1
|
Kumar R, R R, Diwakar V, Khan N, Kumar Meghwanshi G, Garg P. Structural-functional analysis of drug target aspartate semialdehyde dehydrogenase. Drug Discov Today 2024; 29:103908. [PMID: 38301800 DOI: 10.1016/j.drudis.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme in the biosynthesis of essential amino acids in microorganisms and some plants. Inhibition of ASADHs can be a potential drug target for developing novel antimicrobial and herbicidal compounds. This review covers up-to-date information about sequence diversity, ligand/inhibitor-bound 3D structures, potential inhibitors, and key pharmacophoric features of ASADH useful in designing novel and target-specific inhibitors of ASADH. Most reported ASADH inhibitors have two highly electronegative functional groups that interact with two key arginyl residues present in the active site of ASADHs. The structural information, active site binding modes, and key interactions between the enzyme and inhibitors serve as the basis for designing new and potent inhibitors against the ASADH family.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Rajkumar R
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Vineet Diwakar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Nazam Khan
- Clinical Laboratory Science Department, Applied Medical Science College, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
2
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
3
|
Xu J, Han M, Zhang J, Guo Y, Zhang W. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids 2014; 46:2165-75. [PMID: 24879631 DOI: 10.1007/s00726-014-1768-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and L-lysine production drastically improved. Moreover, increasing the flux through L-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and L-methionine biosynthesis, further improved L-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the L-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45% by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., L-threonine, L-methionine and L-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce L-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The L-lysine productivity was 2.73 g l(-1) h(-1) and the α was 47.06% after 48 h. However, the attenuation of MurE was not beneficial to increase the L-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through L-lysine biosynthetic pathway and DCW are beneficial to improve L-lysine production in C. glutamicum.
Collapse
Affiliation(s)
- Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
4
|
Treviño-Quintanilla LG, Freyre-González JA, Guillén-Garcés RA, Olvera C. Molecular characterization of chloranilic acid degradation in Pseudomonas putida TQ07. J Microbiol 2011; 49:974-80. [PMID: 22203561 DOI: 10.1007/s12275-011-1507-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/24/2011] [Indexed: 11/25/2022]
Abstract
Pentachlorophenol is the most toxic and recalcitrant chlorophenol because both aspects are directly proportional to the halogenation degree. Biological and abiotic pentachlorophenol degradation generates p-chloranil, which in neutral to lightly alkaline environmental conditions is hydrolyzed to chloranilic acid that present a violet-reddish coloration in aqueous solution. Several genes of the degradation pathway, cadR-cadCDX, as well as other uncharacterized genes (ORF5 and 6), were isolated from a chloranilic acid degrading bacterium, Pseudomonas putida strain TQ07. The disruption by random mutagenesis of the cadR and cadC genes in TQ07 resulted in a growth deficiency in the presence of chloranilic acid, indicating that these genes are essential for TQ07 growth with chloranilic acid as the sole carbon source. Complementation assays demonstrated that a transposon insertion in mutant CAD82 (cadC) had a polar effect on other genes contained in cosmid pLG3562. These results suggest that at least one of these genes, cadD and cadX, also takes part in chloranilic acid degradation. Based on molecular modeling and function prediction, we strongly suggest that CadC is a pyrone dicarboxylic acid hydrolase and CadD is an aldolase enzyme like dihydrodipicolinate synthase. The results of this study allowed us to propose a novel pathway that offers hypotheses on chloranilic acid degradation (an abiotic by-product of pentachlorophenol) by means of a very clear phenotype that is narrowly related to the capability of Pseudomonas putida strain TQ07 to degrade this benzoquinone.
Collapse
Affiliation(s)
- Luis G Treviño-Quintanilla
- Departamento de Tecnología Ambiental, Universidad Politécnica del Estado de Morelos, Blvd. Cuauhnáhuac 566, Col. Lomas del Texcal, 62550 Jiutepec, Morelos, México.
| | | | | | | |
Collapse
|
5
|
Wittmann C. Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:21-49. [PMID: 20140657 DOI: 10.1007/10_2009_58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production strains were created by applying classical mutagenesis and selection and especially metabolic engineering strategies with the advent of recombinant DNA technology. Hereby experimental and computational approaches have provided fascinating insights into the metabolism of this microorganism and directed strain engineering. Today, C. glutamicum is applied to the industrial production of more than 2 million tons of amino acids per year. The huge achievements in recent years, including the sequencing of the complete genome and efficient post genomic approaches, now provide the basis for a new, fascinating era of research - analysis of metabolic and regulatory properties of C. glutamicum on a global scale towards novel and superior bioprocesses.
Collapse
Affiliation(s)
- Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany,
| |
Collapse
|
6
|
Cloning of Lactobacillus plantarum IAM 12477 lysine biosynthetic genes encoding functional aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase, and dihydrodipicolinate reductase. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-9048-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Pfefferle W, Möckel B, Bathe B, Marx A. Biotechnological manufacture of lysine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 79:59-112. [PMID: 12523389 DOI: 10.1007/3-540-45989-8_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
L-Lysine has been manufactured using Corynebacterium glutamicum for more than 40 years. Nowadays production exceeds 600,000 tons per year. Based on conventionally bred strains, further improvement of lysine productivity has been achieved by genetic engineering. Pyruvate carboxylase, aspartate kinase, dihydrodipicolinate synthase, homoserine dehydrogenase and the specific lysine exporter were shown to be key enzymes for lysine production and were characterized in detail. Their combined engineering led to a striking increase in lysine formation. Pathway modeling with data emerging from 13C-isotope experiments revealed a coordinated flux through pentose phosphate cycle and tricarboxylic acid cycle and intensive futile cycling between C3 compounds of glycolysis and C4 compounds of tricarboxylic acid cycle. Process economics have been optimized by developing repeated fed-batch techniques and technical continuous fermentations. In addition, on-line metabolic pathway analysis or flow cytometry may help to improve the fermentation performance. Finally, the availability of the Corynebacterium glutamicum genome sequence has a major impact on the improvement of the biotechnological manufacture of lysine. In this context, all genes of the carbon flow from sugar uptake to lysine secretion have been identified and are accessible to manipulation. The whole sequence information gives access to post genome technologies such as transcriptome analysis, investigation of the proteome and the active metabolic network. These multi-parallel working technologies will accelerate the generation of knowledge. For the first time there is a chance of understanding the overall picture of the physiological state of lysine overproduction in a technical environment.
Collapse
Affiliation(s)
- Walter Pfefferle
- Degussa AG, Feed Additives Division, R&D Feed Additives/Biotechnology, Kantstrasse 2, 33790 Hale-Kuensebeck, Germany.
| | | | | | | |
Collapse
|
8
|
Hadfield A, Kryger G, Ouyang J, Petsko GA, Ringe D, Viola R. Structure of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli, a key enzyme in the aspartate family of amino acid biosynthesis. J Mol Biol 1999; 289:991-1002. [PMID: 10369777 DOI: 10.1006/jmbi.1999.2828] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aspartate beta-semialdehyde dehydrogenase (ASADH) lies at the first branch point in an essential aspartic biosynthetic pathway found in bacteria, fungi and the higher plants. Mutations in the asd gene encoding for ASADH that produce an inactive enzyme are lethal, which suggests that ASADH may be an effective target for antibacterial, herbicidal and fungicidal agents. We have solved the crystal structure of the Escherichia coli enzyme to 2.5 A resolution using single isomorphous replacement and 3-fold non-crystallographic symmetry. Each monomer has an N-terminal nucleotide-binding domain and a dimerisation domain. The presence of an essential cysteine locates the active site in a cleft between the two domains. The functional dimer has the appearance of a butterfly, with the NADP-binding domains forming the wings and the dimerisation domain forming the body.A histidine residue is identified as a likely acid/base catalyst in the enzymic reaction. Other amino acids implicated in the enzymic activity by mutagenesis are found in the active site region and define the substrate binding pocket.
Collapse
Affiliation(s)
- A Hadfield
- Department of Biochemistry Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02254-9110, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.
Collapse
Affiliation(s)
- J L Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722, USA.
| | | |
Collapse
|
10
|
Scapin G, Blanchard JS. Enzymology of bacterial lysine biosynthesis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:279-324. [PMID: 9559056 DOI: 10.1002/9780470123188.ch8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteria have evolved three strategies for the synthesis of lysine from aspartate via formation of the intermediate diaminopimelate (DAP), a metabolite that is also involved in peptidoglycan formation. The objectives of this chapter are descriptions of mechanistic studies on the reactions catalyzed by dihydrodipicolinate synthase, dihydrodopicolinate reductase, tetrahydrodipicolinate N-succinyl-transferase, N-succinyl-L,L-DAP aminotransferase, N-succinyl-L,L-DAP desuccinylase, L,L-DAP epimerase, L,L-DAP decarboxylase, and DAP dehydrogenase. These enzymes are discussed in terms of kinetic, isotopic, and X-ray crystallographic data that allow one to infer the nature of interactions of each of these enzymes with its substrate(s), coenzymes, and inhibitors.
Collapse
Affiliation(s)
- G Scapin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
11
|
|
12
|
Li Y, Lu Z, Sun L, Ropp S, Kutish GF, Rock DL, Van Etten JL. Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella virus PBCV-1 genome. Virology 1997; 237:360-77. [PMID: 9356347 DOI: 10.1006/viro.1997.8805] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report completes a preliminary analysis of the sequence of the 330,740-bp chlorella virus PBCV-1 genome, the largest virus genome to be sequenced to date. The PBCV-1 genome is 57% the size of the genome from the smallest self-replicating organism, Mycoplasma genitalium. Analysis of 74 kb of newly sequenced DNA, from the right terminus of the PBCV-1 genome, revealed 153 open reading frames (ORFs) of 65 codons or longer. Eighty-five of these ORFs, which are evenly distributed on both strands of the DNA, were considered major ORFs. Fifty-nine of the major ORFs were separated by less than 100 bp. The largest intergenic distance was 729 bp, which occurred between two ORFs located in the 2.2-kb inverted terminal repeat region of the PBCV-1 genome. Twenty-seven of the 85 major ORFs resemble proteins in databases, including the large subunit of ribonucleotide diphosphate reductase, ATP-dependent DNA ligase, type II DNA topoisomerase, a helicase, histidine decarboxylase, dCMP deaminase, dUTP pyrophosphatase, proliferating cell nuclear antigen, a transposase, fungal translation elongation factor 3 (EF-3), UDP glucose dehydrogenase, a protein kinase, and an adenine DNA methyltransferase and its corresponding DNA site-specific endonuclease. Seventeen of the 153 ORFs resembled other PBCV-1 ORFs, suggesting that they represent either gene duplications or gene families.
Collapse
Affiliation(s)
- Y Li
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Pavelka MS, Weisbrod TR, Jacobs WR. Cloning of the dapB gene, encoding dihydrodipicolinate reductase, from Mycobacterium tuberculosis. J Bacteriol 1997; 179:2777-82. [PMID: 9098082 PMCID: PMC179033 DOI: 10.1128/jb.179.8.2777-2782.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diaminopimelate (DAP) is used by bacteria for the synthesis of lysine. In many species of bacteria, including mycobacteria, DAP is also used for peptidoglycan biosynthesis. In this report we describe the cloning of the dapB gene encoding dihydrodipicolinate reductase (DHPR), which catalyzes a key branch point reaction in the bacterial DAP biosynthetic pathway, from Mycobacterium tuberculosis. Analyses of the DapB proteins from different bacterial species suggest that two different classes of DHPR enzymes may exist in bacteria.
Collapse
Affiliation(s)
- M S Pavelka
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Liu L, Shaw PD. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis. J Bacteriol 1997; 179:507-13. [PMID: 8990304 PMCID: PMC178722 DOI: 10.1128/jb.179.2.507-513.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis.
Collapse
Affiliation(s)
- L Liu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
15
|
Malumbres M, Martín JF. Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. FEMS Microbiol Lett 1996; 143:103-14. [PMID: 8837462 DOI: 10.1111/j.1574-6968.1996.tb08468.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium. The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).
Collapse
Affiliation(s)
- M Malumbres
- Faculty of Biology, University of León, Spain
| | | |
Collapse
|
16
|
Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 1996; 93:1956-61. [PMID: 8700866 PMCID: PMC39890 DOI: 10.1073/pnas.93.5.1956] [Citation(s) in RCA: 420] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 micromol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.
Collapse
Affiliation(s)
- T G Hastings
- Department of Neurology, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
17
|
Shaver JM, Bittel DC, Sellner JM, Frisch DA, Somers DA, Gengenbach BG. Single-amino acid substitutions eliminate lysine inhibition of maize dihydrodipicolinate synthase. Proc Natl Acad Sci U S A 1996; 93:1962-6. [PMID: 8700867 PMCID: PMC39891 DOI: 10.1073/pnas.93.5.1962] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.
Collapse
Affiliation(s)
- J M Shaver
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | |
Collapse
|
18
|
Jetten MS, Sinskey AJ. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 1995; 15:73-103. [PMID: 7736600 DOI: 10.3109/07388559509150532] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Corynebacterium glutamicum and its close relatives, C. flavum and C. lactofermentum, have been used for over 3 decades in the industrial production of amino acids by fermentation. Since 1984, several research groups have started programs to develop metabolic engineering principles for amino acid-producing Corynebacterium strains. Initially, the programs concentrated on the isolation of genes encoding (deregulated) biosynthetic enzymes and the development of general molecular biology tools such as cloning vectors and DNA transfer methods. With most of the genes and tools now available, recombinant DNA technology can be applied in strain improvement. To accomplish these improvements, it is critical and advantageous to understand the mechanisms of gene expression and regulation as well as the biochemistry and physiology of the species being engineered. This review explores the advances made in the understanding and application of amino acid-producing bacteria in the early 1990s.
Collapse
Affiliation(s)
- M S Jetten
- Department of Microbiology and Enzymology, Kluyyer Laboratory for Biotechnology, Delft University of Technology, The Netherlands
| | | |
Collapse
|
19
|
Cirillo JD, Weisbrod TR, Banerjee A, Bloom BR, Jacobs WR. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria. J Bacteriol 1994; 176:4424-9. [PMID: 8021227 PMCID: PMC205656 DOI: 10.1128/jb.176.14.4424-4429.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.
Collapse
Affiliation(s)
- J D Cirillo
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
20
|
Biology of L-lysine overproduction byCorynebacterium glutamicum. Amino Acids 1994; 6:261-72. [DOI: 10.1007/bf00813746] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1993] [Accepted: 07/16/1993] [Indexed: 10/26/2022]
|
21
|
Eikmanns BJ, Eggeling L, Sahm H. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie Van Leeuwenhoek 1994; 64:145-63. [PMID: 8092856 DOI: 10.1007/bf00873024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. In the last ten years genetic engineering methods were developed for C. glutamicum and consequently, recombinant DNA technology was employed to study the biosynthetic pathways and to improve the amino acid productivity by manipulation of enzymatic, transport and regulatory functions of this bacterium. The present review summarizes the current knowledge on the synthesis and over-production of the aspartate derived amino acids L-lysine, L-threonine and L-isoleucine in C. glutamicum. A special feature of C. glutamicum is its ability to convert the lysine intermediate piperideine2,6-dicarboxylate to diaminopimelate by two different routes, i.e. by reactions involving succinylated intermediates or by the single reaction of diaminopimelate dehydrogenase. The flux distribution over the two pathways is regulated by the ammonium availability. The overall carbon flux from aspartate to lysine, however, is governed by feedback-control of the aspartate kinase and by the level of dihydrodipicolinate synthase. Consequently, expression of lysCFBR encoding a deregulated aspartate kinase and/or the overexpression of dapA encoding dihydrodipicolinate synthase led to overproduction of lysine. As a further specific feature C. glutamicum possesses a specific lysine export carrier which shows high activity in lysine overproducing mutants. Threonine biosynthesis is in addition to control by the aspartate kinase tightly regulated at the level of homoserine dehydrogenase which is subject to feedback-inhibition and to repression. C. glutamicum strains possessing a deregulated aspartate kinase and a deregulated homoserine dehydrogenase produce lysine and threonine. Amplification of deregulated homoserine dehydrogenase in such strains led to an almost complete redirection of the carbon flux to threonine. For a further flux from threonine to isoleucine the allosteric control of threonine dehydratase and of the acetohydroxy acid synthase are important. The expression of the genes encoding the latter enzyme is additionally regulated at the transcriptional level. By addition of 2-oxobutyrate as precursor and by bypassing the expression control of the acetohydroxy acid synthase genes high isoleucine overproduction can be obtained.
Collapse
Affiliation(s)
- B J Eikmanns
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany
| | | | | |
Collapse
|
22
|
Abstract
The codon usage (CU) of 34 genes from the closely related species, Brevibacterium lactofermentum and Corynebacterium glutamicum (BLCG), was analysed and compared with that of 23 genes from other Brevibacterium and Corynebacterium species. The G+C content of the BLCG genes ranged from 50 to 62%. A wider range was found in other corynebacterial genes (25-71%). The G+C contents of non-coding regions in glutamic acid bacteria are lower than those of the coding regions and both values are lower than the G+C content of ribosomal RNA (rRNA) sequences, suggesting an unusual biased mutation pressure. The CU and synonymous codon usage (SCU) analysis showed several common characteristics among the sequenced corynebacterial genes, consistent with the close relatedness of B. lactofermentum and C. glutamicum. A subset of 25 preferred codons were deduced from the presumably highly expressed genes and they encode most of the amino acid (aa) residues of the BLCG group. An analysis of the effective number of codons (Nc) was carried out in order to check the GC3s (G+C content at the silent third position of sense codons) dependence of the CU in corynebacteria. Nc values showed differences between the BLCG group and other corynebacterial sequences. A comparison of the most used codons for each aa showed a stronger similarity to Streptomyces than to Escherichia coli. The CU/SCU tables of corynebacteria are useful for identification of protein-coding regions, including start codons when they are uncertain, and for designing oligodeoxyribonucleotide probes from an aa sequence.
Collapse
Affiliation(s)
- M Malumbres
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | |
Collapse
|
23
|
Oguiza JA, Malumbres M, Eriani G, Pisabarro A, Mateos LM, Martin F, Martín JF. A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: regulation of argS-lysA cluster expression by arginine. J Bacteriol 1993; 175:7356-62. [PMID: 8226683 PMCID: PMC206880 DOI: 10.1128/jb.175.22.7356-7362.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Brevibacterium lactofermentum argS gene, which encodes an arginyl-tRNA synthetase, was identified in the upstream region of the lysA gene. The cloned gene was sequenced; it encodes a 550-amino-acid protein with an M(r) of 59,797. The deduced amino acid sequence showed 28% identical and 49% similar residues when compared with the sequence of the Escherichia coli arginyl-tRNA synthetase. The B. lactofermentum enzyme showed the highly conserved motifs of class I aminoacyl-tRNA synthetases. Expression of the argS gene in B. lactofermentum and E. coli resulted in an increase in aminoacyl-tRNA synthetase activity, correlated with the presence in sodium dodecyl sulfate-polyacrylamide gels of a clear protein band that corresponds to this enzyme. One single transcript of about 3,000 nucleotides and corresponding to the B. lactofermentum argS-lysA operon was identified. The transcription of these genes is repressed by lysine and induced by arginine, showing an interesting pattern of biosynthetic interlock between the pathways of both amino acids in corynebacteria.
Collapse
Affiliation(s)
- J A Oguiza
- Area of Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | | | | | |
Collapse
|