescence spectroscopy. The Trp fluorescence of a single Trp SecA mutant containing Trp775 decreased and increased upon the addition of NBS-I saturating concentrations of ADP or AMP-PNP, respectively. DSC measurements revealed that SecA unfolds as a two domain protein. Binding of ADP to NBS-I increased the interaction between the two domains whereas binding of AMP-PNP did not influence this interaction. When both NBS-I and NBS-II are bound by ADP, SecA seems to have a more compact globular conformation whereas binding of AMP-PNP seems to cause a more extended conformation. It is suggested that the compact ADP-bound conformation resembles the membrane deinserted state of SecA, while the more extended ATP-bound conformation may correspond to the membrane inserted form of SecA.
Collapse
Affiliation(s)
- T den Blaauwen
- Department of Microbiology, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Gilbert M, Ostiguy S, Kluepfel D, Morosoli R. Cloning of a secA homolog from Streptomyces lividans 1326 and overexpression in both S. lividans and Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:9-12. [PMID: 8765222 DOI: 10.1016/0167-4838(96)00075-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We cloned a gene encoding a SecA homolog from Streptomyces lividans 1326, a Gram-positive bacterium known to produce large amounts of extracellular proteins. A protein sequence alignment with the other bacterial SecA homologs revealed that S. lividans SecA shares from 39.5 to 44% identity with them, while it shares 34.2 to 37.2% identity with SecA homologs from plastids of algae and plants. We overexpressed the secA gene in S. lividans 1326 and Escherichia coli MM52 and in both cases we observed the production of a protein with an apparent molecular mass of 117.4 kDa. Although S. lividans SecA is similar to E. coli SecA, it does not complement a thermosensitive mutation in the E. coli secA gene. However, a hybrid polypeptide consisting of the N-terminal portion (first 242 amino acids) of the S. lividans SecA and the C-terminal portion (657 a.a.) of the wild-type E. coli SecA was able to complement this mutant.
Collapse
Affiliation(s)
- M Gilbert
- Centre de recherche en microbiologic appliquèe, Institut Armand-Frappier, Universitè du Quèbec, Canada
| | | | | | | |
Collapse
|
22
|
McNicholas P, Rajapandi T, Oliver D. SecA proteins of Bacillus subtilis and Escherichia coli possess homologous amino-terminal ATP-binding domains regulating integration into the plasma membrane. J Bacteriol 1995; 177:7231-7. [PMID: 8522532 PMCID: PMC177604 DOI: 10.1128/jb.177.24.7231-7237.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Bacillus subtilis secA homolog, div, was cloned and expressed at a variety of different levels in wild-type and secA mutant strains of Escherichia coli. Analysis of Div function showed that it could not substitute for SecA despite being present at a wide range of concentrations at or above the physiological level. Location of regions of functional similarity between the two proteins using div-secA chimeras revealed that only the amino-terminal ATP-binding domain of Div could functionally substitute for the corresponding region of SecA. The role of this domain was revealed by subcellular localization experiments that demonstrated that in both B. subtilis and E. coli Div had cytoplasmic, peripheral, and integral membrane distributions similar to those of its SecA homolog and that an intact ATP-binding domain was essential for regulating integration of this protein into the plasma membrane. These results suggest strongly that the previously observed cycle of membrane binding, insertion, and deinsertion of SecA protein (A. Economou and W. Wickner, Cell 78:835-843, 1994) is common to these two bacteria, and they demonstrate the importance of the conserved ATP-binding domain in promoting this cycle.
Collapse
Affiliation(s)
- P McNicholas
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
23
|
Klein M, Meens J, Freudl R. Functional characterization of theStaphylococcus carnosusSecA protein inEscherichia coliandBacillus subtilissecAmutant strains. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07787.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
24
|
van der Wolk JP, Klose M, de Wit JG, den Blaauwen T, Freudl R, Driessen AJ. Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein. J Biol Chem 1995; 270:18975-82. [PMID: 7642557 DOI: 10.1074/jbc.270.32.18975] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The homodimeric SecA protein is the peripheral subunit of the translocase, and couples the hydrolysis of ATP to the translocation of precursor proteins across the bacterial cytoplasmic membrane. The high affinity ATP binding activity of SecA resides in the amino-terminal domain of SecA. This domain contains a tandem repeat of the "so-called" Walker B-motif, hXhhD (Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982) EMBO J. 1, 945-951), that in combination with motif A is responsible for the Mg(2+)-phosphate protein interaction. Two aspartate residues at positions 207 and 215 of the Bacillus subtilis SecA, and Asp-217 in the Escherichia coli SecA, that could be Mg2+ ion ligands, were individually mutated to an asparagine. Mutant SecA proteins were unable to growth-complement an E. coli secA amber mutant strain, and the E. coli SecA mutant interfered with the translocation of precursor proteins in vivo. B. subtilis mutant SecA proteins were expressed to a high level and purified to homogeneity. The high affinity ATP and Mg(2+)-ion binding activity was reduced in the Asp-207 mutant, and completely lost in the Asp-215 mutant. Both SecA proteins were defective in lipid-stimulated ATPase activity. Proteolytic studies suggest that the two subunits of the mutated dimeric SecA proteins are present in different conformational states. These data suggest that Asp-207 and Asp-215 are involved in the binding of the Mg(2+)-ion when Mg(2+)-ATP is bound to SecA, while Asp-207 fulfills an additional catalytic role, possibly in accepting a proton during catalysis.
Collapse
Affiliation(s)
- J P van der Wolk
- Department of Microbiolgy, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Schimz KL, Decker G, Frings E, Meens J, Klein M, Müller M. A cell-free protein translocation system prepared entirely from a gram-positive organism. FEBS Lett 1995; 362:29-33. [PMID: 7698347 DOI: 10.1016/0014-5793(95)00180-h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cell-free protein translocation system derived exclusively from a Gram-positive bacterium is described here for the first time. Highly efficient in vitro synthesis of plasmid encoded preprolipase of Staphylococcus hyicus is accomplished by coupled transcription/translation using either a cytosolic extract of S. carnosus alone or in combination with T7-RNA-polymerase. Addition of inside-out cytoplasmic membrane vesicles of S. carnosus leads to the partial conversion (processing) of preprolipase to prolipase. In addition, as shown in a protease protection assay, a significant part of preprolipase plus prolipase is translocated in vitro into the lumen of the vesicles. Translocation of preprolipase into the membrane vesicles requires the proton-motive force and the S. carnosus SecA protein.
Collapse
Affiliation(s)
- K L Schimz
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Klein M, Hofmann B, Klose M, Freudl R. Isolation and characterization of a Bacillus subtilis secA mutant allele conferring resistance to sodium azide. FEMS Microbiol Lett 1994; 124:393-7. [PMID: 7851746 DOI: 10.1111/j.1574-6968.1994.tb07314.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A mutation has been isolated in the Bacillus subtilis secA gene (secA10) which allows cell growth and residual protein translocation in the presence of 1.5 mM sodium azide. Besides conferring resistance to sodium azide, the corresponding SecA10 mutant protein, in which glutamic acid at position 338 has been changed to glycine, seems to possess a secretion defect even in the absence of azide. In addition, the secA10 mutant protein was found to be recessive to wild-type secA with regard to azide resistance. Our results strongly suggest that, like the situation in Escherichia coli, the B. subtilis SecA protein is a main target for the lethal action of sodium azide.
Collapse
Affiliation(s)
- M Klein
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany
| | | | | | | |
Collapse
|
27
|
Schrempp S, Bayan N, Shechter E. Characterization of energetically functional inverted membrane vesicles from Corynebacterium glutamicum. FEBS Lett 1994; 356:104-8. [PMID: 7988700 DOI: 10.1016/0014-5793(94)01245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We show that inverted membrane vesicles from Corynebacterium glutamicum, a Gram-positive bacterium, are able to generate and maintain an electrochemical gradient of protons in response to the addition of NADH. This result indicates that the respiratory chain is intact and that the vesicles are reasonably impermeable to protons. These membrane vesicles may be the starting point for in vitro translocation studies of proteins in Gram-positive bacteria.
Collapse
Affiliation(s)
- S Schrempp
- Laboratoire des Biomembranes, Université de Paris Sud, Orsay, France
| | | | | |
Collapse
|
28
|
Jacq A, Holland B. The components of the Escherichia coli protein-transport apparatus. Curr Opin Struct Biol 1993. [DOI: 10.1016/0959-440x(93)90080-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Honda K, Nakamura K, Nishiguchi M, Yamane K. Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 1993; 175:4885-94. [PMID: 8335643 PMCID: PMC204942 DOI: 10.1128/jb.175.15.4885-4894.1993] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
By using a DNA fragment of Escherichia coli ffh as a probe, the Bacillus subtilis ffh gene was cloned. The complete nucleotide sequence of the cloned DNA revealed that it contained three open reading frames (ORFs). Their order in the region, given by the gene product, was suggested to be ORF1-Ffh-S16, according to their similarity to the gene products of E. coli, although ORF1 exhibited no significant identity with any other known proteins. The orf1 and ffh genes are organized into an operon. Genetic mapping of the ffh locus showed that the B. subtilis ffh gene is located near the pyr locus on the chromosome. The gene product of B. subtilis ffh shared 53.9 and 32.6% amino acid identity with E. coli Ffh and the canine 54-kDa subunit of signal recognition particle, respectively. Although there was low amino acid identity with the 54-kDa subunit of mammalian signal recognition particle, three GTP-binding motifs in the NH2-terminal half and amphipathic helical cores in the COOH-terminus were conserved. The depletion of ffh in B. subtilis led to growth arrest and drastic morphological changes. Furthermore, the translocation of beta-lactamase and alpha-amylase under the depleted condition was also defective.
Collapse
Affiliation(s)
- K Honda
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
30
|
van der Wolk J, Klose M, Breukink E, Demel RA, de Kruijff B, Freudl R, Driessen AJ. Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. Mol Microbiol 1993; 8:31-42. [PMID: 8497195 DOI: 10.1111/j.1365-2958.1993.tb01200.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid monolayer. In contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.
Collapse
Affiliation(s)
- J van der Wolk
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins.
Collapse
Affiliation(s)
- A P Pugsley
- Unité de Génétique Moléculaire, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53638-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Oliver DB. SecA protein: autoregulated ATPase catalysing preprotein insertion and translocation across the Escherichia coli inner membrane. Mol Microbiol 1993; 7:159-65. [PMID: 8446024 DOI: 10.1111/j.1365-2958.1993.tb01107.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent insight into the biochemical mechanisms of protein translocation in Escherichia coli indicates that SecA ATPase is required both for the initial binding of preproteins to the inner membrane as well as subsequent translocation across this structure. SecA appears to promote these events by direct recognition of the preprotein or preprotein-SecB complex, binding to inner-membrane anionic phospholipids, insertion into the membrane bilayer and association with the preprotein translocator, SecY/SecE. ATP binding appears to control the affinity of SecA for the various components of the system and ATP hydrolysis promotes cycling between its different biochemical states. As a component likely to catalyse a rate-determining step in protein secretion, SecA synthesis is co-ordinated with the activity of the protein export pathway. This form of negative regulation appears to rely on SecA protein binding to its mRNA and repressing translation if conditions of rapid protein secretion prevail within the cell. A precise biochemical scheme for SecA-dependent catalysis of protein export and the details of secA regulation appear to be close at hand. The evolutionary conservation of SecA protein among eubacteria as well as the general requirement for translocation ATPases in other protein secretion systems argues for a mechanistic commonality of all prokaryotic protein export pathways.
Collapse
Affiliation(s)
- D B Oliver
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|