1
|
Jiang W, Pan J, Lin T, Wang Y, Wang Y, Zhang R, Zhou X, Zhang Y. Mutational features of chromids and chromosomes in Pseudoalteromonas provide new insights into the evolution of secondary replicons. Microbiol Spectr 2025; 13:e0212724. [PMID: 40130865 PMCID: PMC12053903 DOI: 10.1128/spectrum.02127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The genomes of multi-replicon bacteria are composed of a primary replicon (the chromosome) and secondary replicons (chromids). Currently, there is a lack of understanding of the mutation features and evolutionary patterns of these different replicons. Specifically, in the genus Pseudoalteromonas, the chromids of multi-replicon species exhibit both unidirectional and bidirectional replication. Here, we investigated the similarities and differences between chromosomes and chromids in sequence composition and gene synteny of Pseudoalteromonas species by comparative genomic analysis, as well as the spontaneous mutation features of different replicons by mutation accumulation (MA) experiments combined with whole-genome sequencing strategy (MA-WGS). MA-WGS analysis revealed that there was no significant difference between chromids and chromosomes in the mutation rate or mutation spectrum of P. sp. LC0214 (where the chromid is unidirectional in replication) and P. sp. JCM12884T (where the chromid is bidirectional in replication). In addition, the context-dependence and variation pattern of the base-pair substitutions (BPSs) rates of the entire replicons exhibited differences that may be caused by the different replication directions of the chromids. The results of this study provide a new theoretical foundation for an in-depth understanding of the origin and evolution of chromids in multi-replicon bacterial species and facilitate further exploration of the complex mechanisms of bacterial diversity.IMPORTANCEDe novo mutations are a critical driving force in species evolution. Currently, there is a lack of sufficient research on the influence of replicon types on the occurrence of genomic mutations in bacteria. Moreover, the scarcity in systematic analysis and comparison of spontaneous mutation features between different replicons results in the limited information on the evolutionary dynamics of multi-replicon species. The diversity of replication direction in the multi-replicon species of the genus Pseudoalteromonas provides a unique opportunity for studying the impact of replication direction on the patterns of mutation. In addition to the composition characteristics between chromosomes and chromids, the spontaneous mutation rates in the context-dependence and variation pattern of the base-pair substitutions (BPSs) across different replicons within Pseudoalteromonas species revealed in this study provide valuable insights into the evolutionary dynamics of bacterial secondary replicons.
Collapse
Affiliation(s)
- Wanyue Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Tongtong Lin
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yanze Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Rongxiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
2
|
Ayoub H, Kumar MS, Mehta R, Thomas P, Dubey M, Dhanze H, Ajantha GS, Bhilegaonkar KN, Salih HM, Cull CA, Veeranna RP, Amachawadi RG. Exploring genetic determinants of antimicrobial resistance in Brucella melitensis strains of human and animal origin from India. Front Microbiol 2024; 15:1474957. [PMID: 39430107 PMCID: PMC11488214 DOI: 10.3389/fmicb.2024.1474957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) in Brucella melitensis, the causative agent of brucellosis, is of growing concern, particularly in low and middle-income countries. This study aimed to explore the genetic basis of AMR in B. melitensis strains from India. Methods Twenty-four isolates from humans and animals were subjected to antimicrobial susceptibility testing and whole-genome sequencing. Results Resistance to doxycycline (20.80%), ciprofloxacin (16.67%), cotrimoxazole (4.17%), and rifampicin (16.67%) was observed. Genome analysis revealed efflux-related genes like mprF, bepG, bepF, bepC, bepE, and bepD across all isolates, however, classical AMR genes were not detected. Mutations in key AMR-associated genes such as rpoB, gyrA, and folP were identified, intriguingly present in both resistant and susceptible isolates, suggesting a complex genotype-phenotype relationship in AMR among Brucella spp. Additionally, mutations in efflux genes were noted in resistant and some susceptible isolates, indicating their potential role in resistance mechanisms. However, mutations in AMR-associated genes did not consistently align with phenotypic resistance, suggesting a multifactorial basis for resistance. Discussion The study underscores the complexity of AMR in B. melitensis and advocates for a holistic multi-omics approach to fully understand resistance mechanisms. These findings offer valuable insights into genetic markers associated with AMR, guiding future research and treatment strategies.
Collapse
Affiliation(s)
- Haris Ayoub
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - M. Suman Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Rishabh Mehta
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Muskan Dubey
- Xavier University School of Medicine and Xavier University School of Veterinary Medicine, Oranjestad, Aruba
| | - Himani Dhanze
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ganavalli S. Ajantha
- Department of Microbiology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - K. N. Bhilegaonkar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Harith M. Salih
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Ravindra P. Veeranna
- Xavier University School of Medicine and Xavier University School of Veterinary Medicine, Oranjestad, Aruba
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Elrashedy A, Nayel M, Salama A, Zaghawa A, Abdelsalam NR, Hasan ME. Phylogenetic Analysis and Comparative Genomics of Brucella abortus and Brucella melitensis Strains in Egypt. J Mol Evol 2024; 92:338-357. [PMID: 38809331 PMCID: PMC11169049 DOI: 10.1007/s00239-024-10173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Brucellosis is a notifiable disease induced by a facultative intracellular Brucella pathogen. In this study, eight Brucella abortus and eighteen Brucella melitensis strains from Egypt were annotated and compared with RB51 and REV1 vaccines respectively. RAST toolkit in the BV-BRC server was used for annotation, revealing genome length of 3,250,377 bp and 3,285,803 bp, 3289 and 3323 CDS, 48 and 49 tRNA genes, the same number of rRNA (3) genes, 583 and 586 hypothetical proteins, 2697 and 2726 functional proteins for B. abortus and B. melitensis respectively. B. abortus strains exhibit a similar number of candidate genes, while B. melitensis strains showed some differences, especially in the SRR19520422 Faiyum strain. Also, B. melitensis clarified differences in antimicrobial resistance genes (KatG, FabL, MtrA, MtrB, OxyR, and VanO-type) in SRR19520319 Faiyum and (Erm C and Tet K) in SRR19520422 Faiyum strain. Additionally, the whole genome phylogeny analysis proved that all B. abortus strains were related to vaccinated animals and all B. melitensis strains of Menoufia clustered together and closely related to Gharbia, Dameitta, and Kafr Elshiek. The Bowtie2 tool identified 338 (eight B. abortus) and 4271 (eighteen B. melitensis) single nucleotide polymorphisms (SNPs) along the genomes. These variants had been annotated according to type and impact. Moreover, thirty candidate genes were predicted and submitted at GenBank (24 in B. abortus) and (6 in B. melitensis). This study contributes significant insights into genetic variation, virulence factors, and vaccine-related associations of Brucella pathogens, enhancing our knowledge of brucellosis epidemiology and evolution in Egypt.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
4
|
Masuda S, Gan P, Kiguchi Y, Anda M, Sasaki K, Shibata A, Iwasaki W, Suda W, Shirasu K. Uncovering microbiomes of the rice phyllosphere using long-read metagenomic sequencing. Commun Biol 2024; 7:357. [PMID: 38538803 PMCID: PMC10973392 DOI: 10.1038/s42003-024-05998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/29/2024] [Indexed: 12/14/2024] Open
Abstract
The plant microbiome is crucial for plant growth, yet many important questions remain, such as the identification of specific bacterial species in plants, their genetic content, and location of these genes on chromosomes or plasmids. To gain insights into the genetic makeup of the rice-phyllosphere, we perform a metagenomic analysis using long-read sequences. Here, 1.8 Gb reads are assembled into 26,067 contigs including 142 circular sequences. Within these contigs, 669 complete 16S rRNA genes are clustered into 166 bacterial species, 121 of which show low identity (<97%) to defined sequences, suggesting novel species. The circular contigs contain novel chromosomes and a megaplasmid, and most of the smaller circular contigs are defined as novel plasmids or bacteriophages. One circular contig represents the complete chromosome of a difficult-to-culture bacterium Candidatus Saccharibacteria. Our findings demonstrate the efficacy of long-read-based metagenomics for profiling microbial communities and discovering novel sequences in plant-microbiome studies.
Collapse
Affiliation(s)
- Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Yuya Kiguchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mizue Anda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sasaki
- Institute for Sustainable Agro‑ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Anda M, Yamanouchi S, Cosentino S, Sakamoto M, Ohkuma M, Takashima M, Toyoda A, Iwasaki W. Bacteria can maintain rRNA operons solely on plasmids for hundreds of millions of years. Nat Commun 2023; 14:7232. [PMID: 37963895 PMCID: PMC10645730 DOI: 10.1038/s41467-023-42681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
It is generally assumed that all bacteria must have at least one rRNA operon (rrn operon) on the chromosome, but some strains of the genera Aureimonas and Oecophyllibacter carry their sole rrn operon on a plasmid. However, other related strains and species have chromosomal rrn loci, suggesting that the exclusive presence of rrn operons on a plasmid is rare and unlikely to be stably maintained over long evolutionary periods. Here, we report the results of a systematic search for additional bacteria without chromosomal rrn operons. We find that at least four bacterial clades in the phyla Bacteroidota, Spirochaetota, and Pseudomonadota (Proteobacteria) lost chromosomal rrn operons independently. Remarkably, Persicobacteraceae have apparently maintained this peculiar genome organization for hundreds of millions of years. In our study, all the rrn-carrying plasmids in bacteria lacking chromosomal rrn loci possess replication initiator genes of the Rep_3 family. Furthermore, the lack of chromosomal rrn operons is associated with differences in copy numbers of rrn operons, plasmids, and chromosomal tRNA genes. Thus, our findings indicate that the absence of rrn loci in bacterial chromosomes can be stably maintained over long evolutionary periods.
Collapse
Affiliation(s)
- Mizue Anda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Salvatore Cosentino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Masako Takashima
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Institute for Quantitative Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
6
|
Huang YF, Liu L, Wang F, Yuan XW, Chen HC, Liu ZF. High-Resolution 3D Genome Map of Brucella Chromosomes in Exponential and Stationary Phases. Microbiol Spectr 2023; 11:e0429022. [PMID: 36847551 PMCID: PMC10100373 DOI: 10.1128/spectrum.04290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The three-dimensional (3D) genome structure of an organism or cell is highly relevant to its biological activities, but the availability of 3D genome information for bacteria, especially intracellular pathogens, is still limited. Here, we used Hi-C (high-throughput chromosome conformation capture) technology to determine the 3D chromosome structures of exponential- and stationary-phase Brucella melitensis at a 1-kb resolution. We observed that the contact heat maps of the two B. melitensis chromosomes contain a prominent diagonal and a secondary diagonal. Then, 79 chromatin interaction domains (CIDs) were detected at an optical density at 600 nm (OD600) of 0.4 (exponential phase), with the longest CID being 106 kb and the shortest being 12 kb. Moreover, we obtained 49,363 significant cis-interaction loci and 59,953 significant trans-interaction loci. Meanwhile, 82 CIDs of B. melitensis at an OD600 of 1.5 (stationary phase) were detected, with the longest CID being 94 kb and the shortest being 16 kb. In addition, 25,965 significant cis-interaction loci and 35,938 significant trans-interaction loci were obtained in this phase. Furthermore, we found that as the B. melitensis cells grew from the logarithmic to the plateau phase, the frequency of short-range interactions increased, while that of long-range interactions decreased. Finally, combined analysis of 3D genome and whole-genome transcriptome (RNA-seq) data revealed that the strength of short-range interactions in Chr1 is specifically and strongly correlated with gene expression. Overall, our study provides a global view of the chromatin interactions in the B. melitensis chromosomes, which will serve as a resource for further study of the spatial regulation of gene expression in Brucella. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and in the regulation of gene expression. Three-dimensional genome sequencing has been performed in many mammals and plants, but the availability of such data for bacteria, especially intracellular pathogens, is still limited. Approximately 10% of sequenced bacterial genomes contain more than one replicon. However, how multiple replicons are organized within bacterial cells, how they interact, and whether these interactions help to maintain or segregate these multipartite genomes are unresolved issues. Brucella is a Gram-negative, facultative intracellular, and zoonotic bacterium. Except for Brucella suis biovar 3, Brucella species have two chromosomes. Here, we applied Hi-C technology to determine the 3D genome structures of exponential- and stationary-phase Brucella melitensis chromosomes at a 1-kb resolution. Combined analysis of the 3D genome and RNA-seq data indicated that the strength of short-range interactions in B. melitensis Chr1 is specifically and strongly correlated with gene expression. Our study provides a resource to achieve a deeper understanding of the spatial regulation of gene expression in Brucella.
Collapse
Affiliation(s)
- Yong-Fang Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Wei Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Moreno E. The one hundred year journey of the genus Brucella (Meyer and Shaw 1920). FEMS Microbiol Rev 2021; 45:5917985. [PMID: 33016322 DOI: 10.1093/femsre/fuaa045] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Brucella, described by Meyer and Shaw in 1920, comprises bacterial pathogens of veterinary and public health relevance. For 36 years, the genus came to include three species that caused brucellosis in livestock and humans. In the second half of the 20th century, bacteriologists discovered five new species and several 'atypical' strains in domestic animals and wildlife. In 1990, the Brucella species were recognized as part of the Class Alphaproteobacteria, clustering with pathogens and endosymbionts of animals and plants such as Bartonella, Agrobacterium and Ochrobactrum; all bacteria that live in close association with eukaryotic cells. Comparisons with Alphaproteobacteria contributed to identify virulence factors and to establish evolutionary relationships. Brucella members have two circular chromosomes, are devoid of plasmids, and display close genetic relatedness. A proposal, asserting that all brucellae belong to a single species with several subspecies debated for over 70 years, was ultimately rejected in 2006 by the subcommittee of taxonomy, based on scientific, practical, and biosafety considerations. Following this, the nomenclature of having multiples Brucella species prevailed and defined according to their molecular characteristics, host preference, and virulence. The 100-year history of the genus corresponds to the chronicle of scientific efforts and the struggle for understanding brucellosis.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Campues Benjamín Nuñez, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
8
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
9
|
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, Guzmán-Verri C. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci 2020; 21:E7749. [PMID: 33092044 PMCID: PMC7589603 DOI: 10.3390/ijms21207749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens.
Collapse
Affiliation(s)
- Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; (M.S.-E.); (E.M.)
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica;
| |
Collapse
|
10
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018; 97:1013-1038. [PMID: 30262715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are unicellular organisms that do not show compartmentalization of the genetic material and other cellular organelles as seen in higher organisms. Earlier, bacterial genomes were defined as single circular chromosome and extrachromosomal plasmids. Recently, many bacteria were found harbouringmultipartite genome system and the numbers of copies of genome elements including chromosomes vary from one to several per cell. Interestingly, it is noticed that majority of multipartite genome-harbouring bacteria are either stress tolerant or pathogens. Further, it is observed that the secondary genomes in these bacteria encode proteins that are involved in bacterial genome maintenance and also contribute to higher stress tolerance, and pathogenicity in pathogenic bacteria. Surprisingly, in some bacteria the genes encoding the proteins of classical homologous recombination pathways are present only on the secondary chromosomes, and some do not have either of the classical homologous recombination pathways. This review highlights the presence of ploidy and multipartite genomes in bacterial system, the underlying mechanisms of genome maintenance and the possibilities of these features contributing to higher abiotic and biotic stress tolerance in these bacteria.
Collapse
Affiliation(s)
- Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | | | |
Collapse
|
11
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018. [DOI: 10.1007/s12041-018-0969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate Once Per Cell Cycle: Replication Control of Secondary Chromosomes. Front Microbiol 2018; 9:1833. [PMID: 30131796 PMCID: PMC6090056 DOI: 10.3389/fmicb.2018.01833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.
Collapse
Affiliation(s)
- Florian Fournes
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
13
|
Espejo RT, Plaza N. Multiple Ribosomal RNA Operons in Bacteria; Their Concerted Evolution and Potential Consequences on the Rate of Evolution of Their 16S rRNA. Front Microbiol 2018; 9:1232. [PMID: 29937760 PMCID: PMC6002687 DOI: 10.3389/fmicb.2018.01232] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Bacterial species differ greatly in the number and location of the rRNA operons which may be present in the bacterial chromosomes and plasmids. Most bacterial species contain more than one ribosomal RNA operon copy in their genomes, with some species containing up to 15 such copies. We review the number and location of the rRNA operons and discuss evolution of 16S rRNA (rrs) genes -which are considered as ultimate chronometers for phylogenetic classification- in bacteria with multiple copies of these genes. In these bacterial species, the rrs genes must evolve in concert and sequence changes generated by mutation or horizontal gene transfer must be either erased or spread to every gene copy to avoid divergence, as it occurs when they are present in different species. Analysis of polymorphic sites in intra-genomic rrs copies identifies putative conversion events and demonstrates that sequence conversion is patchy and occurs in small conversion tracts. Sequence conversion probably arises by a non-reciprocal transfer between two or more copies where one copy contributes only a small contiguous segment of DNA, whereas the other copy contributes the rest of the genome in a fairly well understood molecular process. Because concerted evolution implies that a mutation in any of the rrs copies is either eliminated or transferred to every rrs gene in the genome, this process should slow their evolution rate relative to that of single copy genes. However, available data on the rrs genes in bacterial genomes do not show a clear relationship between their evolution rates and the number of their copies in the genome.
Collapse
Affiliation(s)
- Romilio T Espejo
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Nicolás Plaza
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile.,Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
14
|
Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc Natl Acad Sci U S A 2015; 112:14343-7. [PMID: 26534993 DOI: 10.1073/pnas.1514326112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.
Collapse
|
15
|
Jahn M, Günther S, Müller S. Non-random distribution of macromolecules as driving forces for phenotypic variation. Curr Opin Microbiol 2015; 25:49-55. [DOI: 10.1016/j.mib.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
|
16
|
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 2014; 10:e1004742. [PMID: 25340565 PMCID: PMC4207669 DOI: 10.1371/journal.pgen.1004742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 01/12/2023] Open
Abstract
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). Rhizobia are free-living bacteria of agricultural and environmental importance that form root-nodules on leguminous plants and provide these plants with fixed nitrogen. Many of the rhizobia have a multipartite genome, as do several plant and animal pathogens. All isolates of the alfalfa symbiont, Sinorhizobium meliloti, carry three large replicons, the chromosome (∼3.7 Mb), pSymA megaplasmid (∼1.4 Mb), and pSymB chromid (∼1.7 Mb). To gain insight into the role and evolutionary history of these replicons, we have ‘reversed evolution’ by constructing a S. meliloti strain consisting solely of the chromosome and lacking the pSymB chromid and pSymA megaplasmid. As the resulting strain was viable, we could perform a detailed phenotypic analysis and these data provided significant insight into the biology and metabolism of S. meliloti. The data lend direct experimental evidence in understanding the evolution and role of the multipartite genome. Specifically the large secondary replicons increase the organism's niche range, and this advantage offsets the metabolic burden of these replicons on the cell. Additionally, the single-chromosome strain offers a useful platform to facilitate future forward genetic approaches to understanding and manipulating the symbiosis and plant-microbe interactions.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
O'Callaghan D, Whatmore AM. Brucella genomics as we enter the multi-genome era. Brief Funct Genomics 2011; 10:334-41. [PMID: 21930657 DOI: 10.1093/bfgp/elr026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The genus Brucella includes species considered among the worlds most important zoonotic pathogens, with brucellosis remaining a significant problem in large parts of the world. Over the last decade a number of Brucella genomes have been fully sequenced providing new insights into this relatively poorly understood group of organisms. In the forthcoming months and years, the availability of many additional genomes should help in further understanding of the evolution, host specificity and pathogenicity of this group as well as providing a resource to further improve epidemiological typing tools. This article describes progress to date and looks forward to the opportunities that should be afforded as we enter an era of multiple, freely available, Brucella genome sequences.
Collapse
|
18
|
Bavishi A, Abhishek A, Lin L, Choudhary M. Complex prokaryotic genome structure: rapid evolution of chromosome II. Genome 2011; 53:675-87. [PMID: 20924417 DOI: 10.1139/g10-046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although many bacteria with two chromosomes have been sequenced, the roles of such complex genome structuring are still unclear. To uncover levels of chromosome I (CI) and chromosome II (CII) sequence divergence, Mauve 2.2.0 was used to align the CI- and CII-specific sequences of bacteria with complex genome structuring in two sets of comparisons: the first set was conducted among the CI and CII of bacterial strains of the same species, while the second set was conducted among the CI and CII of species in Alphaproteobacteria that possess two chromosomes. The analyses revealed a rapid evolution of CII-specific DNA sequences compared with CI-specific sequences in a majority of organisms. In addition, levels of protein divergence between CI-specific and CII-specific genes were determined using phylogenetic analyses and confirmed the DNA alignment findings. Analysis of synonymous and nonsynonymous substitutions revealed that the structural and functional constraints on CI and CII genes are not significantly different. Also, horizontal gene transfer estimates in selected organisms demonstrated that CII in many species has acquired higher levels of horizontally transferred segments than CI. In summary, rapid evolution of CII may perform particular roles for organisms such as aiding in adapting to specialized niches.
Collapse
Affiliation(s)
- Anish Bavishi
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | | | | | | |
Collapse
|
19
|
Her M, Cho DH, Kang SI, Cho YS, Hwang IY, Bae YC, Yoon H, Heo YR, Jung SC, Yoo H. The development of a selective medium for the Brucella abortus strains and its comparison with the currently recommended and used medium. Diagn Microbiol Infect Dis 2010; 67:15-21. [PMID: 20385349 DOI: 10.1016/j.diagmicrobio.2009.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/04/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022]
Abstract
The Brucella spp. are fastidious and relatively slow-growing organisms. The isolation of such strains in a variety of specimens often requires the use of a selective medium to reduce or eliminate the growth of unexpected microorganisms. The modified Brucella selective (MBS) medium, which contains improved antibiotic mixtures, erythritol as the only carbon source, and neutral red as a pH indicator, showed good selectivity for the Brucella abortus strains, including the RB51 vaccine strain. Erythritol in the MBS medium was able to promote and/or recover the delayed growth of the B. abortus strains through the antibiotic mixtures. The Brucella colonies, which assumed a pinkish color at their central part, were easily differentiated from other organisms. The MBS medium also allows the isolation of the Brucella strains even in contaminated specimens and/or in specimens containing small numbers of viable organisms. Moreover, this medium can be applied to environmental samples for the isolation of the Brucella strains, and it can thus offer epidemiologic traceback sources for the dissemination or transfer of diseases. Therefore, the MBS medium can be applied as a useful tool of important control measures in the eradication programs.
Collapse
Affiliation(s)
- Moon Her
- OIE Reference Laboratory for Brucellosis and Zoonosis Laboratory, Bacteriology and Parasitology Division, Veterinary Research Institute, National Veterinary Research and Quarantine Service (NVRQS), Anyang, Gyeonggi, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Taxonomy and nomenclature represent man-made systems designed to enhance understanding of the relationship between organisms by comparison of discrete sets of properties. Initial efforts at bacterial taxonomy were flawed as a result of the previous use of nonsystematic approaches including common names resulting in confusing and inaccurate nomenclature. A decision was made to start afresh with bacterial nomenclature and to avoid the hazards experienced in the taxonomic classification of higher organisms. This was achieved by developing new rules designed to simplify classification and avoid unnecessary and confusing changes. This article reviews the work of a number of scientists attempting to reconcile new molecular data describing the phylogenetic relationship between Brucella organisms and a broader family of organisms with widely variant phenotypes that include human virulence and host range against a backdrop of strict regulatory requirements that fail to recognize significant differences between organisms with similar nomenclature.
Collapse
Affiliation(s)
- Thomas Ficht
- Texas A&M University, Veterinary Pathobiology, TAMUs 4467, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Harrison PW, Lower RPJ, Kim NKD, Young JPW. Introducing the bacterial 'chromid': not a chromosome, not a plasmid. Trends Microbiol 2010; 18:141-8. [PMID: 20080407 DOI: 10.1016/j.tim.2009.12.010] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
In addition to the main chromosome, approximately one in ten bacterial genomes have a 'second chromosome' or 'megaplasmid'. Here, we propose that these represent a single class of elements that have a distinct and consistent set of properties, and suggest the term 'chromid' to distinguish them from both chromosomes and plasmids. Chromids carry some core genes, and their nucleotide composition and codon usage are very similar to those of the chromosomes they are associated with. By contrast, they have plasmid replication and partitioning systems and the majority of their genes confer accessory functions. Chromids seem particularly rich in genus-specific genes and appear to be 'reinvented' at the origin of a new genus.
Collapse
Affiliation(s)
- Peter W Harrison
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK.
| | | | | | | |
Collapse
|
22
|
Whatmore AM. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. INFECTION GENETICS AND EVOLUTION 2009; 9:1168-84. [DOI: 10.1016/j.meegid.2009.07.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
23
|
|
24
|
Mantur BG, Amarnath SK, Shinde RS. REVIEW OF CLINICAL AND LABORATORY FEATURES OF HUMAN BRUCELLOSIS. Indian J Med Microbiol 2007. [DOI: 10.1016/s0255-0857(21)02105-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Tobiason DM, Seifert HS. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 2007; 4:e185. [PMID: 16719561 PMCID: PMC1470461 DOI: 10.1371/journal.pbio.0040185] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 04/05/2006] [Indexed: 11/19/2022] Open
Abstract
We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts.
Collapse
Affiliation(s)
- Deborah M Tobiason
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 2005; 187:2715-26. [PMID: 15805518 PMCID: PMC1070361 DOI: 10.1128/jb.187.8.2715-2726.2005] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Accepted: 01/14/2005] [Indexed: 01/09/2023] Open
Abstract
Brucellosis is a worldwide disease of humans and livestock that is caused by a number of very closely related classical Brucella species in the alpha-2 subdivision of the Proteobacteria. We report the complete genome sequence of Brucella abortus field isolate 9-941 and compare it to those of Brucella suis 1330 and Brucella melitensis 16 M. The genomes of these Brucella species are strikingly similar, with nearly identical genetic content and gene organization. However, a number of insertion-deletion events and several polymorphic regions encoding putative outer membrane proteins were identified among the genomes. Several fragments previously identified as unique to either B. suis or B. melitensis were present in the B. abortus genome. Even though several fragments were shared between only B. abortus and B. suis, B. abortus shared more fragments and had fewer nucleotide polymorphisms with B. melitensis than B. suis. The complete genomic sequence of B. abortus provides an important resource for further investigations into determinants of the pathogenicity and virulence phenotypes of these bacteria.
Collapse
Affiliation(s)
- Shirley M Halling
- Bacterial Diseases of Livestock Unit, NADC, ARS, USDA, 2300 Dayton Ave., Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Egan ES, Fogel MA, Waldor MK. MicroReview: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 2005; 56:1129-38. [PMID: 15882408 DOI: 10.1111/j.1365-2958.2005.04622.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Historically, the prokaryotic genome was assumed to consist of a single circular replicon. However, as more microbial genome sequencing projects are completed, it is becoming clear that multipartite genomes comprised of more than one chromosome are not unusual among prokaryotes. Chromosomes are distinguished from plasmids by the presence of essential genes as well as characteristic cell cycle-linked replication kinetics; unlike plasmids, chromosomes initiate replication once per cell cycle. The existence of multipartite prokaryotic genomes raises several questions regarding how multiple chromosomes are replicated and segregated during the cell cycle. These divided genomes also introduce questions regarding chromosome evolution and genome stability. In this review, we discuss these and other issues, with particular emphasis on the cholera pathogen Vibrio cholerae.
Collapse
Affiliation(s)
- Elizabeth S Egan
- Genetics Program, Tufts University School of Medicine and Howard Hughes Medical Institute, 136 Harrison Ave, Boston, MA 02111, USA
| | | | | |
Collapse
|
28
|
Abstract
Human brucellosis is now a rare disease in countries where eradication programs (especially vaccination) against brucellosis in cattle, sheep, and goats have been successfully implemented. In France, fewer than 50 brucellosis cases are annually notified to the National Institute for Infection Surveillance. Human brucellosis, however, remains endemic in the Mediterranean basin, Middle East, Western Asia, Africa, and South America. Shortcomings of standard diagnostic methods for brucellosis (variable sensitivity of culture, frequent serological cross reactions) have been only partially resolved by modern molecular biology techniques. There are now 3 new challenges to be faced by the medical and veterinarian community: the expanding wildlife reservoir of brucellosis, with a possible impact on domestic animals; the emergence of Brucella. melitensis infections in cattle, for which prophylactic efficacy of available vaccines has not been established; and recent recognition of a huge animal reservoir of Brucella species in marine mammals, for which the potential virulence in humans remains unknown.
Collapse
Affiliation(s)
- M Maurin
- Service de bactériologie-virologie, université Joseph-Fourier, CHU de Grenoble, BP 217, 38043 Grenoble cedex, France.
| |
Collapse
|
29
|
Teyssier C, Marchandin H, Jumas-Bilak E. [The genome of alpha-proteobacteria : complexity, reduction, diversity and fluidity]. Can J Microbiol 2004; 50:383-96. [PMID: 15284884 DOI: 10.1139/w04-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The alpha-proteobacteria displayed diverse and often unconventional life-styles. In particular, they keep close relationships with the eucaryotic cell. Their genomic organization is often atypical. Indeed, complex genomes, with two or more chromosomes that could be linear and sometimes associated with plasmids larger than one megabase, have been described. Moreover, polymorphism in genome size and topology as well as in replicon number was observed among very related bacteria, even in a same species. Alpha-proteobacteria provide a good model to study the reductive evolution, the role and origin of multiple chromosomes, and the genomic fluidity. The amount of new data harvested in the last decade should lead us to better understand emergence of bacterial life-styles and to build the conceptual basis to improve the definition of the bacterial species.
Collapse
Affiliation(s)
- Corinne Teyssier
- Laboratoire de bactériologie, Faculté de pharmacie, Montpellier CEDEX 5, France
| | | | | |
Collapse
|
30
|
Komatsu H, Imura Y, Ohori A, Nagata Y, Tsuda M. Distribution and organization of auxotrophic genes on the multichromosomal genome of Burkholderia multivorans ATCC 17616. J Bacteriol 2003; 185:3333-43. [PMID: 12754231 PMCID: PMC155387 DOI: 10.1128/jb.185.11.3333-3343.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia multivorans strain ATCC 17616 carries three circular chromosomes with sizes of 3.4, 2.5, and 0.9 Mb. To determine the distribution and organization of the amino acid biosynthetic genes on the genome of this beta-proteobacterium, various auxotrophic mutations were isolated using a Tn5 derivative that was convenient not only for the determination of its insertion site on the genome map but also for the structural analysis of the flanking regions. Analysis by pulsed-field gel electrophoresis revealed that 20 out of 23 insertion mutations were distributed on the 3.4-Mb chromosome. More detailed analysis of the his, trp, arg, and lys mutations and their flanking regions revealed the following properties of these auxotrophic genes: (i) all nine his genes were clustered on the 3.4-Mb chromosome; (ii) seven trp genes were organized within two distinct regions, i.e., a trpEGDC cluster on the 3.4-Mb chromosome and a trpFBA cluster on the 2.5-Mb chromosome; (iii) the leu gene cluster, leuCDB, was also located close to the trpFBA cluster; and (iv) lysA and argG genes were located on the 2.5-Mb chromosome, in contrast to the argH gene, which was located on the 3.4-Mb chromosome. Southern hybridization analysis, allelic exchange mutagenesis of ATCC 17616, and complementation tests demonstrated that all of the genes examined were functional and existed as a single copy within the genome. The present findings also indicated that the 2.5-Mb chromosome carried various auxotrophic genes with no structural or functional counterparts on the remaining two chromosomes.
Collapse
Affiliation(s)
- Harunobu Komatsu
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
31
|
Coenye T, Vandamme P. Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome. BMC Genomics 2003; 4:10. [PMID: 12697060 PMCID: PMC153513 DOI: 10.1186/1471-2164-4-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 03/17/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid) and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and composition of simple sequence repeats (SSRs) between both replicons and also compared the respective compositional biases. RESULTS Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed. CONCLUSIONS The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratorium voor Microbiologie, Ghent University,K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Peter Vandamme
- Laboratorium voor Microbiologie, Ghent University,K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
32
|
Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 2003; 16:65-78. [PMID: 12525425 PMCID: PMC145300 DOI: 10.1128/cmr.16.1.65-78.2003] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucellosis caused by Brucella spp. is a major zoonotic disease. Control of brucellosis in agricultural animals is a prerequisite for the prevention of this disease in human beings. Recently, Brucella melitensis was declared by the Centers for Disease Control and Prevention to be one of three major bioterrorist agents due to the expense required for the treatment of human brucellosis patients. Also, the economic agricultural loss due to bovine brucellosis emphasizes the financial impact of brucellosis in society. Thus, vaccination might efficiently solve this disease. Currently, B. abortus RB51 and B. melitensis REV.1 are used to immunize cattle and to immunize goats and sheep, respectively, in many countries. However, these genetically undefined strains still induce abortion and persistent infection, raising questions of safety and efficiency. In fact, the REV.1 vaccine is quite virulent and apparently unstable, creating the need for improved vaccines for B. melitensis. In addition, Brucella spp. may or may not provide cross-protection against infection by heterologous Brucella species, hampering the acceleration of vaccine development. This review provides our current understanding of Brucella pathogenesis and host immunity for the development of genetically defined efficient vaccine strains. Additionally, conditions required for an effective Brucella vaccine strain as well as the future research direction needed to investigate Brucella pathogenesis and host immunity are postulated.
Collapse
Affiliation(s)
- Jinkyung Ko
- Laboratory of Cellular and Molecular Immunology, Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
33
|
Michaux-Charachon S, Jumas-Bilak E, Allardet-Servent A, Bourg G, Boschiroli ML, Ramuz M, O'Callaghan D. The Brucella genome at the beginning of the post-genomic era. Vet Microbiol 2002; 90:581-5. [PMID: 12414173 DOI: 10.1016/s0378-1135(02)00237-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The year 2002 began with the publication of the first complete genome sequence for a Brucella species, that of the two replicons of B. melitensis 16M. Hopefully in 2002, the complete genome of B. suis 1330, and, perhaps, a B. abortus strain will be published. This is the culmination of over 30 years investigation of the composition, structure, organisation and evolution of the Brucella genome. Brucella research must now adapt to the new challenges of the post-genomic era.
Collapse
|
34
|
Wechter WP, Begum D, Presting G, Kim JJ, Wing RA, Kluepfel DA. Physical mapping, BAC-end sequence analysis, and marker tagging of the soilborne nematicidal bacterium, Pseudomonas synxantha BG33R. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2002; 6:11-21. [PMID: 11881828 DOI: 10.1089/15362310252780807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A bacterial artificial chromosome (BAC) library was constructed for the genome of the rhizosphere-inhabiting fluorescent pseudomonad Pseudomonas synxantha BG33R. Three thousand BAC clones with an average insert size of 140 kbp and representing a 70-fold genomic coverage were generated and arrayed onto nylon membranes. EcoRI fingerprint analysis of 986 BAC clones generated 23 contigs and 75 singletons. Hybridization analysis allowed us to order the 23 contigs and condense them into a single contig, yielding an estimated genome size of 5.1 Mb for P. synxantha BG33R. A minimum-tile path of 47 BACs was generated and end-sequenced. The genetic loci involved in ring nematode egg-kill factor production in BG33R Tn5 mutants, 246 (vgrG homolog), 1122 (sensor kinase homolog), 1233 (UDP-galactose epimerase homolog), 1397 (ferrisiderophore receptor homolog), and 1917 (ribosomal subunit protein homolog), have been mapped onto the minimum-tile BAC library. Two of the genetic regions that flank Tn5 insertions in BG33R egg-kill-negative mutants 1233 and 1397 are separated by a single BAC clone. Fragments isolated by ligation-mediated PCR of the Tn5 mutagenized regions of 29 randomly selected, non-egg-kill-related, insertion mutants have been anchored onto the ordered physical map of P. synxantha.
Collapse
Affiliation(s)
- W P Wechter
- The Department of Plant Pathology and Physiology, Clemson University, South Carolina 29634-0377, USA
| | | | | | | | | | | |
Collapse
|
35
|
Michaux-Charachon S, Foulongne V, O'Callaghan D, Ramuz M. [Brucella at the dawn of the third milenium: genomic organization and pathogenesis]. PATHOLOGIE-BIOLOGIE 2002; 50:401-12. [PMID: 12168259 DOI: 10.1016/s0369-8114(02)00313-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacteria of the genus Brucella, responsible for brucellosis, are pathogenic for animals and occasionally for humans. The cost of this widespread zoonotic infection is still very high for the community. Over the last few years, there have been advances in two main domains. First, the Brucella genome has been shown to be complex, with two circular chromosomes. Second, recent data on the virulence of Brucella suggest common mechanisms shared with plant pathogens and endosymbionts of the alpha-proteobacteria. Understanding virulence will have practical repercussions in the realms of vaccine development and, perhaps, development of new antibiotics. Two complete Brucella genome sequences are now available and will be a gold mine of information to guide future research.
Collapse
|
36
|
Abstract
Recent sequencing projects have characterized bacterial genomes that are organized onto elements of various sizes, shapes and numbers. Aside from its biological relevance and curiosity, this diversity calls into question the way that we define bacterial chromosomes.
Collapse
Affiliation(s)
- Howard Ochman
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson 85721, USA.
| |
Collapse
|
37
|
Wang ET, Martínez‐Romero J, Martínez‐Romero E. Genetic diversity of rhizobia fromLeucaena leucocephalanodules in Mexican soils. Mol Ecol 2002. [DOI: 10.1046/j.1365-294x.1999.00608.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- En Tao Wang
- Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Apdo. Postal 565‐A, Cuernavaca, Morelos, México
| | - Julio Martínez‐Romero
- Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Apdo. Postal 565‐A, Cuernavaca, Morelos, México
| | - Esperanza Martínez‐Romero
- Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Apdo. Postal 565‐A, Cuernavaca, Morelos, México
| |
Collapse
|
38
|
Bellefontaine AF, Pierreux CE, Mertens P, Vandenhaute J, Letesson JJ, De Bolle X. Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol Microbiol 2002; 43:945-60. [PMID: 11929544 DOI: 10.1046/j.1365-2958.2002.02777.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CtrA is a master response regulator found in many alpha-proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the alpha2-proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6-CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.
Collapse
Affiliation(s)
- Anne-Flore Bellefontaine
- Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre Dame de la Paix, 61, rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Brucella is one of the world's major zoonotic pathogens, and is responsible for enormous economic losses as well as considerable human morbidity in endemic areas. Control of brucellosis requires practical solutions that can be easily applied to the field. Rapid DNA-based diagnostic tests for both humans and livestock have now proved themselves on an experimental level. Data on the virulence of Brucella suggest common mechanisms shared with plant pathogens and endosymbionts of the alpha-proteobacteria. Understanding virulence will have practical repercussions in the realms of vaccine development and, perhaps, development of new antibiotics. The first complete Brucella genome sequence will be released soon, and this will help greatly in our understanding of the biology and evolution of this pathogen.
Collapse
Affiliation(s)
- M L Boschiroli
- INSERM U431, Faculté de Médecine, Avenue Kennedy, 30900, Nîmes, France
| | | | | |
Collapse
|
40
|
Ko J, Splitter GA. Residual virulence of Brucella abortus in the absence of the cytochrome bc(1)complex in a murine model in vitro and in vivo. Microb Pathog 2000; 29:191-200. [PMID: 10968951 DOI: 10.1006/mpat.2000.0373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To maintain survival in macrophages, Brucella must overcome a hostile phagosomal environment defined as low pH, limited nutrition and low oxygen tension. The specific mechanisms utilized by Brucella to surmount such unfavorable environmental factors in phagosomes are not well understood. In general, to adapt to a change in environmental oxygen tension, bacteria use different terminal oxidases that have different oxygen affinity. To survive in phagosomes where low oxygen tension exists, Brucella, like other bacteria, may require high oxygen affinity terminal oxidases that can accept electrons through a cytochrome bc(1)complex dependent or independent pathway. Using a Brucella abortus cytochrome bc(1)complex deficient mutant, delta fbcF, the requirement for a high oxygen affinity terminal oxidase governed by the cytochrome bc(1)complex dependent pathway was tested. The number of cfu from RAW 264.7 macrophage cells and spleens of BALB/c mice infected with wild-type or the cytochrome bc(1)complex deficient mutant was similar during the course of infection. These results suggest that B. abortus contains no essential terminal oxidase utilized at low oxygen tension in phagosomes requiring the cytochrome bc(1)complex. Alternatively, other branched cytochrome bc(1)complex independent respiratory mechanisms that contain the high oxygen affinity terminal oxidases likely exist to facilitate Brucella survival in phagosomes. This is the first investigation regarding the Brucella respiratory system at the molecular level and the involvement of a respiratory system in Brucella pathogenesis.
Collapse
Affiliation(s)
- J Ko
- Laboratory of Cellular and Molecular Immunology, Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
41
|
Vizcaíno N, Cloeckaert A, Verger J, Grayon M, Fernández-Lago L. DNA polymorphism in the genus Brucella. Microbes Infect 2000; 2:1089-100. [PMID: 10967289 DOI: 10.1016/s1286-4579(00)01263-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genus Brucella has been described as consisting of six species, three of them including several biovars, which display a high degree of DNA homology by DNA-DNA hybridization. However, DNA polymorphism able to differentiate the six Brucella species and some of their biovars has been shown to exist. This work reviews the DNA variability in the genus Brucella and discusses the relationships between its members according to this genetic variability and a proposal for their evolution based on genetic diversity of the omp2 locus.
Collapse
Affiliation(s)
- N Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Avda. Campo Charros/n, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
42
|
Wigley P, Burton NF. Multiple chromosomes in Burkholderia cepacia and B. gladioli and their distribution in clinical and environmental strains of B. cepacia. J Appl Microbiol 2000; 88:914-8. [PMID: 10792553 DOI: 10.1046/j.1365-2672.2000.01033.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkholderia cepacia is found in soils and waters, it can be used in biocontrol and bioremediation but is also a human pathogen. It is not yet clear what differentiates pathogenic from non-pathogenic strains of the organism. In this study the multiple replicon structure was investigated in 28 strains of B. cepacia by pulsed field gel electrophoresis. All strains examined, whether of clinical, environmental or plant pathogenic origin, were found to have two, three or four large (> 500 kbp) replicons. Many strains also contained small replicons. Clinical strains were more likely to have three or four large replicons than non-clinical strains. Multiple replicon structure was also demonstrated in B. gladioli and Alcaligenes eutrophus.
Collapse
Affiliation(s)
- P Wigley
- School of Applied Sciences, University of Wales Institute Cardiff, Western Avenue, Cardiff, Wales
| | | |
Collapse
|
43
|
Songsivilai S, Dharakul T. Multiple replicons constitute the 6.5-megabase genome of Burkholderia pseudomallei. Acta Trop 2000; 74:169-79. [PMID: 10674646 DOI: 10.1016/s0001-706x(99)00067-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Burkholderia pseudomallei is a causative agent of melioidosis, a fatal tropical infectious disease endemic in Southeast Asia and Northern Australia. In order to determine the size and characteristics of the bacterial genome, the B. pseudomallei genome and genes were analyzed by pulsed field gel electrophoresis of the undigested, intact megabase DNA, and by computational analysis of nucleotide sequences of B. pseudomallei genes which have been sequenced by several investigators and already deposited in a public database. The results showed that the B. pseudomallei genome consists of two large replicons, and that both contain ribosomal RNA gene sequences, indicating the presence of two chromosomes. The classical arabinose-negative B. pseudomallei isolate K96243 has chromosomes of approximately 3563 +/- 73 and 2974 +/- 40 kilobase-pairs in size, giving a total genome size of about 6.5 million base-pairs. The arabinose-positive nonvirulent biotype of B. pseudomallei also has two replicons which are smaller than those of the arabinose-negative biotype. Analysis of the publicly-available nucleotide sequences showed that the average B. pseudomallei gene is approximately 1031 base-pairs in size, with an average G + C content of 65.7%. The genome is gene-rich and about 89% of the coding capacity is used as coding sequences. It can therefore be estimated that the entire B. pseudomallei genome encodes about 5600 genes.
Collapse
Affiliation(s)
- S Songsivilai
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | | |
Collapse
|
44
|
Mackenzie C, Simmons AE, Kaplan S. Multiple chromosomes in bacteria. The yin and yang of trp gene localization in Rhodobacter sphaeroides 2.4.1. Genetics 1999; 153:525-38. [PMID: 10511537 PMCID: PMC1460784 DOI: 10.1093/genetics/153.2.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The existence of multiple chromosomes in bacteria has been known for some time. Yet the extent of functional solidarity between different chromosomes remains unknown. To examine this question, we have surveyed the well-described genes of the tryptophan biosynthetic pathway in the multichromosomal photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1. The genome of this organism was mutagenized using Tn5, and strains that were auxotrophic for tryptophan (Trp(-)) were isolated. Pulsed-field gel mapping indicated that Tn5 insertions in both the large (3 Mb CI) and the small (0.9 Mb CII) chromosomes created a Trp(-) phenotype. Sequencing the DNA flanking the sites of the Tn5 insertions indicated that the genes trpE-yibQ-trpGDC were at a locus on CI, while genes trpF-aroR-trpB were at locus on CII. Unexpectedly, trpA was not found downstream of trpB. Instead, it was placed on the CI physical map at a locus 1.23 Mb away from trpE-yibQ-trpGDC. To relate the context of the R. sphaeroides trp genes to those of other bacteria, the DNA regions surrounding the trp genes on both chromosomes were sequenced. Of particular significance was the finding that rpsA1, which encodes ribosomal protein S1, and cmkA, which encodes cytidylate monophosphate kinase, were on CII. These genes are considered essential for translation and chromosome replication, respectively. Southern blotting suggested that the trp genes and rpsA1 exist in single copy within the genome. To date, this topological organization of the trp "operon" is unique within a bacterial genome. When taken with the finding that CII encodes essential housekeeping functions, the overall impression is one of close regulatory and functional integration between these chromosomes.
Collapse
Affiliation(s)
- C Mackenzie
- Department of Microbiology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E. Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. PHYTOPATHOLOGY 1999; 89:805-810. [PMID: 18944709 DOI: 10.1094/phyto.1999.89.9.805] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.
Collapse
|
46
|
Goodner BW, Markelz BP, Flanagan MC, Crowell CB, Racette JL, Schilling BA, Halfon LM, Mellors JS, Grabowski G. Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens. J Bacteriol 1999; 181:5160-6. [PMID: 10464183 PMCID: PMC94018 DOI: 10.1128/jb.181.17.5160-5166.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combined genetic and physical map of the Agrobacterium tumefaciens A348 (derivative of C58) genome was constructed to address the discrepancy between initial single-chromosome genetic maps and more recent physical mapping data supporting the presence of two nonhomologous chromosomes. The combined map confirms the two-chromosome genomic structure and the correspondence of the initial genetic maps to the circular chromosome. The linear chromosome is almost devoid of auxotrophic markers, which probably explains why it was missed by genetic mapping studies.
Collapse
Affiliation(s)
- B W Goodner
- Department of Biology, University of Richmond, Richmond, Virginia 23173, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yamaichi Y, Iida T, Park KS, Yamamoto K, Honda T. Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol Microbiol 1999; 31:1513-21. [PMID: 10200969 DOI: 10.1046/j.1365-2958.1999.01296.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We constructed a physical map of the genomic DNA (5.1 Mb) for Vibrio parahaemolyticus strain AQ4673 by combining 17 adjacent NotI fragments. This map shows two circular replicons of 3.2 and 1.9 Mb. Pulsed-field gel electrophoresis (PFGE) of undigested genomic DNA revealed two bands of corresponding sizes. Analysis both by NotI digestion and by Southern blot of the two isolated bands confirmed the existence of two replicons. The presence of genes for 16S rRNA on both the replicons indicates that the replicons are chromosomes rather than megaplasmids. The two bands were also seen after PFGE of undigested genomic DNA of V. parahaemolyticus strains other than AQ4673, and of strains belonging to other Vibrio species, such as V. vulnificus, V. fluvialis and various serovars and biovars of V. cholerae. It is noteworthy that V. cholerae O1 strain 569B, a classical biovar, was also shown to have two replicons of 2.9 and 1.2 Mb, which does not agree with a physical map proposed in a previous study. Our results suggest that a two-replicon structure is common throughout Vibrio species.
Collapse
Affiliation(s)
- Y Yamaichi
- Department of Bacterial Infections, Osaka University, Japan
| | | | | | | | | |
Collapse
|
48
|
Abstract
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| |
Collapse
|
49
|
Trucksis M, Michalski J, Deng YK, Kaper JB. The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci U S A 1998; 95:14464-9. [PMID: 9826723 PMCID: PMC24396 DOI: 10.1073/pnas.95.24.14464] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the etiologic agent of the diarrheal disease cholera, is a Gram-negative bacterium that belongs to the gamma subdivision of the family Proteobacteriaceae. The physical map of the genome has been reported, and the genome has been described as a single 3.2-Mb chromosome [Majumder, R., et al. (1996) J. Bacteriol. 178, 1105-1112]. By using pulsed-field gel electrophoresis of genomic DNA immobilized in agarose plugs and digested with the restriction enzymes I-CeuI, SfiI, and NotI, we have also constructed the physical map of V. cholerae. Our analysis estimates the size of the genome at 4.0 Mb, 25% larger than the physical map reported by others. Our most notable finding is, however, that the V. cholerae chromosome appears to be not the single chromosome reported but two unique and separate circular megareplicons.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/ultrastructure
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/isolation & purification
- Deoxyribonucleases, Type II Site-Specific
- Electrophoresis, Gel, Pulsed-Field
- Genome, Bacterial
- Replicon
- Restriction Mapping
- Vibrio cholerae/genetics
Collapse
Affiliation(s)
- M Trucksis
- Center for Vaccine Development, Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
50
|
Ng WV, Ciufo SA, Smith TM, Bumgarner RE, Baskin D, Faust J, Hall B, Loretz C, Seto J, Slagel J, Hood L, DasSarma S. Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res 1998; 8:1131-41. [PMID: 9847077 DOI: 10.1101/gr.8.11.1131] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extremely halophilic archaea, which flourish in hypersaline environments, are known to contain a variety of large dynamic replicons. Previously, the analysis of one such replicon, pNRC100, in Halobacterium sp. strain NRC-1, showed that it undergoes high-frequency insertion sequence (IS) element-mediated insertions and deletions, as well as inversions via recombination between 39-kb-long inverted repeats (IRs). Now, the complete sequencing of pNRC100, a 191,346-bp circle, has shown the presence of 27 IS elements representing eight families. A total of 176 ORFs or likely genes of 850-bp average size were found, 39 of which were repeated within the large IRs. More than one-half of the ORFs are likely to represent novel genes that have no known homologs in the databases. Among ORFs with previously characterized homologs, three different copies of putative plasmid replication and four copies of partitioning genes were found, suggesting that pNRC100 evolved from IS element-mediated fusions of several smaller plasmids. Consistent with this idea, putative genes typically found on plasmids, including those encoding a restriction-modification system and arsenic resistance, as well as buoyant gas-filled vesicles and a two-component regulatory system, were found on pNRC100. However, additional putative genes not expected on an extrachromosomal element, such as those encoding an electron transport chain cytochrome d oxidase, DNA nucleotide synthesis enzymes thioredoxin and thioredoxin reductase, and eukaryotic-like TATA-binding protein transcription factors and a chromosomal replication initiator protein were also found. A multi-step IS element-mediated process is proposed to account for the acquisition of these chromosomal genes. The finding of essential genes on pNRC100 and its property of resistance to curing suggest that this replicon may be evolving into a new chromosome.
Collapse
Affiliation(s)
- W V Ng
- Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|