1
|
Krishnamurthy S, Sardis MF, Eleftheriadis N, Chatzi KE, Smit JH, Karathanou K, Gouridis G, Portaliou AG, Bondar AN, Karamanou S, Economou A. Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism. Cell Rep 2022; 38:110346. [PMID: 35139375 DOI: 10.1016/j.celrep.2022.110346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Marios-Frantzeskos Sardis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Nikolaos Eleftheriadis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Jochem H Smit
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany
| | - Giorgos Gouridis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Athina G Portaliou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, 077125 Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
| | - Spyridoula Karamanou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
SecY-mediated quality control prevents the translocation of non-gated porins. Sci Rep 2020; 10:16347. [PMID: 33004891 PMCID: PMC7530735 DOI: 10.1038/s41598-020-73185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/09/2020] [Indexed: 01/24/2023] Open
Abstract
OmpC and OmpF are among the most abundant outer membrane proteins in E. coli and serve as hydrophilic channels to mediate uptake of small molecules including antibiotics. Influx selectivity is controlled by the so-called constriction zone or eyelet of the channel. Mutations in the loop domain forming the eyelet can disrupt transport selectivity and thereby interfere with bacterial viability. In this study we show that a highly conserved motif of five negatively charged amino acids in the eyelet, which is critical to regulate pore selectivity, is also required for SecY-mediated transport of OmpC and OmpF into the periplasm. Variants with a deleted or mutated motif were expressed in the cytosol and translocation was initiated. However, after signal peptide cleavage, import into the periplasm was aborted and the mutated proteins were redirected to the cytosol. Strikingly, reducing the proof-reading capacity of SecY by introducing the PrlA4 substitutions restored transport of OmpC with a mutated channel domain into the periplasm. Our study identified a SecY-mediated quality control pathway to restrict transport of outer membrane porin proteins with a deregulated channel activity into the periplasm.
Collapse
|
3
|
Abstract
Cells in all domains of life must translocate newly synthesized proteins both across membranes and into membranes. In eukaryotes, proteins are translocated into the lumen of the ER or the ER membrane. In prokaryotes, proteins are translocated into the cytoplasmic membrane or through the membrane into the periplasm for Gram-negative bacteria or the extracellular space for Gram-positive bacteria. Much of what we know about protein translocation was learned through genetic selections and screens utilizing lacZ gene fusions in Escherichia coli. This review covers the basic principles of protein translocation and how they were discovered and developed. In particular, we discuss how lacZ gene fusions and the phenotypes conferred were exploited to identify the genes involved in protein translocation and provide insights into their mechanisms of action. These approaches, which allowed the elucidation of processes that are conserved throughout the domains of life, illustrate the power of seemingly simple experiments.
Collapse
|
4
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
5
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
6
|
McCabe AL, Ricci D, Adetunji M, Silhavy TJ. Conformational Changes That Coordinate the Activity of BamA and BamD Allowing β-Barrel Assembly. J Bacteriol 2017; 199:e00373-17. [PMID: 28760846 PMCID: PMC5637172 DOI: 10.1128/jb.00373-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022] Open
Abstract
Most integral outer membrane proteins (OMPs) of Gram-negative bacteria, such as Escherichia coli, assume a β-barrel structure. The β-barrel assembly machine (Bam), a five-member complex composed of β-barrel OMP BamA and four associated lipoproteins, BamB, BamC, BamD, and BamE, folds and inserts OMPs into the outer membrane. The two essential proteins BamA and BamD interact to stabilize two subcomplexes, BamAB and BamCDE, and genetic and structural evidence suggests that interactions between BamA and BamD occur via an electrostatic interaction between a conserved aspartate residue in a periplasmic domain of BamA and a conserved arginine in BamD. In this work, we characterize charge-change mutations at these key BamA and BamD residues and nearby charged residues in BamA with respect to OMP assembly and Bam complex stability. We show that Bam complex stability does not correlate with function, that BamA and BamD must adopt at least two active conformational states during OMP assembly, and that these charged residues are not required for function. Rather, these charged residues are important for coordinating the activities of BamA and BamD to allow efficient OMP assembly. We present a model of OMP assembly wherein recognition and binding of unfolded OMP substrate by BamA and BamD induce a signaling interaction between the two proteins, causing conformational changes necessary for the assembly reaction to proceed. By analogy to signal sequence recognition by SecYEG, we believe these BamA-BamD interactions ensure that both substrate and complex are competent for OMP assembly before the assembly reaction commences.IMPORTANCE Conformational changes in the proteins of the β-barrel assembly machine (Bam complex) are associated with the folding and assembly of outer membrane proteins (OMPs) in Gram-negative bacteria. We show that electrostatic interactions between the two essential proteins BamA and BamD coordinate conformational changes upon binding of unfolded substrate that allow the assembly reaction to proceed. Mutations affecting this interaction are lethal not because they destabilize the Bam complex but rather because they disrupt this coordination. Our model of BamA-BamD interactions regulating conformation in response to proper substrate interaction is reminiscent of conformational changes the secretory (Sec) machinery undergoes after signal sequence recognition that ensure protein quality control.
Collapse
Affiliation(s)
- Anne L McCabe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dante Ricci
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Modupe Adetunji
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
7
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
8
|
Bensing BA, Seepersaud R, Yen YT, Sullam PM. Selective transport by SecA2: an expanding family of customized motor proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1674-86. [PMID: 24184206 DOI: 10.1016/j.bbamcr.2013.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/20/2013] [Accepted: 10/23/2013] [Indexed: 01/22/2023]
Abstract
The SecA2 proteins are a special class of transport-associated ATPases that are related to the SecA component of the general Sec system, and are found in an increasingly large number of Gram-positive bacterial species. The SecA2 substrates are typically linked to the cell wall, but may be lipid-linked, peptidoglycan-linked, or non-covalently associated S-layer proteins. These substrates can have a significant impact on virulence of pathogenic organisms, but may also aid colonization by commensals. The SecA2 orthologues range from being highly similar to their SecA paralogues, to being distinctly different in apparent structure and function. Two broad classes of SecA2 are evident. One transports multiple substrates, and may interact with the general Sec system, or with an as yet unidentified transmembrane channel. The second type transports a single substrate, and is a component of the accessory Sec system, which includes the SecY paralogue SecY2 along with the accessory Sec proteins Asp1-3. Recent studies indicate that the latter three proteins may have a unique role in coordinating post-translational modification of the substrate with transport by SecA2. Comparative functional and phylogenetic analyses suggest that each SecA2 may be uniquely adapted for a specific type of substrate. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Barbara A Bensing
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA.
| | - Ravin Seepersaud
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| | - Yihfen T Yen
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| | - Paul M Sullam
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| |
Collapse
|
9
|
Lycklama A Nijeholt JA, Driessen AJM. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 367:1016-28. [PMID: 22411975 DOI: 10.1098/rstb.2011.0201] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands.
| | | |
Collapse
|
10
|
Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 2011; 12:787-98. [PMID: 22086371 DOI: 10.1038/nrm3226] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Membrane proteins are inserted into the endoplasmic reticulum (ER) by two highly conserved parallel pathways. The well-studied co-translational pathway uses signal recognition particle (SRP) and its receptor for targeting and the SEC61 translocon for membrane integration. A recently discovered post-translational pathway uses an entirely different set of factors involving transmembrane domain (TMD)-selective cytosolic chaperones and an accompanying receptor at the ER. Elucidation of the structural and mechanistic basis of this post-translational membrane protein insertion pathway highlights general principles shared between the two pathways and key distinctions unique to each.
Collapse
|
11
|
Transport of preproteins by the accessory Sec system requires a specific domain adjacent to the signal peptide. J Bacteriol 2010; 192:4223-32. [PMID: 20562303 DOI: 10.1128/jb.00373-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accessory Sec (SecA2/Y2) systems of streptococci and staphylococci are dedicated to the transport of large serine-rich repeat (SRR) glycoproteins to the bacterial cell surface. The means by which the glycosylated preproteins are selectively recognized by the accessory Sec system have not been fully characterized. In Streptococcus gordonii, the SRR glycoprotein GspB has a 90-residue amino-terminal signal sequence that is essential for transport by SecA2/Y2 but is not sufficient to mediate the transport of heterologous proteins by this specialized transporter. We now report that a preprotein must remain at least partially unfolded prior to transport by the accessory Sec system. In addition, a region of approximately 20 residues from the amino-terminal end of mature GspB (the accessory Sec transport or AST domain) is essential for SecA2/Y2-dependent transport. The replacement of several AST domain residues with glycine strongly interferes with export, which suggests that a helical conformation may be important. Analysis of GspB variants with alterations in the AST domain, in combination with the results with a SecY2 variant, indicates that the AST domain is essential both for targeting to the SecA2/Y2 translocase and for initiating translocation through the SecY2 channel. The combined results suggest a unique mechanism that ensures the transport of a single substrate by the SecA2/Y2 system.
Collapse
|
12
|
Signal peptides are allosteric activators of the protein translocase. Nature 2009; 462:363-7. [PMID: 19924216 DOI: 10.1038/nature08559] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/06/2009] [Indexed: 11/08/2022]
Abstract
Extra-cytoplasmic polypeptides are usually synthesized as 'preproteins' carrying amino-terminal, cleavable signal peptides and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA. Preprotein targeting to SecA is thought to involve signal peptides and chaperones like SecB. Here we show that signal peptides have a new role beyond targeting: they are essential allosteric activators of the translocase. On docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, 'triggering' that drives the translocase to a lower activation energy state; second, 'trapping' that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus; and third, 'secretion' during which trapped mature domains undergo several turnovers of translocation in segments. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases.
Collapse
|
13
|
Masi M, Duret G, Delcour AH, Misra R. Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli. MICROBIOLOGY-SGM 2009; 155:1847-1857. [PMID: 19383696 PMCID: PMC2885749 DOI: 10.1099/mic.0.027219-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TolC is a multifunctional outer-membrane protein (OMP) of Escherichia coli that folds into a unique α/β-barrel structure. Previous studies have shown that unlike the biogenesis of β-barrel OMPs, such as porins, TolC assembles independently from known periplasmic folding factors. Yet, the assembly of TolC, like that of β-barrel OMPs, is dependent on BamA and BamD, two essential components of the β-barrel OMP assembly machinery. We have investigated the folding properties and cellular trafficking of a TolC derivative that lacks the entire signal sequence (TolCΔ2–22). A significant amount of TolCΔ2–22 was found to be soluble in the cytoplasm, and a fraction of it folded and trimerized into a conformation similar to that of the normal outer membrane-localized TolC protein. Some TolCΔ2–22 was found to associate with membranes, but failed to assume a wild-type-like folded conformation. The null phenotype of TolCΔ2–22 was exploited to isolate suppressor mutations, the majority of which mapped in secY. In the secY suppressor background, TolCΔ2–22 resumed normal function and folded like wild-type TolC. Proper membrane insertion could not be achieved upon in vitro incubation of cytoplasmically folded TolCΔ2–22 with purified outer membrane vesicles, showing that even though TolC is intrinsically capable of folding and trimerization, for successful integration into the outer membrane these events need to be tightly coupled to the insertion process, which is mediated by the Bam machinery. Genetic and biochemical data attribute the unique folding and assembly pathways of TolC to its large soluble α-helical domain.
Collapse
Affiliation(s)
- Muriel Masi
- Unité des Membranes Bactériennes CNRS 2172, Département de Microbiologie, Institut Pasteur, 75724 Paris cedex 15, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Guillaume Duret
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
14
|
Abstract
Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported via other pathways. While targeting signals for each route have common overall characteristics, individual signal peptides vary greatly in their amino acid sequences. How do these diverse signals interact specifically with the proteins that comprise the appropriate transport machinery and, at the same time, avoid targeting to an alternate route? The recent publication of the crystal structures of components of the Sec transport machinery now allows a more thorough consideration of the interactions of signal sequences with these components.
Collapse
Affiliation(s)
- Sharyn L. Rusch
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269
| | - Debra A. Kendall
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
15
|
Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1735-56. [PMID: 17935691 DOI: 10.1016/j.bbamem.2007.07.015] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
Collapse
|
16
|
Flower AM. The SecY translocation complex: convergence of genetics and structure. Trends Microbiol 2007; 15:203-10. [PMID: 17368028 DOI: 10.1016/j.tim.2007.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/26/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
All organisms share a requirement for translocation of proteins across membranes. The major mechanism for this process is the universally conserved SecY/Sec61 pathway. Many years of extensive genetic and biochemical analyses identified the components of the SecY/Sec61 pathway, demonstrated that most exported proteins use this route for translocation, and led to understanding of many functions of the components. Recently, structural predictions based on genetic analyses in Escherichia coli were confirmed, in a striking and satisfying manner, by the solution of an X-ray crystal structure from an archaeal SecY complex. This review discusses the genetic background that led to those hypotheses and the convergence of genetic studies with structural data.
Collapse
Affiliation(s)
- Ann M Flower
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
17
|
Kreutzenbeck P, Kröger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R. Escherichia coli Twin Arginine (Tat) Mutant Translocases Possessing Relaxed Signal Peptide Recognition Specificities. J Biol Chem 2007; 282:7903-11. [PMID: 17229735 DOI: 10.1074/jbc.m610126200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.
Collapse
Affiliation(s)
- Peter Kreutzenbeck
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Maillard AP, Lalani S, Silva F, Belin D, Duong F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J Biol Chem 2006; 282:1281-7. [PMID: 17092931 DOI: 10.1074/jbc.m610060200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the SecY plug is displaced from the center of the SecYEG channel during polypeptide translocation. The structural and functional consequences of the deletion of the plug are now examined. Both in vivo and in vitro observations indicate that the plug domain is not essential to the function of the translocon. In fact, deletion of the plug confers to the cell and to the membranes a Prl-like phenotype: reduced proton-motive force dependence of translocation, increased membrane insertion of SecA, diminished requirement for functional leader peptide, and weakened SecYEG subunit association. Although the plug domain does not seem essential, locking the plug in the center of the channel inactivates the translocon. Thus, the SecY plug is important to regulate the activity of the channel and to confer specificity to the translocation reaction. We propose that the plug contributes to the gating mechanism of the channel by maintaining the structure of the SecYEG complex in a compact closed state.
Collapse
Affiliation(s)
- Antoine P Maillard
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | |
Collapse
|
19
|
Denic V, Quan EM, Weissman JS. A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation. Cell 2006; 126:349-59. [PMID: 16873065 DOI: 10.1016/j.cell.2006.05.045] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/20/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.
Collapse
Affiliation(s)
- Vladimir Denic
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
20
|
Smith MA, Clemons WM, DeMars CJ, Flower AM. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J Bacteriol 2005; 187:6454-65. [PMID: 16159779 PMCID: PMC1236629 DOI: 10.1128/jb.187.18.6454-6465.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apparatus responsible for translocation of proteins across bacterial membranes is the conserved SecY complex, consisting of SecY, SecE, and SecG. Prior genetic analysis provided insight into the mechanisms of protein export, as well as the interactions between the component proteins. In particular, the prl suppressor alleles of secE and secY, which allow export of secretory proteins with defective signal sequences, have proven particularly useful. Here, we report the isolation of novel mutations in secE and secY, as well as the phenotypic effects of combinations of prl mutations. These new alleles, as well as previously characterized prl mutations, were analyzed in light of the recently published crystal structure of the archaeal SecY complex. Our results support and expand a model of Prl suppressor activity that proposes that all of the prlA and prlG alleles either destabilize the closed state of the channel or stabilize the open form. These mutants thus allow channel opening to occur without the triggering event of signal sequence binding that is required in a wild-type complex.
Collapse
Affiliation(s)
- Margaret A Smith
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | |
Collapse
|
21
|
Choo KH, Tan TW, Ranganathan S. SPdb--a signal peptide database. BMC Bioinformatics 2005; 6:249. [PMID: 16221310 PMCID: PMC1276010 DOI: 10.1186/1471-2105-6-249] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 10/13/2005] [Indexed: 11/29/2022] Open
Abstract
Background The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database , a repository of experimentally determined and computationally predicted signal peptides. Results SPdb integrates information from two sources (a) Swiss-Prot protein sequence database which is now part of UniProt and (b) EMBL nucleotide sequence database. The database update is semi-automated with human checking and verification of the data to ensure the correctness of the data stored. The latest release SPdb release 3.2 contains 18,146 entries of which 2,584 entries are experimentally verified signal sequences; the remaining 15,562 entries are either signal sequences that fail to meet our filtering criteria or entries that contain unverified signal sequences. Conclusion SPdb is a manually curated database constructed to support the understanding and analysis of signal peptides. SPdb tracks the major updates of the two underlying primary databases thereby ensuring that its information remains up-to-date.
Collapse
Affiliation(s)
- Khar Heng Choo
- Department of Biochemistry, National University of Singapore, Singapore
| | - Tin Wee Tan
- Department of Biochemistry, National University of Singapore, Singapore
| | - Shoba Ranganathan
- Department of Biochemistry, National University of Singapore, Singapore
- Department of Chemistry and Biomolecular Sciences & Biotechnology Research Institute, Macquarie University, Sydney, Australia
| |
Collapse
|
22
|
Tam PCK, Maillard AP, Chan KKY, Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J 2005; 24:3380-8. [PMID: 16148946 PMCID: PMC1276166 DOI: 10.1038/sj.emboj.7600804] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 08/11/2005] [Indexed: 11/09/2022] Open
Abstract
Protein translocation occurs across the energy-conserving bacterial membrane at the SecYEG channel. The crystal structure of the channel has revealed a possible mechanism for gating and opening. This study evaluates the plug hypothesis using cysteine crosslink experiments in combination with various allelic forms of the Sec complex. The results demonstrate that the SecY plug domain moves away from the center of the channel toward SecE during polypeptide translocation, and further show that the translocation-enhancing prlA3 mutation and SecG subunit change the properties of channel gating. Locking the plug in the open state preactivates the Sec complex, and a super-active translocase can be created when combined with the prlA4 mutation located in the pore of the channel. Dimerization of the Sec complex, which is essential for translocase activity, relocates the plug toward the open position. We propose that oligomerization may result in SecYEG cooperative interactions important to prime the translocon function.
Collapse
Affiliation(s)
- Patrick C K Tam
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Antoine P Maillard
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth K Y Chan
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Franck Duong
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3. Tel.: +1 604 822 5975; Fax: +1 604 822 5227; E-mail:
| |
Collapse
|
23
|
Chou YT, Gierasch LM. The Conformation of a Signal Peptide Bound by Escherichia coli Preprotein Translocase SecA. J Biol Chem 2005; 280:32753-60. [PMID: 16046390 DOI: 10.1074/jbc.m507532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-04510, USA
| | | |
Collapse
|
24
|
Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:67-80. [PMID: 15546658 DOI: 10.1016/j.bbamcr.2004.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy. Significant recent strides have allowed structural, biochemical and biophysical dissection of the export reaction. A model incorporating stepwise strokes of the translocase nanomachine at work is discussed.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Laboratory Unicellular, Organisms Group, Institute of Molecular Biology and Biotechnology, FO.R.T.H. and Department of Biology, University of Crete, Vassilika Vouton, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | |
Collapse
|
25
|
Fisher AC, DeLisa MP. A little help from my friends: quality control of presecretory proteins in bacteria. J Bacteriol 2004; 186:7467-73. [PMID: 15516557 PMCID: PMC524911 DOI: 10.1128/jb.186.22.7467-7473.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Adam C Fisher
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
26
|
Veenendaal AKJ, van der Does C, Driessen AJM. The protein-conducting channel SecYEG. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:81-95. [PMID: 15546659 DOI: 10.1016/j.bbamcr.2004.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
In bacteria, the translocase mediates the translocation of proteins into or across the cytosolic membrane. It consists of a membrane embedded protein-conducting channel and a peripherally associated motor domain, the ATPase SecA. The channel is formed by SecYEG, a multimeric protein complex that assembles into oligomeric forms. The structure and subunit composition of this protein-conducting channel is evolutionary conserved and a similar system is found in the endoplasmic reticulum of eukaryotes and the cytoplasmic membrane of archaea. The ribosome and other membrane proteins can associate with the protein-conducting channel complex and affect its activity or functionality.
Collapse
Affiliation(s)
- Andreas K J Veenendaal
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
27
|
Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 2003; 100:4221-6. [PMID: 12642659 PMCID: PMC153074 DOI: 10.1073/pnas.0737415100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembranes, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Mallik I, Smith MA, Flower AM. Recognition of secretory proteins in Escherichia coli requires signals in addition to the signal sequence and slow folding. BMC Microbiol 2002; 2:32. [PMID: 12427258 PMCID: PMC137694 DOI: 10.1186/1471-2180-2-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Accepted: 11/11/2002] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Sec-dependent protein export apparatus of Escherichia coli is very efficient at correctly identifying proteins to be exported from the cytoplasm. Even bacterial strains that carry prl mutations, which allow export of signal sequence-defective precursors, accurately differentiate between cytoplasmic and mutant secretory proteins. It was proposed previously that the basis for this precise discrimination is the slow folding rate of secretory proteins, resulting in binding by the secretory chaperone, SecB, and subsequent targeting to translocase. Based on this proposal, we hypothesized that a cytoplasmic protein containing a mutation that slows its rate of folding would be recognized by SecB and therefore targeted to the Sec pathway. In a Prl suppressor strain the mutant protein would be exported to the periplasm due to loss of ability to reject non-secretory proteins from the pathway. RESULTS In the current work, we tested this hypothesis using a mutant form of lambda repressor that folds slowly. No export of the mutant protein was observed, even in a prl strain. We then examined binding of the mutant lambda repressor to SecB. We did not observe interaction by either of two assays, indicating that slow folding is not sufficient for SecB binding and targeting to translocase. CONCLUSIONS These results strongly suggest that to be targeted to the export pathway, secretory proteins contain signals in addition to the canonical signal sequence and the rate of folding.
Collapse
Affiliation(s)
- Ipsita Mallik
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - Margaret A Smith
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - Ann M Flower
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| |
Collapse
|
29
|
Adams H, Scotti PA, Luirink J, Tommassen J. Defective translocation of a signal sequence mutant in a prlA4 suppressor strain of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5572-80. [PMID: 12423356 DOI: 10.1046/j.1432-1033.2002.03263.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.
Collapse
Affiliation(s)
- Hendrik Adams
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
30
|
Sarker S, Oliver D. Critical regions of secM that control its translation and secretion and promote secretion-specific secA regulation. J Bacteriol 2002; 184:2360-9. [PMID: 11948148 PMCID: PMC134986 DOI: 10.1128/jb.184.9.2360-2369.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA is an essential ATP-driven motor protein that binds to presecretory or membrane proteins and the translocon and promotes the translocation or membrane integration of these proteins. secA is subject to a protein secretion-specific form of regulation, whereby its translation is elevated during secretion-limiting conditions. A novel mechanism that promotes this regulation involves translational pausing within the gene upstream of secA, secM. The secM translational pause prevents formation of an RNA helix that normally blocks secA translational initiation. The duration of this pause is controlled by the rate of secretion of nascent SecM, which in turn depends on its signal peptide and a functional translocon. We characterized the atypical secM signal peptide and found that mutations within the amino-terminal region specifically affect the secM translational pause and secA regulation, while mutations in the hydrophobic core region affect SecM secretion as well as translational pausing and secA regulation. In addition, mutational analysis of the 3' end of secM allowed us to identify a conserved region that is required to promote the translational pause that appears to be operative at the peptide level. Together, our results provide direct support for the secM translational pause model of secA regulation, and they pinpoint key sequences within secM that promote this important regulatory system.
Collapse
Affiliation(s)
- Shameema Sarker
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
31
|
de Keyzer J, van der Does C, Swaving J, Driessen AJM. The F286Y mutation of PrlA4 tempers the signal sequence suppressor phenotype by reducing the SecA binding affinity. FEBS Lett 2002; 510:17-21. [PMID: 11755523 DOI: 10.1016/s0014-5793(01)03213-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
SecYEG forms the protein-conducting channel of the Escherichia coli translocase. It binds the peripheral ATPase SecA that drives the preprotein translocation reaction. PrlA4 is a double mutant of SecY that enables the translocation of preproteins with a defective or even missing signal sequence. The effect of the individual mutations, F286Y and I408N, was studied with SecYEG proteoliposomes. SecY(I408N) is responsible for the increased translocation of preproteins with a defective and normal signal sequence, and exhibits a stronger prl phenotype than PrlA4. This activity correlates with an elevated SecA-translocation ATPase and SecA binding affinity. SecY(F286Y) supports only a low SecA binding affinity, preprotein translocation and SecA translocation ATPase activity. These results suggest that the second site F286Y mutation reduces the strength of the I408N mutation of PrlA4 by lowering the SecA binding affinity.
Collapse
Affiliation(s)
- Jeanine de Keyzer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
32
|
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:107-57. [PMID: 11051763 DOI: 10.1016/s0079-6603(00)66028-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria use several routes to target their exported proteins to the plasma membrane. The majority are exported through pores formed by SecY and SecE. Two different molecular machineries are used to target proteins to the SecYE translocon. Translocated proteins, synthesized as precursors with cleavable signal sequences, require cytoplasmic chaperones, such as SecB, to remain competent for posttranslational transport. In concert with SecB, SecA targets the precursors to SecY and energizes their translocation by its ATPase activity. The latter function involves a partial insertion of SecA itself into the SecYE translocon, a process that is strongly assisted by a couple of membrane proteins, SecG, SecD, SecF, YajC, and the proton gradient across the membrane. Integral membrane proteins, however, are specifically recognized by a direct interaction between their noncleaved signal anchor sequences and the bacterial signal recognition particle (SRP) consisting of Ffh and 4.5S RNA. Recognition occurs during synthesis at the ribosome and leads to a cotranslational targeting to SecYE that is mediated by FtsY and the hydrolysis of GTP. No other Sec protein is required for integration unless the membrane protein also contains long translocated domains that engage the SecA machinery. Discrimination between SecA/SecB- and SRP-dependent targeting involves the specificity of SRP for hydrophobic signal anchor sequences and the exclusion of SRP from nascent chains of translocated proteins by trigger factor, a ribosome-associated chaperone. The SecYE pore accepts only unfolded proteins. In contrast, a class of redox factor-containing proteins leaves the cell only as completely folded proteins. They are distinguished by a twin arginine motif of their signal sequences that by an unknown mechanism targets them to specific pores. A few membrane proteins insert spontaneously into the bacterial plasma membrane without the need for targeting factors and SecYE. Insertion depends only on hydrophobic interactions between their transmembrane segments and the lipid bilayer and on the transmembrane potential. Finally, outer membrane proteins of Gram-negative bacteria after having crossed the plasma membrane are released into the periplasm, where they undergo distinct folding events until they insert as trimers into the outer membrane. These folding processes require distinct molecular chaperones of the periplasm, such as Skp, SurA, and PpiD.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
33
|
Bost S, Silva F, Rudaz C, Belin D. Both transmembrane domains of SecG contribute to signal sequence recognition by the Escherichia coli protein export machinery. Mol Microbiol 2000; 38:575-87. [PMID: 11069681 DOI: 10.1046/j.1365-2958.2000.02153.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chimeric protein containing the uncleaved signal sequence of plasminogen activators inhibitor-2 (PAI2) fused to alkaline phosphatase (AP) interferes with Escherichia coli protein export and arrests growth. Suppressors of this toxicity include secG mutations that define the Thr-41-Leu-42-Phe-43 (TLF) domain of SecG. These mutations slow down the export of PAI2-AP. Another construct encoding a truncated PAI2 signal sequence (hB-AP) is also toxic. Most suppressors exert their effect on both chimeric proteins. We describe here five secG suppressors that only suppress the toxicity of hB-AP and selectively slow down its export. These mutations do not alter the TLF domain: three encode truncated SecG, whereas two introduce Arg residues in the transmembrane domains of SecG. The shortest truncated protein only contains 13 residues of SecG, suggesting that the mutation is equivalent to a null allele. Indeed, a secG disruption selectively suppresses the toxicity of hB-AP. However, the missense mutations are not null alleles. They allow SecG binding to SecYE, although with reduced affinity. Furthermore, these mutated SecG are functional, as they facilitate the export of endogenous proteins. Thus, SecG participates in signal sequence recognition, and both transmembrane domains of SecG contribute to ensure normal signal sequence recognition by the translocase.
Collapse
Affiliation(s)
- S Bost
- Department of Pathology, CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
34
|
Nishiyama K, Suzuki H, Tokuda H. Role of the non-essential region encompassing the N-terminal two transmembrane stretches of Escherichia coli SecE. Biosci Biotechnol Biochem 2000; 64:2121-7. [PMID: 11129584 DOI: 10.1271/bbb.64.2121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SecE is an essential component of the protein translocation machinery of Escherichia coli and has three transmembrane stretches. An N-terminal region (SecE-N) encompassing the first two transmembrane stretches is dispensable for protein translocation but a SecE derivative (SecE-C) lacking this region is very unstable. We show here that FtsH, the AAA (ATPases associated with diverse cellular activities) family protease, causes the instability of SecE-C. SecE-C became stable when SecE-N was co-expressed. Deletion of the N-terminal region of SecE also rendered the SecE-SecY-SecG complex unstable. In spite of these alterations, the N-terminal region of SecE had little stimulatory effect on protein translocation in vivo or in vitro.
Collapse
Affiliation(s)
- K Nishiyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
35
|
Abstract
SecA is an essential ATP-dependent motor protein that interacts with the preprotein and translocon to drive protein translocation across the eubacterial plasma membrane. A region containing residues 267-340 has been proposed to comprise the preprotein binding site of Escherichia coli SecA. To elucidate the function of this region further, we isolated mutants using a combination of region-specific polymerase chain reaction (PCR) mutagenesis and a genetic and biochemical screening procedure. Although this region displayed considerable plasticity based on phylogenetic and genetic analysis, Tyr-326 was found to be critical for SecA function. secA mutants with non-conservative substitutions at Tyr-326 showed strong protein secretion defects in vivo and were completely defective for SecA-dependent translocation ATPase activity in vitro. The SecA-Y326 mutant proteins were normal in their membrane, SecYE and nucleotide-binding properties. However, they exhibited a reduced affinity for preprotein and were defective in preprotein release, as assessed by several biochemical assays. Our results indicate that the region containing Tyr-326 functions as a conformational response element to regulate the preprotein binding and release cycle of SecA.
Collapse
Affiliation(s)
- L Kourtz
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
36
|
Abstract
Protein translocation across the bacterial cytoplasmic membrane has been studied extensively in Escherichia coli. The identification of the components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so-called translocase. This functional enzyme complex consists of the SecYEG integral membrane protein complex and a peripherally bound ATPase, SecA. Under translocation conditions, four SecYEG heterotrimers assemble into one large protein complex, forming a putative protein-conducting channel. This tetrameric arrangement of SecYEG complexes and the highly dynamic SecA dimer together form a proton-motive force- and ATP-driven molecular machine that drives the stepwise translocation of targeted polypeptides across the cytoplasmic membrane. Recent findings concerning the translocase structure and mechanism of protein translocation are discussed and shine new light on controversies in the field.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
37
|
Kim J, Luirink J, Kendall DA. SecB dependence of an exported protein is a continuum influenced by the characteristics of the signal peptide or early mature region. J Bacteriol 2000; 182:4108-12. [PMID: 10869093 PMCID: PMC94600 DOI: 10.1128/jb.182.14.4108-4112.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used Escherichia coli alkaline phosphatase to show the interplay among the characteristics of two amino-terminal domains in the preprotein (the signal peptide and the early mature region), the efficiency with which this protein is transported, and its requirement for SecB to accomplish the transport process. The results suggest that although alkaline phosphatase does not normally require SecB for transport, it is inherently able to utilize SecB, and it does so when its ability to interface with the transport machinery is compromised.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | | | |
Collapse
|
38
|
Frate MC, Lietz EJ, Santos J, Rossi JP, Fink AL, Ermácora MR. Export and folding of signal-sequenceless Bacillus licheniformis beta-lactamase in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3836-47. [PMID: 10849003 DOI: 10.1046/j.1432-1327.2000.01422.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two genetically engineered variants of the Bacillus licheniformis beta-lactamase gene were expressed in Escherichia coli. One variant coded for the exo-small mature enzyme without the signal peptide. The other coded for the exo-large mature enzyme preceded by 10, mostly polar, residues from an incomplete heterologous signal. As observed following the extraction by a lysozyme-EDTA treatment, the signal-less variant was exported to the periplasm with nearly 20% efficiency, whereas the variant with the N-terminal extension was translocated to a lesser degree; interestingly, nearly all of the former and half of the latter were extracted by osmotic shock, which may be of importance for our understanding of cellular compartments. The fact that a signal-less protein is translocated with substantial yields raises questions about the essential role of signal peptides for protein export. As folding and export are related processes, we investigated the folding in vitro of the two variants. No differences were found between them. In the absence of denaturant, they are completely folded, fully active and have a large DeltaG of unfolding. Under partially denaturing conditions they populate several partially folded states. The absence of significant amounts of a non-native state under native conditions makes a thermodynamic partitioning between folding and export less likely. In addition, kinetic measurements indicated that these B. licheniformis lactamases fold much faster than E. coli beta-lactamase. This behavior suggests that they are exported by a kinetically controlled process, mediated by one or more still unidentified interactions that slow folding and allow a folding intermediate to enter the export pathway.
Collapse
Affiliation(s)
- M C Frate
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Schmidt M, Ding H, Ramamurthy V, Mukerji I, Oliver D. Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations. J Biol Chem 2000; 275:15440-8. [PMID: 10747939 DOI: 10.1074/jbc.m000605200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA ATPase is critical for protein translocation across the Escherichia coli inner membrane. To understand this activity further, the high affinity nucleotide binding activity of SecA was characterized. We found that at 4 degrees C SecA homodimer binds one ADP molecule with high affinity. This nucleotide binding activity was conformationally regulated by temperature: at low temperature SecA affinity for ADP was high with a slow exchange rate, whereas at high temperature the converse was true. Azi- and PrlD-SecA proteins that confer azide-resistant and signal sequence suppressor phenotypes were found to have reduced affinity for ADP and accelerated exchange rates compared with wild type SecA. Consistent with this observation, fluorescence and proteolysis studies indicated that these proteins had a conformationally relaxed state at a reduced temperature compared with SecA. The level of Azi- and PrlD-SecA protein was also elevated in inverted membrane vesicles where it displayed higher membrane ATPase activity. These results provide the first direct evidence for conformational regulation of the SecA-dependent nucleotide cycle, its alteration in azi and prlD mutants, and its relevance to in vivo protein export.
Collapse
Affiliation(s)
- M Schmidt
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | |
Collapse
|
40
|
Manson MD. Allele-specific suppression as a tool to study protein-protein interactions in bacteria. Methods 2000; 20:18-34. [PMID: 10610801 DOI: 10.1006/meth.1999.0902] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature.
Collapse
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
41
|
Manting EH, Kaufmann A, van der Does C, Driessen AJ. A single amino acid substitution in SecY stabilizes the interaction with SecA. J Biol Chem 1999; 274:23868-74. [PMID: 10446151 DOI: 10.1074/jbc.274.34.23868] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
42
|
Duong F, Wickner W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J 1999; 18:3263-70. [PMID: 10369667 PMCID: PMC1171407 DOI: 10.1093/emboj/18.12.3263] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
prlA mutations in the gene encoding the SecY subunit of the membrane domain of the Escherichia coli preprotein translocase confer many phenotypes: enhanced translocation rates, increased affinity for SecA, diminished requirement for functional leader sequences, reduced proton-motive force (PMF) dependence of preprotein translocation and facilitated translocation of preproteins with folded domains. We now report that both prlA and prlG mutations weaken the associations between the SecY, SecE and SecG subunits of the translocase. This loosened association increases the initiation of translocation by facilitating the insertion of SecA with its bound preprotein but reduces the stimulatory effect of the PMF during the initial step of translocation. Furthermore, the originally isolated prlA4 mutant, which possesses a particularly labile SecYEG complex, acquired a secondary mutation that restored the stability while conserving the flexibility of the complex. Combinations of certain prlA and prlG mutations, known to cause synthetic lethality in vivo, dramatically loosen subunit association and lead to complete disassembly of SecYEG. These findings underscore the importance of the loosened SecYEG association for the Prl phenotypes. We propose a model in which each of the PrlA and PrlG phenotypes derive from this enhanced SecYEG conformational flexibility.
Collapse
Affiliation(s)
- F Duong
- Laboratoire Transports et Signalisation Cellulaires, CNRS UMR 8619, Bâtiment 430, Université de Paris XI, Orsay, 91405, France
| | | |
Collapse
|
43
|
Abstract
Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
44
|
Danese PN, Silhavy TJ. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet 1999; 32:59-94. [PMID: 9928475 DOI: 10.1146/annurev.genet.32.1.59] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Escherichia coli must actively transport many of its proteins to extracytoplasmic compartments such as the periplasm and outer membrane. To perform this duty, E. coli employs a collection of Sec (secretion) proteins that catalyze the translocation of various polypeptides through the inner membrane. After translocation across the inner membrane, periplasmic and outer-membrane proteins are folded and targeted to their appropriate destinations. Here we review our knowledge of protein translocation across the inner membrane. We also discuss the various signal transduction systems that monitor extracytoplasmic protein folding and targeting, and we consider how these signal transduction systems may ultimately control these processes.
Collapse
Affiliation(s)
- P N Danese
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
45
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
46
|
Fekkes P, de Wit JG, van der Wolk JP, Kimsey HH, Kumamoto CA, Driessen AJ. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol Microbiol 1998; 29:1179-90. [PMID: 9767586 DOI: 10.1046/j.1365-2958.1998.00997.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo, are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (delta8proOmpA) bearing a non-functional signal sequence. Delta8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prIA4 strain. SecB reduces the translocation of delta8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB-SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
van der Wolk JP, Fekkes P, Boorsma A, Huie JL, Silhavy TJ, Driessen AJ. PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J 1998; 17:3631-9. [PMID: 9649433 PMCID: PMC1170699 DOI: 10.1093/emboj/17.13.3631] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.
Collapse
Affiliation(s)
- J P van der Wolk
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Proteins designated to be secreted by Escherichia coli are synthesized with an amino-terminal signal peptide and associate as nascent chains with the export-specific chaperone SecB. Translocation occurs at a multisubunit membrane-bound enzyme termed translocase, which consists of a peripheral preprotein-binding site and an ATPase domain termed SecA, a core heterotrimeric integral membrane protein complex with SecY, SecE and SecG as subunits, and an accessory integral membrane protein complex containing SecD and SecF. Major new insights have been gained into the cascade of preprotein targeting events and the enzymatic mechanism or preprotein translocation. It has become clear that preproteins are translocated in a stepwise fashion involving large nucleotide-induced conformational changes of the molecular motor SecA that propels the translocation reaction.
Collapse
Affiliation(s)
- A J Driessen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- K E Matlack
- Howard Hughes Medical Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Yang YB, Lian J, Tai PC. Differential translocation of protein precursors across SecY-deficient membranes of Escherichia coli: SecY is not obligatorily required for translocation of certain secretory proteins in vitro. J Bacteriol 1997; 179:7386-93. [PMID: 9393703 PMCID: PMC179689 DOI: 10.1128/jb.179.23.7386-7393.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SecY, a component of the protein translocation system in Escherichia coli, was depleted at a nonpermissive temperature in a strain which had a temperature-sensitive polar effect on the expression of its secY. Membrane vesicles prepared from these cells, when grown at the nonpermissive temperature, contained about 5% SecY and similarly low levels of SecG. As expected, translocation of alkaline phosphatase precursors across these SecY-deficient membranes was severely impaired and appeared to be directly related to the decrease of SecY amounts. However, despite such a dramatic reduction in SecY and SecG levels, these membranes exhibited 50 to 70% of the wild-type translocation activity, including the processing of the signal peptide, of OmpA precursor (proOmpA). This translocation activity in SecY-deficient membranes was still SecA and ATP dependent and was not unique to proOmpA, as lipoprotein and lambda receptor protein precursors were also transported efficiently. Membranes that were reconstituted from these SecY-depleted membranes contained undetectable amounts of SecY yet were also shown to possess substantial translocation activity for proOmpA. These results indicate that the requirement of SecY for translocation is not obligatory for all secretory proteins and may depend on the nature of precursors. Consequently, it is unlikely that SecY is the essential core channel through which all precursors traverse across membranes; rather, SecY probably contributes to efficiency and specificity.
Collapse
Affiliation(s)
- Y B Yang
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|