1
|
Dong R, Liao M, Liu X, Penttinen L, Hakulinen N, Qin X, Wang X, Huang H, Luo H, Yao B, Bai Y, Tu T. Effectiveness of ruminal xylanase with an extra proline-rich C-terminus on lignocellulosic biomass degradation. BIORESOURCE TECHNOLOGY 2023; 372:128695. [PMID: 36731612 DOI: 10.1016/j.biortech.2023.128695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The efficient degradation of plant polysaccharides in agricultural waste requires xylanases with high catalytic activity. In this study, the C-terminal proline-rich GH10 xylanase XynA from sheep rumen was investigated using product analysis, structural characterization, truncated and site-directed mutagenesis, molecular dynamics simulation, and application evaluation, revealing that the proline-rich C-terminus contributes to the interaction at the substrate-binding pocket to reduce the binding free energy. Compared to the C-terminally truncated enzyme XynA-Tr, XynA has a more favorable conformation for proton transfer and affinity attack, facilitating the degradation of oligomeric and beechwood xylan without altering the hydrolysis pattern. Moreover, both the reduced sugar yield and weight loss of the pretreated wheat bran, corn cob, and corn stalk hydrolyzed by XynA for 12 h increased by more than 30 %. These findings are important to better understand the relationship between enzyme activities and their terminal regions and suggest candidate materials for lignocellulosic biomass utilization.
Collapse
Affiliation(s)
- Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Liao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Leena Penttinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Sci Rep 2019; 9:16542. [PMID: 31719545 PMCID: PMC6851124 DOI: 10.1038/s41598-019-52675-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Fibrobacter succinogenes S85, isolated from the rumen of herbivores, is capable of robust lignocellulose degradation. However, the mechanism by which it achieves this is not fully elucidated. In this study, we have undertaken the most comprehensive quantitative proteomic analysis, to date, of the changes in the cell envelope protein profile of F. succinogenes S85 in response to growth on cellulose. Our results indicate that the cell envelope proteome undergoes extensive rearrangements to accommodate the cellulolytic degradation machinery, as well as associated proteins involved in adhesion to cellulose and transport and metabolism of cellulolytic products. Molecular features of the lignocellulolytic enzymes suggest that the Type IX secretion system is involved in the translocation of these enzymes to the cell envelope. Finally, we demonstrate, for the first time, that cyclic-di-GMP may play a role in mediating catabolite repression, thereby facilitating the expression of proteins involved in the adhesion to lignocellulose and subsequent lignocellulose degradation and utilisation. Understanding the fundamental aspects of lignocellulose degradation in F. succinogenes will aid the development of advanced lignocellulosic biofuels.
Collapse
Affiliation(s)
- Mahendra P Raut
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Narciso Couto
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.,Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Esther Karunakaran
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Catherine A Biggs
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Phillip C Wright
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Cano-Ramírez C, Santiago-Hernández A, Rivera-Orduña FN, García-Huante Y, Zúñiga G, Hidalgo-Lara ME. Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae). AMB Express 2016; 6:63. [PMID: 27576896 PMCID: PMC5005244 DOI: 10.1186/s13568-016-0233-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/02/2022] Open
Abstract
Serratia proteamaculans CDBB-1961, a gut symbiont from the roundheaded pine beetle Dendroctonus adjunctus, displayed strong cellulolytic activity on agar-plates with carboxymethyl cellulose (CMC) as carbon source. Automatic genome annotation of S. proteamaculans made possible the identification of a single endoglucanase encoding gene, designated spr cel8A. The predicted protein, named Spr Cel8A shows high similarity (59–94 %) to endo-1,4-β-d-glucanases (EC 3.2.1.4) from the glycoside hydrolase family 8 (GH8). The gene spr cel8A has an ORF of 1113 bp, encoding a 371 amino acid residue protein (41.2 kDa) with a signal peptide of 23 amino acid residues. Expression of the gene spr cel8A in Escherichia coli yields a mature recombinant endoglucanase 39 kDa. Cel8A displayed optimal activity at pH 7.0 and 40 °C, with a specific activity of 0.85 U/mg. The enzyme was stable at pH from 4 to 8.5, retaining nearly 40–80 % of its original activity, and exhibited a half-life of 8 days at 40 °C. The Km and Vmax values for Spr Cel8A were 6.87 mg/ml and 3.5 μmol/min/mg of protein, respectively, using CMC as substrate. The final principle products of Spr Cel8A-mediated hydrolysis of CMC were cellobiose, cello oligosaccharides and a small amount of glucose, suggesting that Spr Cel8A is an endo-β-1,4-glucanase manifesting exo-activity. This is the first report regarding the functional biochemical and molecular characterization of an endoglucanase from S. proteamaculans, found in the gut-associated bacteria community of Dendroctonus bark beetles. These results contribute to improved understanding of the functional role played by this bacterium as a symbiont of bark beetles.
Collapse
|
4
|
Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria. Arch Microbiol 2014; 197:269-76. [PMID: 25354721 DOI: 10.1007/s00203-014-1049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Fibrobacter succinogenes is one of the most pivotal fibrolytic bacterial species in the rumen. In a previous study, we confirmed enhancement of fiber digestion in a co-culture of F. succinogenes S85 with non-fibrolytic ruminal strains R-25 and/or Selenomonas ruminantium S137. In the present study, mRNA expression level of selected functional genes in the genome of F. succinogenes S85 was monitored by real-time RT-PCR. Growth profile of F. succinogenes S85 was similar in both the monoculture and co-cultures with non-fibrolytics. However, expression of 16S rRNA gene of F. succinogenes S85 in the co-culture was higher (P < 0.01) than that of the monoculture. This finding suggests that metabolic activity of F. succinogenes S85 was enhanced by coexistence with strains R-25 and/or S. ruminantium S137. The mRNA expression of fumarate reductase and glycoside hydrolase genes was up-regulated (P < 0.01) when F. succinogenes S85 was co-cultured with non-fibrolytics. These results indicate the enhancement of succinate production and fiber hydrolysis by F. succinogenes S85 in co-cultures of S. ruminantium and R-25 strains.
Collapse
|
5
|
|
6
|
Zhao J, Shi P, Li Z, Yang P, Luo H, Bai Y, Wang Y, Yao B. Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. BIORESOURCE TECHNOLOGY 2012; 121:404-410. [PMID: 22868008 DOI: 10.1016/j.biortech.2012.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Two novel cellulase genes, cbh6A and egGH45, were cloned from Phialophora sp. G5 and successfully expressed in Pichia pastoris. The putative polypeptide of CBH6A consists of a family 1 CBM and a catalytic domain of glycosyl hydrolase family 6 cellobiohydrolases, while deduced EgGH45 only contains a catalytic domain of family 45 endoglucanases. CBH6A and EgGH45 were optimally active at pH 7.0 and 65°C, and pH 6.0 and 60°C, respectively. Both enzymes exhibited high activities and stabilities over a wide pH range and had good thermostability at 70°C. CBH6A and EgGH45 had significant resistance to SDS (10mM), remaining 35% and 54% activities, respectively. These enzymes had synergic effect on the hydrolysis of filter paper, showing the highest efficiency in the ratio of CBH6A to EgGH45 at 80:20. The properties make this enzyme combination potential for application in textile and detergents industries.
Collapse
Affiliation(s)
- Junqi Zhao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Identification and Characterization of a Cellulase-Encoding Gene from the Buffalo Rumen Metagenomic Library. Biosci Biotechnol Biochem 2012; 76:1075-84. [DOI: 10.1271/bbb.110786] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
9
|
Naika GS, Tiku PK. Influence of ethylenediaminetetraacetic acid (EDTA) on the structural stability of endoglucanase from Aspergillus aculeatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7341-5. [PMID: 21651310 DOI: 10.1021/jf103889m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of the chelating agent ethylenediaminetetraacetic acid (EDTA) on the structure and function of endoglucanase is studied. In the presence of 2 mM EDTA, endoglucanase showed an enhanced enzymatic activity of 1.5-fold compared to control. No further change in activity was observed with increase in the concentration of EDTA to 5 mM. The K(m) values for control and in the presence of EDTA are 0.060 and 0.044%, respectively, and K(cat) was 1.9 min(-1) in the presence of EDTA. The kinetic parameters indicated a decrease in the K(m) with an increase in the K(cat). Far-ultraviolet circular dichroism (far-UV-CD) results showed a 20% decrease in ellipticity values at 217 nm in the presence of EDTA compared to native enzyme. The apparent T(m) shifted from a control value of 57 ± 1 to 76 ± 1 °C in the presence of EDTA (5 mM). The above results suggested that the enhanced activity in the presence of EDTA is due to an increase in the K(cat) and flexible conformation of the enzyme. The stability of endoglucanase increased in the presence of EDTA.
Collapse
Affiliation(s)
- Gajendra S Naika
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore 570 020, India
| | | |
Collapse
|
10
|
Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 2011; 6:e18814. [PMID: 21526192 PMCID: PMC3079729 DOI: 10.1371/journal.pone.0018814] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/11/2011] [Indexed: 11/17/2022] Open
Abstract
Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.
Collapse
Affiliation(s)
- Garret Suen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Functional annotation of Fibrobacter succinogenes S85 carbohydrate active enzymes. Appl Biochem Biotechnol 2010; 163:649-57. [PMID: 20803100 DOI: 10.1007/s12010-010-9070-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Fibrobacter succinogenes is a cellulolytic bacterium that degrades plant cell wall biomass in ruminant animals and is among the most rapidly fibrolytic of all mesophilic bacteria. The complete genome sequence of Fisuc was completed by the DOE Joint Genome Institute in late 2009. Using new expression tools developed at Lucigen and C5-6 Technologies and a multi-substrate screen, 5,760 random shotgun expression clones were screened for biomass-degrading enzymes, representing 2× genome expression coverage. From the screen, 169 positive hits were recorded and 33 were unambiguously identified by sequence analysis of the inserts as belonging to CAZy family genes. Eliminating duplicates, 24 unique CAZy genes were found by functional screening. Several previously uncharacterized enzymes were discovered using this approach and a number of potentially mis-annotated enzymes were functionally characterized. To complement this approach, a high-throughput system was developed to clone and express all the annotated glycosyl hydrolases and carbohydrate esterases in the genome. Using this method, six previously described and five novel CAZy enzymes were cloned, expressed, and purified in milligram quantities.
Collapse
|
12
|
Rubini M, Dillon A, Kyaw C, Faria F, Poças-Fonseca M, Silva-Pereira I. Cloning, characterization and heterologous expression of the firstPenicillium echinulatumcellulase gene. J Appl Microbiol 2010; 108:1187-98. [DOI: 10.1111/j.1365-2672.2009.04528.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Purification and characterization of an endoglucanase from Aspergillus terreus highly active against barley β-glucan and xyloglucan. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0001-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJ, Reynolds CD, Gadd GM, Sihanonth P. A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization. Appl Environ Microbiol 2007; 74:987-93. [PMID: 18156324 DOI: 10.1128/aem.02514-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibrobacter is a highly cellulolytic genus commonly found in the rumen of ruminant animals and cecum of monogastric animals. In this study, suppression subtractive hybridization was used to identify the genes present in Fibrobacter succinogenes S85 but absent from F. intestinalis DR7. A total of 1,082 subtractive clones were picked, plasmids were purified, and inserts were sequenced, and the clones lacking homology to F. intestinalis were confirmed by Southern hybridization. By comparison of the sequences of the clones to one another and to those of the F. succinogenes genome, 802 sequences or 955 putative genes, comprising approximately 409 kb of F. succinogenes genomic DNA, were identified that lack similarity to those of F. intestinalis chromosomal DNA. The functional groups of genes, including those involved in cell envelope structure and function, energy metabolism, and transport and binding, had the largest number of genes specific to F. succinogenes. Low-stringency Southern hybridization showed that at least 37 glycoside hydrolases are shared by both species. A cluster of genes responsible for heme, porphyrin, and cobalamin biosynthesis in F. succinogenes S85 was either missing from or not functional in F. intestinalis DR7, which explains the requirement of vitamin B12 for the growth of the F. intestinalis species. Two gene clusters encoding NADH-ubiquinone oxidoreductase subunits probably shared by Fibrobacter genera appear to have an important role in energy metabolism.
Collapse
|
17
|
Purification of the alkaliphilic xylanases from Myceliophthora sp. IMI 387099 using cellulose-binding domain as an affinity tag. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9561-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Matulova M, Nouaille R, Capek P, Péan M, Forano E, Delort AM. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study. Appl Environ Microbiol 2005; 71:1247-53. [PMID: 15746325 PMCID: PMC1065164 DOI: 10.1128/aem.71.3.1247-1253.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than alpha-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.
Collapse
Affiliation(s)
- M Matulova
- Laboratoire de Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504 Université Blaise Pascal-CNRS, 63177 Aubière, France
| | | | | | | | | | | |
Collapse
|
19
|
Ali MK, Rudolph FB, Bennett GN. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J Ind Microbiol Biotechnol 2005; 32:12-8. [PMID: 15765251 DOI: 10.1007/s10295-004-0192-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 11/08/2004] [Indexed: 11/26/2022]
Abstract
A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of this strain and had 42% and 32% identity with the catalytic domains of Rhodothermus marinus xylanase I and Thermoascus aurantiacus xylanase I, respectively. Xyn10A enzyme was purified from recombinant Escherichia coli and was highly active toward oat-spelt and Birchwood xylan and slightly active toward carboxymethyl cellulose, arabinogalactouronic acid, and various p-nitrophenyl monosaccharides. Xyn10A hydrolyzed xylan and xylooligosaccharides larger than xylobiose to produce xylose. This enzyme was optimally active at 60 degrees C and had an optimum pH of 5.0. This is one of a number of related activities encoded on the large plasmid in this strain.
Collapse
Affiliation(s)
- Mursheda K Ali
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
20
|
TAGUCHI H, KOIKE S, KOBAYASHI Y, CANN IKO, KARITA S. Partial characterization of structure and function of a xylanase gene from the rumen hemicellulolytic bacterium Eubacterium ruminantium. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00193.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW. Chitinase B of "Microbulbifer degradans" 2-40 contains two catalytic domains with different chitinolytic activities. J Bacteriol 2004; 186:1297-303. [PMID: 14973034 PMCID: PMC344425 DOI: 10.1128/jb.186.5.1297-1303.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chitinase B of "Microbulbifer degradans" 2-40 is a modular protein that is predicted to contain two glycoside hydrolase family 18 (GH18) catalytic domains, two polyserine domains, and an acidic repeat domain. Each of the GH18 domains was shown to be catalytically active against chitin. Activity assays reveal that the amino-terminal catalytic domain (GH18(N)) releases methylumbelliferone from 4'-methylumbelliferyl-N,N'-diacetylchitobiose 13.6-fold faster than the carboxy-terminal catalytic domain (GH18(C)) and releases chitobiose from the nonreducing end of chitooligosaccharides, therefore functioning as an exochitinase. GH18(C) releases methylumbelliferone from 4'-methylumbelliferyl-N,N',N"-triacetylchitotriose 2.7-fold faster than GH18(N) and cleaves chitooligosaccharides at multiple bonds, consistent with endochitinolytic activity. Each domain was maximally active from 30 to 37 degrees C and from pH 7.2 to 8.0 and was not affected by Mg(2+), Mn(2+), Ca(2+), K(+), EDTA, EGTA, or 1.0 M NaCl. The activity of each domain was moderately inhibited by Ni(2+), Sr(2+), and Cu(2+), while Hg(2+) completely abolished activity. When the specific activities of various recombinant portions of ChiB were calculated by using native chitin as a substrate, the polypeptide containing the endo-acting domain was twofold more active on native chitin than the other containing the exo-acting domain. The presence of both domains in a single reaction increased the amount of reducing sugars released from native chitin to 140% above the theoretical combined rate, indicating that the domains function cooperatively to degrade chitin. These data demonstrate that the GH18 domains of ChiB have different activities on the same substrate and function cooperatively to enhance chitin depolymerization.
Collapse
Affiliation(s)
- Michael B Howard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
22
|
Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 2003; 27:663-93. [PMID: 14638418 DOI: 10.1016/s0168-6445(03)00072-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The degradation of plant cell walls by ruminants is of major economic importance in the developed as well as developing world. Rumen fermentation is unique in that efficient plant cell wall degradation relies on the cooperation between microorganisms that produce fibrolytic enzymes and the host animal that provides an anaerobic fermentation chamber. Increasing the efficiency with which the rumen microbiota degrades fiber has been the subject of extensive research for at least the last 100 years. Fiber digestion in the rumen is not optimal, as is supported by the fact that fiber recovered from feces is fermentable. This view is confirmed by the knowledge that mechanical and chemical pretreatments improve fiber degradation, as well as more recent research, which has demonstrated increased fiber digestion by rumen microorganisms when plant lignin composition is modified by genetic manipulation. Rumen microbiologists have sought to improve fiber digestion by genetic and ecological manipulation of rumen fermentation. This has been difficult and a number of constraints have limited progress, including: (a) a lack of reliable transformation systems for major fibrolytic rumen bacteria, (b) a poor understanding of ecological factors that govern persistence of fibrolytic bacteria and fungi in the rumen, (c) a poor understanding of which glycolyl hydrolases need to be manipulated, and (d) a lack of knowledge of the functional genomic framework within which fiber degradation operates. In this review the major fibrolytic organisms are briefly discussed. A more extensive discussion of the enzymes involved in fiber degradation is included. We also discuss the use of plant genetic manipulation, application of free-living lignolytic fungi and the use of exogenous enzymes. Lastly, we will discuss how newer technologies such as genomic and metagenomic approaches can be used to improve our knowledge of the functional genomic framework of plant cell wall degradation in the rumen.
Collapse
Affiliation(s)
- Denis O Krause
- CSIRO Australia, Queensland Bioscience Precinct, St. Lucia, Qld 4067, Australia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Jun HS, Ha JK, Malburg LM, Verrinder GAM, Forsberg CW. Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can J Microbiol 2003; 49:171-80. [PMID: 12795403 DOI: 10.1139/w03-024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xylanase genes xyn10D, xyn10E, and xyn10B, located sequentially on the Fibrobacter succinogenes S85 chromosome, were separately cloned and their properties characterized. Analysis of the sequences documented that xylanases Xyn10D, Xyn10E, and Xyn10B each consist of an N-terminal catalytic domain (glycosyl hydrolase family 10) and a C-terminal carbohydrate-binding module (CBM, family 6) connected by proline-rich linker sequences. The amino acid sequences exhibited similarities of between 53 and 60%. The xyn10D, xyn10E, and truncated xyn10deltaACBM were expressed in Escherichia coli and purified to homogeneity. The purified Xyn10D, Xyn10E, and Xyn10BdeltaCBM exhibited the same temperature optimum (40 degrees C) and pH optimum (6.5) and the highest specific activity against arabinoxylan, oat spelt xylan, and birchwood xylan, respectively. Xyn10D exhibited an affinity for cellulose and xylan with 47 and 33% binding, respectively, while the truncated Xyn10DdeltaCBM did not bind to the substrates. The main hydrolysis products of the three xylanases acting on oat spelt xylan and arabinoxylan were xylose and xylobiose. RT-PCR analysis showed that the three genes were co-transcribed as a single transcript. Western immunoblot analysis revealed that the three xylanases were expressed at a very low level by F. succinogenes grown on either glucose or cellulose as the source of carbohydrate.
Collapse
MESH Headings
- Amino Acid Sequence
- Anaerobiosis
- Cloning, Molecular
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/enzymology
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics
- Hydrogen-Ion Concentration
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Recombinant Proteins/chemistry
- Sequence Alignment
- Substrate Specificity
- Temperature
- Transcription, Genetic
- Xylan Endo-1,3-beta-Xylosidase
- Xylosidases/genetics
Collapse
Affiliation(s)
- Hyun S Jun
- Department of Microbiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
24
|
Sapag A, Wouters J, Lambert C, de Ioannes P, Eyzaguirre J, Depiereux E. The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol 2002; 95:109-31. [PMID: 11911922 DOI: 10.1016/s0168-1656(02)00002-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eighty-two amino acid sequences of the catalytic domains of mature endoxylanases belonging to family 11 have been aligned using the programs MATCHBOX and CLUSTAL. The sequences range in length from 175 to 233 residues. The two glutamates acting as catalytic residues are conserved in all sequences. A very good correlation is found between the presence (at position 100) of an asparagine in the so-called 'alkaline' xylanases, or an aspartic acid in those with a more acidic pH optimum. Four boxes defining segments of highest similarity were detected; they correspond to regions of defined secondary structure: B5, B6, B8 and the carboxyl end of the alpha helix, respectively. Cysteine residues are not common in these sequences (0.7% of all residues), and disulfide bridges are not important in explaining the stability of several thermophilic xylanases. The alignment allows the classification of the enzymes in groups according to sequence similarity. Fungal and bacterial enzymes were found to form mostly separate clusters of higher similarity.
Collapse
Affiliation(s)
- Amalia Sapag
- Laboratorio de Bioquímica, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
25
|
Cho KK, Kim SC, Woo JH, Bok JD, Choi YJ. Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb Technol 2000; 27:475-481. [PMID: 10978769 DOI: 10.1016/s0141-0229(00)00256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.
Collapse
Affiliation(s)
- KK Cho
- Laboratory of Dairy Science and Lactation Physiology, School of Agricultural Biotechnology, Seoul National University, 441-744, Suweon, South Korea
| | | | | | | | | |
Collapse
|
26
|
Marrone L, McAllister KA, Clarke AJ. Characterization of function and activity of domains A, B and C of xylanase C from Fibrobacter succinogenes S85. PROTEIN ENGINEERING 2000; 13:593-601. [PMID: 10964990 DOI: 10.1093/protein/13.8.593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Xylanase C from the ruminant bacterium Fibrobacter succinogenes is comprised of two catalytic domains, A and B, and a third domain, C, of unknown function. The DNA coding for domains A and B of xylanase C were separately cloned and expressed in Escherichia coli as fusion proteins with glutathione-S:-transferase. The fusion proteins were isolated by affinity chromatography on glutathione-Sepharose 4B, cleaved with thrombin and the released xylanase C catalytic domains A and B were purified to apparent homogeneity by anion-exchange chromatography on Mono Q. Electrospray mass spectrometry provided a molecular mass of 27 818 Da (expected, 27 820 Da) for domain B. The pH and temperature optima for activity of domain B on oat spelt xylan were 5.0 and 52 degrees C, respectively. A kinetic analysis of the activity of the catalytic domain A on oat spelt xylan, birch wood xylan and xylooligomers at pH 6.5 and 37 degrees C provided data significantly different to those obtained previously with a protease-derived form of the enzyme [Zhu et al. (1994) J. Bacteriol. 176, 3885-3894]. The isolated domain A was more active on barley-glucan than the protease-derived form and its affinity for birch wood xylan was enhanced resulting in greater overall catalytic efficiency as reflected by k(cat)/K:(M) values. Likewise, significant differences in the Michaelis-Menten parameters K:(M), k(cat) and k(cat)/K:(M) were obtained with domain B compared with values previously reported with this domain attached to domain C. In general, the presence of domain C appeared to decrease the overall efficiency of domain B 7- and 36-fold with birch wood xylan and xylopentaose as substrates, respectively, as reflected by values of k(cat)/K:(M). The removal of domain C also affected the mode of action of domain B such that it more closely resembled that of catalytic domain A. However, no change in either pH and temperature optima or stability were found with domain B compared with the combined domains B and C. The function of domain C remains unknown, but hydrophobic cluster analysis indicated that it may belong to a class of dockerin domains involved in the protein-protein interactions of cellulolytic and xylanolytic complexes.
Collapse
Affiliation(s)
- L Marrone
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
27
|
McAllister KA, Marrone L, Clarke AJ. The role of tryptophan residues in substrate binding to catalytic domains A and B of xylanase C from Fibrobacter succinogenes S85. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:342-52. [PMID: 11004572 DOI: 10.1016/s0167-4838(00)00087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidation of the isolated catalytic domain B of xylanase C (XynC-B) from Fibrobacter succinogenes with N-bromosuccinimide (NBS) resulted in the modification of five of the seven Trp residues present in the enzyme. Hydrolytic activity of the enzyme was rapidly lost upon initiation of oxidation as a molar ratio of about two NBS molecules per molar equivalent of protein was sufficient to cause 50% inhibition of enzyme activity, and the addition of five molar equivalents of NBS resulted in less than 10% activity. Pre-incubation of XynC-B with the competitive inhibitor D-xylose resulted in the apparent protection of two Trp residues from oxidation. Xylose protection of the enzyme also resulted in a maintenance of activity, with 60% activity still evident after addition of 8-9 molar equivalents of NBS. This protection from inactivation was enhanced by the inclusion of xylohexaose in reaction mixtures. Under these conditions, however, a further Trp residue was protected from NBS oxidation. The three protected Trp residues were identified as Trp135, Trp161 and Trp202 by differential labelling and peptide mapping of NBS-oxidized preparations of the xylanase employing a combination of electrospray mass spectroscopic analysis and N-terminal sequencing. By analogy to the known structures of the family 11 xylanases, the fully conserved Trp202 residue is located on the only alpha-helix present in the enzymes, at the interface between it and the back of the beta-sheet which forms the active site cleft. Trp135 represents a highly conserved aromatic residue in family 11, but it is replaced with Thr in domain A of F. succinogenes xylanase C. To investigate the role of Trp135 in conferring the different activity profile of domain B relative to domain A, the Trp135Thr and Trp135Ala derivatives of domain B were prepared by site-directed mutagenesis. However, the kinetic parameters of the two domain B derivatives were not significantly different compared to the wild-type enzyme as reflected by K(M) and k(cat) values and product distribution profiles. Similar results were obtained with the Trp161Ala derivative of domain B, indicating that these two residues do not directly participate in the binding of substrate but likely form the foundation for binding subsite 2.
Collapse
Affiliation(s)
- K A McAllister
- Department of Microbiology, University of Guelph, Ont., N1G 2W1, Guelph, Canada
| | | | | |
Collapse
|
28
|
Béra-Maillet C, Arthaud L, Abad P, Rosso MN. Biochemical characterization of MI-ENG1, a family 5 endoglucanase secreted by the root-knot nematode Meloidogyne incognita. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3255-63. [PMID: 10824111 DOI: 10.1046/j.1432-1327.2000.01356.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A beta-1,4-endoglucanase named MI-ENG1, homologous to the family 5 glycoside hydrolases, was previously isolated from the plant parasitic root-knot nematode Meloidogyne incognita. We describe here the detection of the enzyme in the nematode homogenate and secretion and its complete biochemical characterization. This study is the first comparison of the enzymatic properties of an animal glycoside hydrolase with plant and microbial enzymes. MI-ENG1 shares many enzymatic properties with known endoglucanases from plants, free-living or rumen-associated microorganisms and phytopathogens. In spite of the presence of a cellulose-binding domain at the C-terminus, the ability of MI-ENG1 to bind cellulose could not be demonstrated, whatever the experimental conditions used. The biochemical characterization of the enzyme is a first step towards the understanding of the molecular events taking place during the plant-nematode interaction.
Collapse
Affiliation(s)
- C Béra-Maillet
- INRA, Unité Santé Végétale et Environnement, Antibes, France
| | | | | | | |
Collapse
|
29
|
Kulkarni N, Lakshmikumaran M, Rao M. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. Biochem Biophys Res Commun 1999; 263:640-5. [PMID: 10512731 DOI: 10.1006/bbrc.1999.1420] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 1.0 kilobase gene fragment from the genomic DNA of an alkaliphilic thermophilic Bacillus was found to code for a functional xylanase (XynII). The complete nucleotide sequence including the structural gene and the 5' and 3' flanking sequences of the xylanase gene have been determined. An open reading frame starting from ATG initiator codon comprising 402 nucleotides gave a preprotein of 133 amino acids of calculated molecular mass 14.090 kDa. The occurrence of three potential N-glycosylation sites in XynII gene is a unique feature for a gene of bacterial origin. The stop codon was followed by hairpin loop structures indicating the presence of transcription termination signals. The secondary structure analysis of XynII predicted that the polypeptide was primarily formed of beta-sheets. XynII appeared to be a member of family G/11 of xylanases based on its molecular weight and basic pI (8.0). However, sequence homology revealed similar identity with families 10 and 11 of xylanases. The conserved triad (Val-Val-Xaa, where Xaa is Asn or Asp) was identified only in the xylanases from alkaliphilic organisms. Our results implicate for the first time the concept of convergent evolution for XynII and provide a basis for research in evolutionary relationship among the xylanases from alkaliphilic and neutrophilic organisms.
Collapse
Affiliation(s)
- N Kulkarni
- Biochemical Sciences Division, National Chemical Laboratory, Pune, 411008, India
| | | | | |
Collapse
|
30
|
Georis J, Giannotta F, Lamotte-Brasseur J, Devreese B, Van Beeumen J, Granier B, Frère JM. Sequence, overproduction and purification of the family 11 endo-beta-1,4-xylanase encoded by the xyl1 gene of Streptomyces sp. S38. Gene 1999; 237:123-33. [PMID: 10524243 DOI: 10.1016/s0378-1119(99)00311-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The xyl1 gene encoding the Xyl1 xylanase of Streptomyces sp. strain S38 was cloned by screening an enriched DNA library with a specific DNA probe and sequenced. Three short 5 bp -CGAAA- sequences are located upstream of the Streptomyces sp. S38 xyl1 gene 105, 115 and 250 bp before the start codon. These sequences, named boxes 1, 2 and 3, are conserved upstream of the Actinomycetales xylanase genes and are specifically recognized by a DNA-binding protein (Giannotta et al., 1994. FEMS Microbiol. Lett. 142, 91-97) and could be probably involved in the regulation of xylanase production. The Xyl1 ORF encodes a 228 residue polypeptide and the Xyl1 preprotein contains a 38 residue signal peptide whose cleavage yields a 190 residue mature protein of calculated M(r) = 20,585 and basic pI value of 9.12. The molecular mass of the produced and purified mature protein determined by mass spectrometry (20,586 +/- 1 Da) and its pI (9.8) agree with these calculated values. Its N-terminal amino-acid sequence confirmed the proposed cleavage site between the signal peptide and the mature protein. Comparisons between Xyl1 and the 62 other xylanases belonging to family 11 allowed the construction of a phylogenetic tree and revealed its close relationship with Actinomycetales enzymes. Moreover, nine residues were found to be strictly conserved among the 63 xylanases.
Collapse
Affiliation(s)
- J Georis
- Centre d'Ingénierie des Protéines, Institut de Chimie B6, Université de Liège, Sart-Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Hemicellulolytic microorganisms play a significant role in nature by recycling hemicellulose, one of the main components of plant polysaccharides. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. Recently cellulase-free xylanases have received great attention in the development of environmentally friendly technologies in the paper and pulp industry. In microorganisms that produce xylanases low molecular mass fragments of xylan and their positional isomers play a key role in regulating its biosynthesis. Xylanase and cellulase production appear to be regulated separately, although the pleiotropy of mutations, which causes the elimination of both genes, suggests some linkage in the synthesis of the two enzymes. Xylanases are found in a cornucopia of organisms and the genes encoding them have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Sequence analyses of xylanases have revealed distinct catalytic and cellulose binding domains, with a separate non-catalytic domain that has been reported to confer enhanced thermostability in some xylanases. Analyses of three-dimensional structures and the properties of mutants have revealed the involvement of specific tyrosine and tryptophan residues in the substrate binding site and of glutamate and aspartate residues in the catalytic mechanism. Many lines of evidence suggest that xylanases operate via a double displacement mechanism in which the anomeric configuration is retained, although some of the enzymes catalyze single displacement reactions with inversion of configuration. Based on a dendrogram obtained from amino acid sequence similarities the evolutionary relationship between xylanases is assessed. In addition the properties of xylanases from extremophilic organisms have been evaluated in terms of biotechnological applications.
Collapse
Affiliation(s)
- N Kulkarni
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
32
|
Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry 1998; 37:13475-85. [PMID: 9753433 DOI: 10.1021/bi980864l] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of the thermostable xylanase from Thermomyces lanuginosus was determined by single-crystal X-ray diffraction. The protein crystallizes in space group P21, a = 40.96(4) A, b = 52. 57(5) A, c = 50.47 (5) A, beta = 100.43(5) degrees, Z = 2. Diffraction data were collected at room temperature for a resolution range of 25-1.55 A, and the structure was solved by molecular replacement with the coordinates of xylanase II from Trichoderma reesei as a search model and refined to a crystallographic R-factor of 0.155 for all observed reflections. The enzyme belongs to the family 11 of glycosyl hydrolases [Henrissat, B., and Bairoch, A. (1993) Biochem. J. 293, 781-788]. pKa calculations were performed to assess the protonation state of residues relevant for catalysis and enzyme stability, and a heptaxylan was fitted into the active-site groove by homology modeling, using the published crystal structure of a complex between the Bacillus circulans xylanase and a xylotetraose. Molecular dynamics indicated the central three sugar rings to be tightly bound, whereas the peripheral ones can assume different orientations and conformations, suggesting that the enzyme might also accept xylan chains which are branched at these positions. The reasons for the thermostability of the T. lanuginosus xylanase were analyzed by comparing its crystal structure with known structures of mesophilic family 11 xylanases. It appears that the thermostability is due to the presence of an extra disulfide bridge, as well as to an increase in the density of charged residues throughout the protein.
Collapse
Affiliation(s)
- K Gruber
- Institut für Physikalische Chemie, Universität Graz, Austria
| | | | | | | | | | | |
Collapse
|
33
|
Morris DD, Gibbs MD, Chin CW, Koh MH, Wong KK, Allison RW, Nelson PJ, Bergquist PL. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 1998; 64:1759-65. [PMID: 9572948 PMCID: PMC106227 DOI: 10.1128/aem.64.5.1759-1765.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A two-step PCR protocol was used to identify and sequence a family 11 xylanase gene from Dictyoglomus thermophilum Rt46B.1. Family 11 xylanase consensus fragments (GXCFs) were amplified from Rt46B.1 genomic DNA by using different sets of consensus PCR primers that exhibited broad specificity for conserved motifs within fungal and/or bacterial family 11 xylanase genes. On the basis of the sequences of a representative sample of the GXCFs a single family 11 xylanase gene (xynB) was identified. The entire gene sequence was obtained in the second step by using genomic walking PCR to amplify Rt46B.1 genomic DNA fragments upstream and downstream of the xynB GXCF region. The putative XynB peptide (M(r), 39,800) encoded by the Rt46B.1 xynB open reading frame was a multidomain enzyme comprising an N-terminal catalytic domain (M(r), 22,000) and a possible C-terminal substrate-binding domain (M(r), 13,000) that were separated by a short serine-glycine-rich 23-amino-acid linker peptide. Seven xylanases which differed at their N and C termini were produced from different xynB expression plasmids. All seven xylanases exhibited optimum activity at pH 6.5. However, the temperature optima of the XynB xylanases varied from 70 to 85 degrees C. Pretreatment of Pinus radiata and eucalypt kraft-oxygen pulps with XynB resulted in moderate xylan solubilization and a substantial improvement in the bleachability of these pulps.
Collapse
Affiliation(s)
- D D Morris
- Centre for Gene Technology, School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Karlsson EN, Dahlberg L, Torto N, Gorton L, Holst O. Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xynl from Rhodothermus marinus. J Biotechnol 1998; 60:23-35. [PMID: 9571799 DOI: 10.1016/s0168-1656(97)00178-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The catalytic domain of a xylanase from Rhodothermus marinus was produced in Escherichia coli. The catalytic domain belongs to glycosyl hydrolase family 10. The produced protein has a 22-amino acid leader peptide followed by a 411-amino acid truncated xylanase. The molecular mass was 48 kDa and the recombinant xylanase had a pI of 4.9. The pH and temperature optima for activity were determined to be 7.5 and 80 degrees C, respectively. At that temperature the enzyme had a half-life of 1 h 40 min. An addition of 1 mM calcium stabilized the activity of the enzyme at 80 degrees C. The xylanase had its highest specific activity on oat spelt xylan but was active also on other xylans and to a limited extent on some other polysaccharides (soluble glucans). No exo- or endo-cellulase activity was observed. Hydrolysis of xylo-oligomers and oat spelt xylan was studied and the predominant products of hydrolysis were xylobiose and xylotriose. The enzyme was inactive on xylobiose, xylotriose and on the soluble fraction from oat spelt xylan. The R. marinus xylanase is shown to have a strong preference for internal linkages and is therefore classified as an endo-xylanase.
Collapse
Affiliation(s)
- E N Karlsson
- Center for Chemistry and Chemical Engineering, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Díaz R, Sapag A, Peirano A, Steiner J, Eyzaguirre J. Cloning, sequencing and expression of the cDNA of endoxylanase B from Penicillium purpurogenum. Gene 1997; 187:247-51. [PMID: 9099888 DOI: 10.1016/s0378-1119(96)00762-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cDNA for xylanase B from Penicillium purpurogenum was cloned and sequenced. This DNA encodes a protein of 208 amino acids which is expected to yield a protein of 183 residues upon processing of the N terminus. The sequence of the predicted protein is very similar to that of 40 other xylanase domains which belong to family G of cellulases/xylanases (73-21% identity).
Collapse
Affiliation(s)
- R Díaz
- Laboratorio de Bioquímica, Pontificia Universidad Católica de Chile, Santiago
| | | | | | | | | |
Collapse
|
36
|
Abstract
Microorganisms are efficient degraders of starch, chitin, and the polysaccharides in plant cell walls. Attempts to purify hydrolases led to the realization that a microorganism may produce a multiplicity of enzymes, referred to as a system, for the efficient utilization of a polysaccharide. In order to fully characterize a particular enzyme, it must be obtained free of the other components of a system. Quite often, this proves to be very difficult because of the complexity of a system. This realization led to the cloning of the genes encoding them as an approach to eliminating other components. More than 400 such genes have been cloned and sequenced, and the enzymes they encode have been grouped into more than 50 families of related amino acid sequences. The enzyme systems revealed in this manner are complex on two quite different levels. First, many of the individual enzymes are complex, as they are modular proteins comprising one or more catalytic domains linked to ancillary domains that often include one or more substrate-binding domains. Second, the systems are complex, comprising from a few to 20 or more enzymes, all of which hydrolyze a particular substrate. Systems for the hydrolysis of plant cell walls usually contain more components than systems for the hydrolysis of starch and chitin because the cell walls contain several polysaccharides. In general, the systems produced by different microorganisms for the hydrolysis of a particular polysaccharide comprise similar enzymes from the same families.
Collapse
Affiliation(s)
- R A Warren
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Malburg LM, Iyo AH, Forsberg CW. A novel family 9 endoglucanase gene (celD), whose product cleaves substrates mainly to glucose, and its adjacent upstream homolog (celE) from Fibrobacter succinogenes S85. Appl Environ Microbiol 1996; 62:898-906. [PMID: 8975618 PMCID: PMC167855 DOI: 10.1128/aem.62.3.898-906.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two adjacent, highly homologous endoglucanase genes, celD and celE from Fibrobacter succinogenes S85, which were separated by an AT-rich 223-nucleotide intergenic region were characterized. The celD gene codes for endoglucanase D (EGD), a protein of 668 residues with a molecular mass of 71.7 kDa, while the celE gene encodes endoglucanase E, a protein of 467 amino acids with a molecular mass of 50.7 kDa. Both gene products belong to family 9 of glycosyl hydrolases. EGD displays an array of serine-rich periodic sequences (SRPS) near its C terminus which separate the catalytic domain from a basic terminal domain (BTD) rich in positively charged amino acids. Endoglucanase E has a BTD which is homologous to that of EGD, but it lacks the SRPS and 151 residues present at the N terminus of EGD. The SRPS structures may function as flexible linkers which facilitate interactions between the BTDs and acidic membrane proteins from F. succinogenes S85. The recombinant EGD showed pH and temperature optima of 5.5 and 35 degrees C, respectively. The enzyme cleaved barley-beta-glucan, carboxymethyl cellulose, and acid-swollen cellulose with specific activities of 19.1, 11.5 and 1.7 micromol x min-1 x mg of protein-1, respectively. There was a rapid drop in viscosity during hydrolyses of carboxymethyl cellulose, which is characteristic of an endoglucanase. Glucose was the main hydrolysis product of acid-swollen cellulose. Monospecific polyclonal antibodies against EGD detected the expression of a 68-kDa cellulose-inducible protein corresponding in size to the recombinant EGD in the culture fluid of F. succinogenes S85 and several larger proteins. The celE gene appeared to have little activity when expressed from the beta-galactosidase promoter in pBluescript in Escherichia coli; however, reverse transcriptase PCR analysis with internal primers for the gene revealed that a cellulose-inducible message was made in F. succinogenes, thereby documenting expression of the gene.
Collapse
Affiliation(s)
- L M Malburg
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
38
|
Lin C, Stahl DA. Comparative analyses reveal a highly conserved endoglucanase in the cellulolytic genus Fibrobacter. J Bacteriol 1995; 177:2543-9. [PMID: 7730288 PMCID: PMC176915 DOI: 10.1128/jb.177.9.2543-2549.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An RNA probe complementary to the endoglucanase 3 gene (cel-3) of Fibrobacter succinogenes S85 hybridized to chromosomal DNAs from isolates representing the genetic diversity of the genus. The probe was subsequently used to identify putative cel-3-containing clones from genomic libraries of representative Fibrobacter isolates. Comparative sequence analyses of the cloned cel-3 genes confirmed that cel-3 is conserved among Fibrobacter isolates and that the ancestral cel-3 gene appears to have coevolved with the genus, since the same genealogy was inferred from sequence comparisons of 16S rRNAs and cel-3 genes. Hybridization comparisons using a xylanase gene probe suggested similar conservation of this gene. Together the data indicate that the cellulolytic apparatus is conserved among Fibrobacter isolates and that comparative analyses of homologous elements of the apparatus from different members, in relationship to the now established phylogeny of the genus, could serve to better define the enzymatic basis of fiber digestion in this genus.
Collapse
Affiliation(s)
- C Lin
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- P Tomme
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
40
|
Abstract
The rumen is inhabited by a highly specialised microflora consisting of obligately anaerobic bacteria, fungi and protozoa. Rumen bacteria belong to many different phylogenetic groupings and many species exhibit a high degree of rRNA gene sequence diversity, whereas the rumen fungi are monophyletic. At least 21 genes concerned with the degradation and utilisation of plant cell wall polysaccharides, from five species of rumen bacteria and from rumen fungi, have been isolated and sequenced. In general, the catalytic domains of the encoded enzymes belong to enzyme families identified among non-rumen microorganisms, but some show unusual organisation, consisting of multiple catalytic domains. Several bacterial species have been used as recipients for gene transfer by electrotransformation or by conjugation, allowing development of methods for genetic analysis. The rumen is also considered as a potential site for natural gene transfer.
Collapse
Affiliation(s)
- H J Flint
- Division of Nutritional Sciences, Rowett Research Institute, Bucksburn, Aberdeen, UK
| |
Collapse
|
41
|
Zhu H, Paradis FW, Krell PJ, Phillips JP, Forsberg CW. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J Bacteriol 1994; 176:3885-94. [PMID: 8021170 PMCID: PMC205585 DOI: 10.1128/jb.176.13.3885-3894.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The xylanase XynC of Fibrobacter succinogenes S85 was recently shown to contain three distinct domains, A, B, and C (F. W. Paradis, H. Zhu, P. J. Krell, J. P. Phillips, and C. W. Forsberg, J. Bacteriol. 175:7666-7672, 1993). Domains A and B each bear an active site capable of hydrolyzing xylan, while domain C has no enzymatic activity. Two truncated proteins, each containing a single catalytic domain, named XynC-A and XynC-B were purified to homogeneity. The catalytic domains A and B had similar pH and temperature parameters of 6.0 and 50 degrees C for maximum hydrolytic activity and extensively degraded birch wood xylan to xylose and xylobiose. The Km and Vmax values, respectively, were 2.0 mg ml-1 and 6.1 U mg-1 for the intact enzyme, 1.83 mg ml-1 and 689 U mg-1 for domain A, and 2.38 mg ml-1 and 91.8 U mg-1 for domain B. Although domain A had a higher specific activity than domain B, domain B exhibited a broader substrate specificity and hydrolyzed rye arabinoxylan to a greater extent than domain A. Furthermore, domain B, but not domain A, was able to release xylose at the initial stage of the hydrolysis. Both catalytic domains cleaved xylotriose, xylotetraose, and xylopentaose but had no activity on xylobiose. Bond cleavage frequencies obtained from hydrolysis of xylo-alditol substrates suggest that while both domains have a strong preference for internal linkages of the xylan backbone, domain B has fewer subsites for substrate binding than domain A and cleaves arabinoxylan more efficiently. Chemical modification with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide methiodide and N-bromosuccinimide inactivated both XynC-A and XynC-B in the absence of xylan, indicating that carboxyl groups and tryptophan residues in the catalytic site of each domain have essential roles.
Collapse
Affiliation(s)
- H Zhu
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Pseudomonas lemoignei has five poly(hydroxyalkanoic acid) (PHA) depolymerase genes: A comparative study of bacterial and eukaryotic PHA depolymerases. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf02074776] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Bray MR, Clarke AJ. Identification of a glutamate residue at the active site of xylanase A from Schizophyllum commune. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:821-7. [PMID: 7906649 DOI: 10.1111/j.1432-1033.1994.tb18563.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The xylanase A (endo-1,4-beta-D-xylan xylanhydrolase) of the basidiomycete Schizophyllum commune was treated with the powerful carboxylate-modifying reagent 1-(4-azonia-4,4-dimethyl-pentyl)-3-ethylcarbodiimide iodide (EAC) in the presence of substrate. This treatment was followed by complete inactivation of the enzyme with [14c]EAC after the removal of excess reagent and protecting ligand. The inactivated enzyme was digested with endoproteinase Arg-C or trypsin, and peptides were separated and purified using reverse-phase high-performance liquid chromatography. Following sub-digestion of individual radioactive peptides with staphylococcal V8 protease and endoproteinase Lys-C, amino acid composition analysis and sequencing analysis revealed that the [14C]EAC label was bound exclusively to Glu87. Comparison of the primary sequences of related xylanase with that of xylanase A revealed that Glu87 is a highly conserved residue. Based on this similarity and the mechanism of carbodiimide action, Glu87 is proposed to act as the nucleophile in the catalytic mechanism of xylanase A. The possible environment of the putative catalytic glutamate residue was explored using hydrophobic-cluster analysis and secondary-structure prediction based on the primary sequence of xylanase.
Collapse
Affiliation(s)
- M R Bray
- Department of Microbiology, University of Guelph, Canada
| | | |
Collapse
|
44
|
Caron PR, Wang JC. Appendix. II: Alignment of primary sequences of DNA topoisomerases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29B:271-97. [PMID: 8996613 DOI: 10.1016/s1054-3589(08)61143-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P R Caron
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|