1
|
Soma A, Kubota A, Tomoe D, Ikeuchi Y, Kawamura F, Arimoto H, Shiwa Y, Kanesaki Y, Nanamiya H, Yoshikawa H, Suzuki T, Sekine Y. yaaJ, the tRNA-Specific Adenosine Deaminase, Is Dispensable in Bacillus subtilis. Genes (Basel) 2023; 14:1515. [PMID: 37628567 PMCID: PMC10454642 DOI: 10.3390/genes14081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A β-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Atsushi Kubota
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daisuke Tomoe
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshiho Ikeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fujio Kawamura
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hijiri Arimoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yu Kanesaki
- Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hideaki Nanamiya
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Fukushima Translational Research Foundation, Capital Front Bldg., 7-4, 1-35, Sakae-machi, Fukushima 960-8031, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
2
|
Hu J, Chen X, Duan J. An Onsager-Machlup approach to the most probable transition pathway for a genetic regulatory network. CHAOS (WOODBURY, N.Y.) 2022; 32:041103. [PMID: 35489871 DOI: 10.1063/5.0088397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
We investigate a quantitative network of gene expression dynamics describing the competence development in Bacillus subtilis. First, we introduce an Onsager-Machlup approach to quantify the most probable transition pathway for both excitable and bistable dynamics. Then, we apply a machine learning method to calculate the most probable transition pathway via the Euler-Lagrangian equation. Finally, we analyze how the noise intensity affects the transition phenomena.
Collapse
Affiliation(s)
- Jianyu Hu
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoli Chen
- Department of Mathematics, National University of Singapore, Singapore 119076, Singapore
| | - Jinqiao Duan
- Department of Applied Mathematics and Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
3
|
Voortman L, Johnston RJ. Transcriptional repression in stochastic gene expression, patterning, and cell fate specification. Dev Biol 2022; 481:129-138. [PMID: 34688689 PMCID: PMC8665150 DOI: 10.1016/j.ydbio.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/03/2023]
Abstract
Development is often driven by signaling and lineage-specific cues, yielding highly uniform and reproducible outcomes. Development also involves mechanisms that generate noise in gene expression and random patterns across tissues. Cells sometimes randomly choose between two or more cell fates in a mechanism called stochastic cell fate specification. This process diversifies cell types in otherwise homogenous tissues. Stochastic mechanisms have been extensively studied in prokaryotes where noisy gene activation plays a pivotal role in controlling cell fates. In eukaryotes, transcriptional repression stochastically limits gene expression to generate random patterns and specify cell fates. Here, we review our current understanding of repressive mechanisms that produce random patterns of gene expression and cell fates in flies, plants, mice, and humans.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
4
|
Barreto HC, Cordeiro TN, Henriques AO, Gordo I. Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep 2020; 10:18886. [PMID: 33144634 PMCID: PMC7642357 DOI: 10.1038/s41598-020-76017-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Most model bacteria have been domesticated in laboratory conditions. Yet, the tempo with which a natural isolate diverges from its ancestral phenotype under domestication to a novel laboratory environment is poorly understood. Such knowledge, however is essential to understanding the rate of evolution, the time scale over which a natural isolate can be propagated without loss of its natural adaptive traits, and the reliability of experimental results across labs. Using experimental evolution, phenotypic assays, and whole-genome sequencing, we show that within a week of propagation in a common laboratory environment, a natural isolate of Bacillus subtilis acquires mutations that cause changes in a multitude of traits. A single adaptive mutational step in the gene coding for the transcriptional regulator DegU impairs a DegU-dependent positive autoregulatory loop and leads to loss of robust biofilm architecture, impaired swarming motility, reduced secretion of exoproteases, and to changes in the dynamics of sporulation across environments. Importantly, domestication also resulted in improved survival when the bacteria face pressure from cells of the innate immune system. These results show that degU is a target for mutations during domestication and underscores the importance of performing careful and extremely short-term propagations of natural isolates to conserve the traits encoded in their original genomes.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
5
|
Rosenthal AZ, Qi Y, Hormoz S, Park J, Li SHJ, Elowitz MB. Metabolic interactions between dynamic bacterial subpopulations. eLife 2018; 7:33099. [PMID: 29809139 PMCID: PMC6025961 DOI: 10.7554/elife.33099] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Individual microbial species are known to occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Here, we show that exponentially growing Bacillus subtilis cultures divide into distinct interacting metabolic subpopulations, including one population that produces acetate, and another population that differentially expresses metabolic genes for the production of acetoin, a pH-neutral storage molecule. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Furthermore, acetate concentration influences the relative sizes of the different subpopulations. These results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching. The chemical reactions that occur within a living organism are collectively referred to as its metabolism. Many metabolic reactions produce byproducts that will poison the cells if they are not dealt with: fermenting bacteria, for example, release harmful organic acids and alcohols. How the bacteria respond to these toxins has been most studied at the level of entire microbial populations, meaning the activities of individual cells are effectively “averaged” together. Yet, even two bacteria with the same genes and living in the same environment can behave in different ways. This raises the question: do bacterial populations specialize into distinct subpopulations that play distinct roles when dealing with metabolic products, or do all cells in the community act in unison? Rosenthal et al. set out to answer this question for a community of Bacillus subtilis, a bacterium that is commonly studied in the laboratory and used for the industrial production of enzymes. The analysis focused on genes involved in fundamental metabolic processes, known as the TCA cycle, which the bacteria use to generate energy and build biomass. The experiments revealed that, even when all the cells are genetically identical, different Bacillus subtilis cells do indeed specialize into metabolic subpopulations with distinct growth rates. Time-lapse movies of bacteria that made fluorescent markers of different colors whenever certain metabolic genes became active showed cells switching different colors on and off, indicating that they switch between metabolic subpopulations. Further biochemical studies and measures of gene activity revealed that the different subpopulations produce and release distinct metabolic products, including toxic byproducts. Notably, the release of these metabolites by one subpopulation appeared to activate other subpopulations within the community. This example of cells specializing into unique interacting metabolic subpopulations provides insight into several fundamental issues in microbiology and beyond. It is relevant to evolutionary biologists, since the fact that fractions of the population can switch in and out of a metabolic state, instead of evolving into several inflexible specialists, may provide an evolutionary advantage in fluctuating natural environments by reducing the risk of extinction. It also has implications for industrial fermentation processes and metabolic engineering, and may help biotechnologists design more efficient ways to harness bacterial metabolism to produce useful products.
Collapse
Affiliation(s)
- Adam Z Rosenthal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Yutao Qi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Jin Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| | - Sophia Hsin-Jung Li
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, Pasadena, United States
| |
Collapse
|
6
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|
7
|
Yüksel M, Power JJ, Ribbe J, Volkmann T, Maier B. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis. Front Microbiol 2016; 7:888. [PMID: 27375604 PMCID: PMC4896167 DOI: 10.3389/fmicb.2016.00888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.
Collapse
Affiliation(s)
- Melih Yüksel
- Department of Physics, University of Cologne Köln, Germany
| | | | - Jan Ribbe
- Department of Physics, University of Cologne Köln, Germany
| | | | - Berenike Maier
- Department of Physics, University of Cologne Köln, Germany
| |
Collapse
|
8
|
Noise Expands the Response Range of the Bacillus subtilis Competence Circuit. PLoS Comput Biol 2016; 12:e1004793. [PMID: 27003682 PMCID: PMC4803322 DOI: 10.1371/journal.pcbi.1004793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/05/2016] [Indexed: 12/01/2022] Open
Abstract
Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. Fluctuations, or “noise”, in the response of a system is usually thought to be harmful. However, it is becoming increasingly clear that in single-celled organisms, noise can sometimes help cells survive. This is because noise can enhance the diversity of responses within a cell population. In this study, we identify a novel benefit of noise in the competence response of a population of Bacillus subtilis bacteria, where competence is the ability of bacteria to take in DNA from their environment when under stress. We use computational modeling and experiments to show that noise increases the range of stress levels for which these bacteria exhibit a highly dynamic response, meaning that they are neither unresponsive, nor permanently in the competent state. Since a dynamic response is thought to be optimal for survival, this study suggests that noise is exploited to increase the fitness of the bacterial population.
Collapse
|
9
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
10
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
11
|
A genome-wide transcriptional profiling of sporulating Bacillus subtilis strain lacking PrpE protein phosphatase. Mol Genet Genomics 2013; 288:469-81. [PMID: 23824080 PMCID: PMC3782651 DOI: 10.1007/s00438-013-0763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/15/2013] [Indexed: 11/01/2022]
Abstract
The sporulation process is a complex genetic developmental program leading to profound changes in global gene expression profile. In this work, we have applied genome-wide microarray approach for transcriptional profiling of Bacillus subtilis strain lacking a gene coding for PrpE protein phosphatase. This protein was previously shown to be involved in the regulation of germination of B. subtilis spores. Moreover, the deletion of prpE gene resulted in changing the resistance properties of spores. Our results provide genome-wide insight into the influence of this protein phosphatase on the physiology of B. subtilis cells. Although the precise role of PrpE in shaping the observed phenotype of ΔprpE mutant strain still remains beyond the understanding, our experiments brought observations of possible indirect implication of this protein in the regulation of cell motility and chemotaxis, as well as the development of competence. Surprisingly, prpE-deleted cells showed elevated level of general stress response, which turned out to be growth medium specific.
Collapse
|
12
|
|
13
|
Zafra O, Lamprecht-Grandío M, de Figueras CG, González-Pastor JE. Extracellular DNA release by undomesticated Bacillus subtilis is regulated by early competence. PLoS One 2012; 7:e48716. [PMID: 23133654 PMCID: PMC3487849 DOI: 10.1371/journal.pone.0048716] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
Extracellular DNA (eDNA) release is a widespread capacity described in many microorganisms. We identified and characterized lysis-independent eDNA production in an undomesticated strain of Bacillus subtilis. DNA fragments are released during a short time in late-exponential phase. The released eDNA corresponds to whole genome DNA, and does not harbour mutations suggesting that is not the result of error prone DNA synthesis. The absence of eDNA was linked to a spread colony morphology, which allowed a visual screening of a transposon library to search for genes involved in its production. Transposon insertions in genes related to quorum sensing and competence (oppA, oppF and comXP) and to DNA metabolism (mfd and topA) were impaired in eDNA release. Mutants in early competence genes such as comA and srfAA were also defective in eDNA while in contrast mutations in late competence genes as those for the DNA uptake machinery had no effect. A subpopulation of cells containing more DNA is present in the eDNA producing strains but absent from the eDNA defective strain. Finally, competent B. subtilis cells can be transformed by eDNA suggesting it could be used in horizontal gene transfer and providing a rationale for the molecular link between eDNA release and early-competence in B. subtilis that we report.
Collapse
Affiliation(s)
- Olga Zafra
- Department of Molecular Evolution, Center of Astrobiology (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - María Lamprecht-Grandío
- Department of Molecular Evolution, Center of Astrobiology (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | | | - José Eduardo González-Pastor
- Department of Molecular Evolution, Center of Astrobiology (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Plasmid transformation of competent Bacillus subtilis by lysed protoplast DNA. J Biosci Bioeng 2012; 114:138-43. [DOI: 10.1016/j.jbiosc.2012.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/08/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022]
|
15
|
Singh PK, Ramachandran G, Durán-Alcalde L, Alonso C, Wu LJ, Meijer WJJ. Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein. Environ Microbiol 2012; 14:2812-25. [PMID: 22779408 DOI: 10.1111/j.1462-2920.2012.02819.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Under certain growth conditions, Bacillus subtilis can develop natural competence, the state in which it is able to bind, adsorb and incorporate exogenous DNA. Development of competence is a bistable process and is subject to complex regulation. Rok is a repressor of the key transcriptional activator of competence genes, comK, and limits the size of the subpopulation that develops competence. Here we report the finding that the large conjugative B. subtilis plasmid pLS20 harbours a rok homologue rok(LS20). Although the deduced product of rok(LS20) is considerably shorter than the chromosomally encoded Rok protein, we show that ectopic expression of the plasmid-encoded Rok(LS20) leads to inhibition of competence by repressing comK, and that the effects of the plasmid and chromosomally encoded Rok proteins are additive. We also show that pLS20 inhibits competence in a rok(LS20) -dependent manner and that purified Rok(LS20) preferentially binds to the comK promoter. By analysing the available databases we identified several additional rok-like genes. These putative rok genes can be divided into two groups and we propose that rok(LS20) is the prototype of a newly identified subgroup of nine rok genes. Finally, we discuss the possible role of the plasmid-located rok and its relatedness with other rok genes.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular Severo Ochoa, Instituto de Biología Molecular Eladio Viñuela, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Takeno M, Taguchi H, Akamatsu T. Role of ComEA in DNA uptake during transformation of competent Bacillus subtilis. J Biosci Bioeng 2012; 113:689-93. [PMID: 22398145 DOI: 10.1016/j.jbiosc.2012.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 12/01/2022]
Abstract
The role of the competence protein ComEA in DNA uptake during transformation of competent Bacillus subtilis was analyzed by lysed-protoplast transformation (LP transformation). A comEA deletion mutant was constructed by a fusion polymerase chain reaction. Transformants of the mutant were obtained by LP transformation at a frequency of 1.1 × 10(2) transformants per μg DNA, representing a low relative efficiency of transformation [RET (mutant/wild type)] of 2.7 × 10(-6). This implied an important role of the protein during DNA uptake. When analyzing LP transformation of comEA with a plasmid (5.7 kb), a similar RET (mutant/wild type) of 5.6 × 10(-5) was obtained. Following addition of DNA into the comEA mutant culture, the number of transformants increased at a rate of 0.5 transformants/min, which was very low compared with the wild-type (6.9×10(4) transformants/min). However, even in the comEA mutant, DNA uptake began immediately after addition of DNA. Using co-transformation analysis of the comEA mutant, short linkages at distances of 2-156 kb could be detected, but not long linkages at distances of 671-1662 kb. Taken together, the results indicate that ComEA plays an important role in the transfer of transforming DNA into the DNA channel and in controlling the rate of DNA uptake.
Collapse
Affiliation(s)
- Masaomi Takeno
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | | | | |
Collapse
|
17
|
Takeno M, Taguchi H, Akamatsu T. Essential involvement of the Bacillus subtilis ABC transporter, EcsB, in genetic transformation of purified DNA but not native DNA from protoplast lysates. J Biosci Bioeng 2011; 112:209-14. [DOI: 10.1016/j.jbiosc.2011.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/28/2022]
|
18
|
Role of ComFA in controlling the DNA uptake rate during transformation of competent Bacillus subtilis. J Biosci Bioeng 2011; 111:618-23. [PMID: 21397556 DOI: 10.1016/j.jbiosc.2011.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/08/2011] [Accepted: 02/12/2011] [Indexed: 11/24/2022]
Abstract
The roles of ComFA and ComEC in DNA uptake by competent Bacillus subtilis were analyzed by transformation with DNA in protoplast lysates (LP transformation). Deletion mutants of comFA and comEC and putative Walker A mutants (K152N, K152Q, K152E) of comFA were constructed by fusion polymerase chain reaction. Transformants of comEC mutant with purified DNA and DNA in protoplast lysate were not obtained, which shows a lack of transformation ability and backwards recombination of the mutant. Transformants of the comFA mutant were obtained by LP transformation (1.8 × 10(4) transformants/μg DNA). Low relative efficiency of transformation (RET) of comFA compared to wild type (4.3 × 10(-4)) showed an important role for comFA in DNA uptake. Walker A mutants showed 1.8-19 × 10(-4) RET, suggesting a dependence on ATPase activity for transformation. Co-transformation between short linkages was only detected in comFA mutants. The results demonstrated that ComFA controlled the DNA uptake rate. The interpretation was further supported by analyzing the plasmid used in LP transformation of the comFA mutant. The RET of comFA compared to the wild type was 2.7 × 10(-2), 60-fold higher than that with chromosomal DNA (4.3 × 10(-4)). Following addition of DNA into comFA culture, transformants were obtained after 15 min, with the number of transformants increasing over time. The kinetics strongly suggested that in comFA mutants, formation of another DNA uptake complex without ComFA would be a lengthy process.
Collapse
|
19
|
Advanced Microscopy of Microbial Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:21-54. [DOI: 10.1007/10_2010_83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
20
|
Zeng Q, Ibekwe AM, Biddle E, Yang CH. Regulatory mechanisms of exoribonuclease PNPase and regulatory small RNA on T3SS of Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1345-1355. [PMID: 20831411 DOI: 10.1094/mpmi-03-10-0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The type III secretion system (T3SS) is an essential virulence factor for many bacterial pathogens. Polynucleotide phosphorylase (PNPase) is one of the major exoribonucleases in bacteria and plays important roles in mRNA degradation, tRNA processing, and small RNA (sRNA) turnover. In this study, we showed that PNPase downregulates the transcription of T3SS structural and effector genes of the phytopathogenic bacterium Dickeya dadantii. This negative regulation of T3SS by PNPase occurs by repressing the expression of hrpL, encoding a master regulator of T3SS in D. dadantii. By reducing rpoN mRNA stability, PNPase downregulates the transcription of hrpL, which leads to a reduction in T3SS gene expression. Moreover, we have found that PNPase downregulates T3SS by decreasing hrpL mRNA stability. RsmB, a regulatory sRNA, enhances hrpL mRNA stability in D. dadantii. Our results suggest that PNPase decreases the amount of functional RsmB transcripts that could result in reduction of hrpL mRNA stability. In addition, bistable gene expression (differential expression of a single gene that creates two distinct subpopulations) of hrpA, hrpN, and dspE was observed in D. dadantii under in vitro conditions. Although PNPase regulates the proportion of cells in the high state and the low state of T3SS gene expression, it appears that PNPase is not the key switch that triggers the bistable expression patterns of T3SS genes.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Biological Sciences, University of Wisconsin-Milwaukee, WI 53211, USA
| | | | | | | |
Collapse
|
21
|
Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl Environ Microbiol 2010; 76:5046-57. [PMID: 20543043 DOI: 10.1128/aem.00660-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genetic manageability of the biotechnologically important Bacillus licheniformis is hampered due to its poor transformability, whereas Bacillus subtilis efficiently takes up DNA during genetic competence, a quorum-sensing-dependent process. Since the sensor histidine kinase ComP, encoded by a gene of the quorum-sensing module comQXPA of B. licheniformis DSM13, was found to be inactive due to an insertion element within comP, the coding region was exchanged with a functional copy. Quorum sensing was restored, but the already-poor genetic competence dropped further. The inducible expression of the key regulator for the transcription of competence genes, ComK, in trans resulted in highly competent strains and facilitated the direct disruption of genes, as well as the conditional knockout of an essential operon. As ComK is inhibited at low cell densities by a proteolytic complex in which MecA binds ComK and such inhibition is antagonized by the interaction of MecA with ComS (the expression of the latter is controlled by cell density in B. subtilis), we performed an in silico analysis of MecA and the hitherto unidentified ComS, which revealed differences for competent and noncompetent strains, indicating that the reduced competence possibly is due to a nonfunctional coupling of the comQXPA-encoded quorum module and ComK. The obtained increased genetic tractability of this industrial workhorse should improve a wide array of scientific investigations.
Collapse
|
22
|
Hobbs CA, Bobay BG, Thompson RJ, Perego M, Cavanagh J. NMR solution structure and DNA-binding model of the DNA-binding domain of competence protein A. J Mol Biol 2010; 398:248-63. [PMID: 20302877 PMCID: PMC2855743 DOI: 10.1016/j.jmb.2010.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/15/2022]
Abstract
Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore-forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins, which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (alpha 8 and alpha 9) form a helix-turn-helix DNA-binding domain. Using NMR spectroscopy, the high-resolution 3D solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model reveals also that ComA might use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family.
Collapse
Affiliation(s)
- Carey A. Hobbs
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin G. Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
- North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Richele J. Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Marta Perego
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
23
|
Abstract
Although cell fate specification is tightly controlled to yield highly reproducible results and avoid extreme variation, developmental programs often incorporate stochastic mechanisms to diversify cell types. Stochastic specification phenomena are observed in a wide range of species and an assorted set of developmental contexts. In bacteria, stochastic mechanisms are utilized to generate transient subpopulations capable of surviving adverse environmental conditions. In vertebrate, insect, and worm nervous systems, stochastic fate choices are used to increase the repertoire of sensory and motor neuron subtypes. Random fate choices are also integrated into developmental programs controlling organogenesis. Although stochastic decisions can be maintained to produce a mosaic of fates within a population of cells, they can also be compensated for or directed to yield robust and reproducible outcomes.
Collapse
|
24
|
Architecture-Dependent Noise Discriminates Functionally Analogous Differentiation Circuits. Cell 2009; 139:512-22. [DOI: 10.1016/j.cell.2009.07.046] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/06/2009] [Accepted: 07/21/2009] [Indexed: 11/18/2022]
|
25
|
Mei Z, Wang F, Qi Y, Zhou Z, Hu Q, Li H, Wu J, Shi Y. Molecular determinants of MecA as a degradation tag for the ClpCP protease. J Biol Chem 2009; 284:34366-75. [PMID: 19767395 DOI: 10.1074/jbc.m109.053017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated proteolysis by ATP-dependent proteases is universal in all living cells. In Bacillus subtilis, the degradation of the competence transcription factor ComK is mediated by a ternary complex involving the adaptor protein MecA and the ATP-dependent protease ClpCP. Here we demonstrate that a C-terminal, 98-amino acid domain of MecA (residues 121-218) serves as a non-recycling, degradation tag and targets a variety of fusion proteins to the ClpCP protease for degradation. MecA-(121-218) facilitates productive oligomerization of ClpC, stimulates the ATPase activity of ClpC, and allows the activated ClpC complex to stably associate with ClpP. Importantly, the ClpCP protease undergoes dynamic cycles of assembly and disassembly, which are triggered by association with MecA and the degradation of MecA, respectively.
Collapse
Affiliation(s)
- Ziqing Mei
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc Natl Acad Sci U S A 2007; 104:17582-7. [PMID: 17962411 DOI: 10.1073/pnas.0707965104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of stochasticity and noise in controlling genetic circuits is investigated in the context of transitions into and from competence in Bacillus subtilis. Recent experiments have demonstrated that bistability is not necessary for this function, but that the existence of one stable fixed point (vegetation) and an excitable unstable one (competence) is sufficient. Stochasticity therefore plays a crucial role in this excitation. Noise can be generated by discrete events such as RNA and protein synthesis and their degradation. We consider an alternative noise source connected with the protein binding/unbinding to the DNA. A theoretical model that includes this "nonadiabatic" mechanism appears to produce a better agreement with experiments than models where only the adiabatic limit is considered, suggesting that this nonconventional stochasticity source may be important for biological functions.
Collapse
|
27
|
Smits WK, Bongiorni C, Veening JW, Hamoen LW, Kuipers OP, Perego M. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Mol Microbiol 2007; 65:103-20. [PMID: 17581123 DOI: 10.1111/j.1365-2958.2007.05776.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bacterial differentiation, mechanisms have evolved to limit cells to a single developmental pathway. The establishment of genetic competence in Bacillus subtilis is controlled by a complex regulatory circuit that is highly interconnected with the developmental pathway for spore formation, and the two pathways appear to be mutually exclusive. Here we show by in vitro and in vivo analyses that a member of the Rap family of proteins, RapH, is activated directly by the late competence transcription factor ComK, and is capable of inhibiting both competence and sporulation. Importantly, RapH is the first member of the Rap family that demonstrates dual specificity, by dephosphorylating the Spo0F-P response regulator and inhibiting the DNA-binding activity of ComA. The protein thus acts at the stage where competence is well initiated, and prevents initiation of sporulation in competent cells as well as contributing to the escape from the competent state. A deletion of rapH induces both differentiation pathways and interferes with their temporal separation. Together, these results indicate that RapH is an integral part of a multifactorial regulatory circuit affecting the cell's decision between distinct developmental pathways.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Leisner M, Stingl K, Rädler JO, Maier B. Basal expression rate of comK sets a 'switching-window' into the K-state of Bacillus subtilis. Mol Microbiol 2007; 63:1806-16. [PMID: 17367397 DOI: 10.1111/j.1365-2958.2007.05628.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus subtilis cell population divides into a competent fraction and a non-competent fraction in the stationary phase. The transition from the non-competent state (with basal ComK concentration) to the K-state (with high ComK concentration) behaves like a bistable switch. To better understand the mechanism that sets the fraction of cells that switch into the K-state (K-fraction), we characterized the basal comK expression in individual non-competent cells and found a large cell-to-cell variation. Basal expression rate increased exponentially, reached a maximum and decreased towards zero in the stationary phase. Concomitantly, the intrinsic switching rate increased and decreased with a time lag. When switching was induced prematurely by reduction of ComK proteolysis, the K-fraction increased strongly. Our data support a model in which the average basal level of ComK raises during late exponential phase and due to noise in basal comK expression only those cells that are on the high end of comK expression trigger the autocatalytic feedback for ComK transcription. We show that a subsequent shut-down of basal expression rate sets a 'time-window' for switching and is thus involved in determining the K-fraction in the bimodal population.
Collapse
Affiliation(s)
- Madeleine Leisner
- Institut für Allgemeine Zoologie und Genetik, Westfälische Wilhelms Universität, Schlossplatz 5, 48149 Münster, Germany
| | | | | | | |
Collapse
|
29
|
Abstract
Random cell-to-cell variations in gene expression within an isogenic population can lead to transitions between alternative states of gene expression. Little is known about how these variations (noise) in natural systems affect such transitions. In Bacillus subtilis, noise in ComK, the protein that regulates competence for DNA uptake, is thought to cause cells to transition to the competent state in which genes encoding DNA uptake proteins are expressed. We demonstrate that noise in comK expression selects cells for competence and that experimental reduction of this noise decreases the number of competent cells. We also show that transitions are limited temporally by a reduction in comK transcription. These results illustrate how such stochastic transitions are regulated in a natural system and suggest that noise characteristics are subject to evolutionary forces.
Collapse
|
30
|
Süel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB. Tunability and Noise Dependence in Differentiation Dynamics. Science 2007; 315:1716-9. [PMID: 17379809 DOI: 10.1126/science.1137455] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The dynamic process of differentiation depends on the architecture, quantitative parameters, and noise of underlying genetic circuits. However, it remains unclear how these elements combine to control cellular behavior. We analyzed the probabilistic and transient differentiation of Bacillus subtilis cells into the state of competence. A few key parameters independently tuned the frequency of initiation and the duration of competence episodes and allowed the circuit to access different dynamic regimes, including oscillation. Altering circuit architecture showed that the duration of competence events can be made more precise. We used an experimental method to reduce global cellular noise and showed that noise levels are correlated with frequency of differentiation events. Together, the data reveal a noise-dependent circuit that is remarkably resilient and tunable in terms of its dynamic behavior.
Collapse
Affiliation(s)
- Gürol M Süel
- Green Center Division for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
31
|
Samoilov MS, Price G, Arkin AP. From fluctuations to phenotypes: the physiology of noise. ACTA ACUST UNITED AC 2006; 2006:re17. [PMID: 17179490 DOI: 10.1126/stke.3662006re17] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
There are fundamental physical reasons why biochemical processes might be subject to noise and stochastic fluctuations. Indeed, it has long been understood that random molecular-scale mechanisms, such as those that drive genetic mutation, lie at the heart of population-scale evolutionary dynamics. What we can now appreciate is how stochastic fluctuations inherent in biochemical processes contribute to cellular and organismal phenotypes. Advancements in techniques for empirically measuring single cells and in corresponding theoretical methods have enabled the rigorous design and interpretation of experiments that provide incontrovertible proof that there are important endogenous sources of stochasticity that drive biological processes at the scale of individual organisms. Recently, some studies have progressed beyond merely ascertaining the presence of noise in biological systems; they trace its role in cellular physiology as it is passed through and processed by the biomolecular pathways-from the underlying origins of stochastic fluctuations in random biomolecular interactions to their ultimate manifestations in characteristic species phenotypes. These emerging results suggest new biological network design principles that account for a constructive role played by noise in defining the structure, function, and fitness of biological systems. They further show that stochastic mechanisms open novel classes of regulatory, signaling, and organizational choices that can serve as efficient and effective biological solutions to problems that are more complex, less robust, or otherwise suboptimal to deal with in the context of purely deterministic systems. Research in Drosophila melanogaster eye color-vision development and Bacillus subtilis competence induction has elegantly traced the role of noise in vital physiological processes from fluctuations to phenotypes, and is used here to highlight these developments.
Collapse
|
32
|
Abstract
Gene expression in bacteria is traditionally studied from the average behaviour of cells in a population, which has led to the assumption that under a particular set of conditions all cells express genes in an approximately uniform manner. The advent of methods for visualizing gene expression in individual cells reveals, however, that populations of genetically identical bacteria are sometimes heterogeneous, with certain genes being expressed in a non-uniform manner across the population. In some cases, heterogeneity is manifested by the bifurcation into distinct subpopulations, and we adopt the common usage, referring to this phenomenon as bistability. Here we consider four cases of bistability, three from Bacillus subtilis and one from Escherichia coli, with an emphasis on random switching mechanisms that generate alternative cell states and the biological significance of phenotypic heterogeneity. A review describing additional examples of bistability in bacteria has been published recently.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA.
| | | |
Collapse
|
33
|
Saito Y, Taguchi H, Akamatsu T. DNA taken into Bacillus subtilis competent cells by lysed-protoplast transformation is not ssDNA but dsDNA. J Biosci Bioeng 2006; 101:334-9. [PMID: 16716942 DOI: 10.1263/jbb.101.334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 01/16/2006] [Indexed: 11/17/2022]
Abstract
Competent Bacillus subtilis incorporates whole-genome DNA (4215 kb) from the protoplast lysate of B. subtilis subtilis [Akamatsu, T. and Taguchi, H., Biosci. Biotechnol. Biochem., 65, 823-829 (2001)]. A continuous incorporated DNA is longer than 1500 kb [J. Biosci. Bioeng., 101, 257-262 (2006)]. Whether the incorporated DNA is single-stranded (ssDNA) or double-stranded DNA (dsDNA) has been studied by examining the transforming activity of the incorporated DNA. B. subtilis BEST7027 was used as the donor strain, which has a heterologous region consisting of the 145 kb region of the Synechocystis sp. PCC6803 genome and erm gene. The donor DNA was transferred to a wild-type or a recA recipient strain (AYG2 or SYN9), and protoplast lysate was prepared from the transformants and used as the donor DNA source for the second recipient strain (AU1 or AV1). The intergenote region showed a significant transforming activity. When DNase I was added to both cells collected from the first transformation mixture and the following protoplastization, the result was similar to that obtained without DNase I. All of the observations strongly suggest that the incorporated DNA is dsDNA, and the transformation of competent B. subtilis by DNA in protoplast lysate is different from that by purified DNA taken up conventionally.
Collapse
Affiliation(s)
- Yukiko Saito
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | | | | |
Collapse
|
34
|
Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 2006; 440:545-50. [PMID: 16554821 DOI: 10.1038/nature04588] [Citation(s) in RCA: 497] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/18/2006] [Indexed: 11/09/2022]
Abstract
Certain types of cellular differentiation are probabilistic and transient. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses, thereby providing an ideal mechanism for competence regulation.
Collapse
Affiliation(s)
- Gürol M Süel
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
35
|
Saito Y, Taguchi H, Akamatsu T. Fate of transforming bacterial genome following incorporation into competent cells of Bacillus subtilis: a continuous length of incorporated DNA. J Biosci Bioeng 2006; 101:257-62. [PMID: 16716928 DOI: 10.1263/jbb.101.257] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/27/2005] [Indexed: 11/17/2022]
Abstract
In contrast to the conventional transformation of Bacillus subtilis using purified DNA, those using DNA in lysed protoplasts have a high transformation efficiency and enable whole-genome transfer into competent B. subtilis [Akamatsu, T. and Taguchi, H., Biosci. Biotechnol. Biochem., 65, 823-829 (2001)]. Here, we examined the length of incorporated continuous DNA by analyzing the cotransfer ratio with selected and unselected markers, on the basis of a new experimental design. The cotransfer ratio of a selected marker with an unselected marker on the opposite side of the genetic map of the B. subtilis chromosome was about 5.6% and could be interpreted as congression (double transformation) ratio. In the wild-type strain, the cotransfer ratio of cysA (113 kb position on 4215 kb of B. subtilis chromosome) with metC (1384 kb) and leuB (2891 kb) was 0.77%, twice the value (5.6% x 5.6%=0.31%) calculated from the congression ratio. Moreover, in a genetic background, the cotransfer ratios of metC with cysA and leuB, and metC with cysA and arg1 (3012 kb) were 2.7% and 7.2%, respectively. These results strongly suggest that the length of continuous DNA incorporated into B. subtilis is most probably greater than 1271 kb. When the DNA from the protoplast lysate was fragmented by mixing, the cotransfer ratios of arg1 with metC, and arg1 with metC and trpC (2374 kb) were 2.8% and 0.16%, respectively. A high cotransfer ratio (2.7-7.2%) could not, therefore, be obtained using the fragmented DNA. Based on these observations, we propose a working hypothesis on the mechanism of the transformation of competent B. subtilis by DNA in protoplast lysates (LP transformation).
Collapse
Affiliation(s)
- Yukiko Saito
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | | | | |
Collapse
|
36
|
Veening JW, Hamoen LW, Kuipers OP. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol 2005; 56:1481-94. [PMID: 15916600 DOI: 10.1111/j.1365-2958.2005.04659.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Spore formation in the Gram-positive bacterium Bacillus subtilis is a last resort adaptive response to starvation. To initiate sporulation, the key regulator in this process, Spo0A, needs to be activated by the so-called phosphorelay. Within a sporulating culture of B. subtilis, some cells initiate this developmental program, while other cells do not. Therefore, initiation of sporulation appears to be a regulatory process with a bistable outcome. Using a single cell analytical approach, we show that the autostimulatory loop of spo0A is responsible for generating a bistable response resulting in phenotypic variation within the sporulating culture. It is demonstrated that the main function of RapA, a phosphorelay phosphatase, is to maintain the bistable sporulation gene expression. As rapA expression is quorum regulated, it follows that quorum sensing influences sporulation bistability. Deletion of spo0E, a phosphatase directly acting on Spo0A approximately P, resulted in abolishment of the bistable expression pattern. Artificial induction of a heterologous Rap phosphatase restored heterogeneity in a rapA or spo0E mutant. These results demonstrate that with external phosphatases, B. subtilis can use the phosphorelay as a tuner to modulate the bistable outcome of the sporulating culture. This shows that B. subtilis employs multiple pathways to maintain the bistable nature of a sporulating culture, stressing the physiological importance of this phenomenon.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, the Netherlands
| | | | | |
Collapse
|
37
|
Maamar H, Dubnau D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 2005; 56:615-24. [PMID: 15819619 PMCID: PMC3831615 DOI: 10.1111/j.1365-2958.2005.04592.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
High expression of the transcriptional activator ComK occurs in 10-20% of the cells in stationary phase cultures of Bacillus subtilis strain 168. ComK drives the expression of more than 100 genes constituting the semidormant K-state, distinct from sporulation and vegetative growth. Among the genes so activated are those that permit competence for genetic transformation. We have addressed the origin of bistability in expression of ComK. We show that bistability requires positive autoregulation at the promoter of comK, but not a potential toggle switch, in which ComK represses the promoter of rok and Rok represses the promoter of comK. We further address the source of the noise that results in the stochastic selection of cells that will express comK. A revised model for the regulation of comK expression is proposed that partially explains bistability.
Collapse
Affiliation(s)
| | - David Dubnau
- For correspondence. ; Tel. (+1) 973 854 3400; Fax (+1) 973 854 3401
| |
Collapse
|
38
|
Kearns DB, Chu F, Branda SS, Kolter R, Losick R. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 2004; 55:739-49. [PMID: 15661000 DOI: 10.1111/j.1365-2958.2004.04440.x] [Citation(s) in RCA: 442] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wild strains of Bacillus subtilis are capable of forming architecturally complex communities of cells known as biofilms. Critical to biofilm formation is the eps operon, which is believed to be responsible for the biosynthesis of an exopolysaccharide that binds chains of cells together in bundles. We report that transcription of eps is under the negative regulation of SinR, a repressor that was found to bind to multiple sites in the regulatory region of the operon. Mutations in sinR bypassed the requirement in biofilm formation of two genes of unknown function, ylbF and ymcA, and sinI, which is known to encode an antagonist of SinR. We propose that these genes are members of a pathway that is responsible for counteracting SinR-mediated repression. We further propose that SinR is a master regulator that governs the transition between a planktonic state in which the bacteria swim as single cells in liquid or swarm in small groups over surfaces, and a sessile state in which the bacteria adhere to each other to form bundled chains and assemble into multicellular communities.
Collapse
Affiliation(s)
- Daniel B Kearns
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
39
|
Solomon J, Su L, Shyn S, Grossman AD. Isolation and characterization of mutants of the Bacillus subtilis oligopeptide permease with altered specificity of oligopeptide transport. J Bacteriol 2003; 185:6425-33. [PMID: 14563878 PMCID: PMC219414 DOI: 10.1128/jb.185.21.6425-6433.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial oligopeptide permeases are members of the large family of ATP binding cassette transporters and typically import peptides of 3 to 5 amino acids, apparently independently of sequence. Oligopeptide permeases are needed for bacteria to utilize peptides as nutrient sources and are sometimes involved in signal transduction pathways. The Bacillus subtilis oligopeptide permease stimulates competence development and the initiation of sporulation, at least in part, by importing specific signaling peptides. We isolated rare, partly functional mutations in B. subtilis opp. The mutants were resistant to a toxic tripeptide but still retained the ability to sporulate and/or become competent. The mutations, mostly in the oligopeptide binding protein located on the cell surface, affected residues whose alteration appears to change the specificity of oligopeptide transport.
Collapse
Affiliation(s)
- Jonathan Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
40
|
Molle V, Nakaura Y, Shivers RP, Yamaguchi H, Losick R, Fujita Y, Sonenshein AL. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 2003; 185:1911-22. [PMID: 12618455 PMCID: PMC150151 DOI: 10.1128/jb.185.6.1911-1922.2003] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Additional targets of CodY, a GTP-activated repressor of early stationary-phase genes in Bacillus subtilis, were identified by combining chromatin immunoprecipitation, DNA microarray hybridization, and gel mobility shift assays. The direct targets of CodY newly identified by this approach included regulatory genes for sporulation, genes that are likely to encode transporters for amino acids and sugars, and the genes for biosynthesis of branched-chain amino acids.
Collapse
Affiliation(s)
- Virginie Molle
- Department of Cellular and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hamoen LW, Kausche D, Marahiel MA, van Sinderen D, Venema G, Serror P. The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK. FEMS Microbiol Lett 2003; 218:299-304. [PMID: 12586407 DOI: 10.1111/j.1574-6968.2003.tb11532.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Genetic competence is a differentiation process initiated by Bacillus subtilis as a result of nutritional deprivation, and is controlled by a complex signal transduction cascade. The promoter of comK, encoding the competence transcription factor, is regulated by at least four different transcription factors: Rok, CodY, DegU and ComK itself. Genetic data have shown that comK expression is influenced by the transition state regulator AbrB as well. In this paper we show that AbrB binds specifically to the comK promoter and covers the RNA polymerase binding site, making it the fifth transcription factor regulating the activity of the comK promoter.
Collapse
Affiliation(s)
- Leendert W Hamoen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Inaoka T, Ochi K. RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol 2002; 184:3923-30. [PMID: 12081964 PMCID: PMC135162 DOI: 10.1128/jb.184.14.3923-3930.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that the ability to develop genetic competence of a certain relaxed (relA) aspartate-auxotrophic strain of Bacillus subtilis is significantly lower than that of the isogenic stringent (relA+) strain. Transcriptional fusion analysis utilizing a lacZ reporter gene indicated that the amount of the ComK protein, known as the key protein for competence development, is greatly reduced in the relaxed strain than in the stringent strain. We also found that the addition of decoyinine, a GMP synthetase inhibitor, induces expression of a competence gene (comG) in the relaxed strain, accompanied by a pronounced decrease in the level of intracellular GTP as measured by high-performance liquid chromatography. The transformation efficiency of the relaxed strain increased 100-fold when decoyinine was added at t0 (the transition point between exponential to stationary growth phase). Conversely, supplementation of guanosine together with decoyinine completely abolished the observed effect of adding decoyinine on competence development. Furthermore, the impaired ability of the relaxed strain for competence development was completely restored by disrupting the codY gene, which is known to negatively control comK expression. Our results indicate that the RelA protein plays an essential role in the induction of competence development at least under certain physiological conditions by reducing the level of intracellular GTP and overcoming CodY-mediated regulation.
Collapse
Affiliation(s)
- Takashi Inaoka
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
43
|
Nakano MM, Nakano S, Zuber P. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction. Mol Microbiol 2002; 44:1341-9. [PMID: 12028382 DOI: 10.1046/j.1365-2958.2002.02963.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ComK, a key transcriptional regulator in the development of competence in Bacillus subtilis, is required for its own transcription as well as that of the late competence genes encoding proteins involved in DNA uptake. ComK is sequestered in a complex with ClpC and MecA until a peptide, ComS, accumulates in cells. ComS releases ComK from the inhibitory complex, thus allowing ComK to carry out its function as a transcriptional activator. Spx (formerly YjbD), a negative effector of competence, accumulates in clpP mutants. High concentrations of Spx may be responsible for the inability of clpP mutants to become competent because spx mutations are able to restore competence in the clpP mutant. In this paper, we showed, based on in vitro experiments, that Spx forms a quaternary complex with ClpC, MecA and ComK and enhances ComK binding to ClpC-MecA. Two ComS alanine substitution mutants (I13A and W43A), previously shown to be defective in vivo, were less efficient in releasing ComK from ClpC-MecA. The I13A mutant with a weaker binding affinity to MecA was inefficient in releasing ComK regardless of whether Spx was present. In contrast, the defect of the W43A mutant in dissociating ComK was more readily observed in the presence of Spx. Spx is a highly conserved protein among Gram-positive bacteria, in which it may function closely with the protease adaptor protein, MecA.
Collapse
Affiliation(s)
- Michiko M Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
44
|
Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 2002; 184:2344-51. [PMID: 11948146 PMCID: PMC134994 DOI: 10.1128/jb.184.9.2344-2351.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis competence transcription factor ComK is required for establishment of competence for genetic transformation. In an attempt to study the ComK factor further, we explored the genes regulated by ComK using the DNA microarray technique. In addition to the genes known to be dependent on ComK for expression, we found many genes or operons whose ComK dependence was not known previously. Among these genes, we confirmed the ComK dependence of 16 genes by using lacZ fusions, and three genes were partially dependent on ComK. Transformation efficiency was significantly reduced in an smf disruption mutant, although disruption of the other ComK-dependent genes did not result in significant decreases in transformation efficiency. Nucleotide sequences similar to that of the ComK box were found for most of the newly discovered genes regulated by ComK.
Collapse
Affiliation(s)
- Mitsuo Ogura
- School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Hoa TT, Tortosa P, Albano M, Dubnau D. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 2002; 43:15-26. [PMID: 11849533 DOI: 10.1046/j.1365-2958.2002.02727.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rok (YkuW) protein acts as a negative regulator of comK, which encodes the competence transcription factor of Bacillus subtilis. In the absence of Rok, ComK is overproduced, and when excess Rok is present comK transcription is inhibited. Rok acts transcriptionally to repress comK expression but does not affect ComK stability, which is controlled by the MecA switch. Gel-shift assays show that Rok binds directly to a DNA fragment that contains the comK promoter. SinR and AbrB act negatively on rok transcription, and the inactivation of rok bypasses the positive requirements for sinR and abrB for the expression of comK. Therefore, the dependence of comK expression on SinR and AbrB may be a result of their repression of rok transcription. It has also been shown in vivo that Rok and ComK can indivi-dually repress rok transcription, and that Rok and ComK bind to the rok promoter in vitro. These interactions establish feedback loops, and the roles of these circuits are discussed.
Collapse
Affiliation(s)
- Tran Thu Hoa
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
46
|
Turgay K, Persuh M, Hahn J, Dubnau D. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Mol Microbiol 2001; 42:717-27. [PMID: 11722737 DOI: 10.1046/j.1365-2958.2001.02623.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MecA targets the competence transcription factor ComK to ClpC. As a consequence, this factor is degraded by the ClpC/ClpP protease. ClpC is a member of the Clp/HSP100 family of ATPases and possesses two ATP binding sites. We have individually modified the Walker A motifs of these two sites and have also deleted a putative substrate recognition domain of ClpC at the C-terminus. The effects of these mutations were studied in vitro and in vivo. Deletion of the C-terminal domain resulted in a decreased binding affinity for MecA, a decreased ATPase activity in response to MecA addition and decreased degradative activity in vitro. In vivo, this deletion resulted in a failure to degrade ComK and in a decrease in thermal resistance for growth. Mutation of the N-terminal Walker A box (K214Q) caused a drastically decreased ATPase activity in vitro, but did not interfere with MecA binding. In vivo, this mutation had no effect on thermal resistance, but had a clpC null phenotype with respect to competence. Mutation of the C-terminal Walker A motif (K551Q) caused essentially the reverse phenotype both in vivo and in vitro. Although binding to MecA was only moderately impaired with 2 mM ATP, this mutant protein displayed no response to 0.2 mM ATP, unlike the wild-type ClpC and the K214Q mutant protein. The ATPase activity of the K551Q mutant protein, induced by the addition of MecA plus ComS, was decreased about 10-fold but was not eliminated. In vivo, the K551Q mutation showed a partial defect with respect to competence and a profound loss of thermal resistance. Sporulation was reduced drastically by the K551Q and less so by the K214Q mutation, but remained unaffected by deletion of the C-terminal domain. Although the evidence suggests that the functions of the two ATP-binding domains overlap, it appears that the N-terminal nucleotide-binding domain of ClpC is particularly concerned with MecA-related functions, whereas the C-terminal domain plays a more general role in the activities of ClpC.
Collapse
Affiliation(s)
- K Turgay
- Public Health Research Institute, 455 First Ave., New York, NY 10016, USA
| | | | | | | |
Collapse
|
47
|
Nakano MM, Hajarizadeh F, Zhu Y, Zuber P. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 2001; 42:383-94. [PMID: 11703662 DOI: 10.1046/j.1365-2958.2001.02639.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
48
|
Haijema BJ, Hahn J, Haynes J, Dubnau D. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 2001; 40:52-64. [PMID: 11298275 DOI: 10.1046/j.1365-2958.2001.02363.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, competence for transformation develops in 5-10% of the cells in a stationary phase culture. These cells exhibit a prolonged lag in the resumption of growth and cell division during the escape from competence. To better understand the basis of this lag, we have characterized competent cultures microscopically. To distinguish the minority of competent cells, a translational fusion between ComK, the competence transcription factor, and the green fluorescent protein (GFP) was used as a marker. Only 5-10% of the cells in a competent culture were fluorescent, indicating that ComK synthesis is an all or nothing event. To validate the identification of competent cells, we demonstrated the coincident expression of comEA, a late competence gene, and comK-gfp. Competent cells resemble stationary phase cells; the majority are single (not in chains), contain single nucleoids, and rarely contain FtsZ rings. Upon dilution into fresh medium, competent cells maintain this appearance for about 2 h. In contrast, the majority of non-competent cells rapidly resume growth, exhibiting chaining, nuclear division and FtsZ-ring formation. The late competence protein ComGA is required for the competence-related block in chromosome replication and cell division. In the competent cells of a comGA mutant culture, chromosomal replication and FtsZ-ring formation were no longer blocked, although competent comGA mutant cells were abnormal in appearance. It is likely that one role for ComGA is to prevent growth, chromosome replication and cell division until ComK can be eliminated by degradation. A mutation in the ATP-binding site of comGA inactivated the protein for transformation but did not prevent it from inhibiting DNA replication and cell division. The buoyant density difference between competent and non-competent cells depends on the competence-specific growth arrest.
Collapse
Affiliation(s)
- B J Haijema
- Public Health Research Institute, 455 First Ave, New York, NY 10016, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The yjzA open reading frame, along with med, constitutes an operon. Disruption of yjzA caused a five-fold enhancement of comG expression, thereby leading to a three-fold-higher transformation efficiency. The expression of comK and the other three late competence operons was not affected significantly in the yjzA-deficient mutant.
Collapse
Affiliation(s)
- M Ogura
- Department of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424, Japan.
| | | |
Collapse
|
50
|
Ashikaga S, Nanamiya H, Ohashi Y, Kawamura F. Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol 2000; 182:2411-5. [PMID: 10762239 PMCID: PMC111301 DOI: 10.1128/jb.182.9.2411-2415.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a Bacillus subtilis natto strain, designated OK2, from a lot of commercial fermented soybean natto and studied its ability to undergo natural competence development using a comG-lacZ fusion at the amyE locus. Although transcription of the late competence genes was not detected in the B. subtilis natto strain OK2 during competence development, these genes were constitutively transcribed in the OK2 strain carrying either the mecA or the clpC mutation derived from B. subtilis 168. In addition, both OK2 mutants exhibited high transformation frequencies, comparable with that observed for B. subtilis 168. Moreover, as expected from these results, overproduction of ComK derived from strain 168 in strain OK2 resulted in a high transformation frequency as well as in induction of the late competence genes. These results clearly indicated that ComK produced in both the mecA and clpC mutants of strain OK2 (ComK(OK2)) could activate the transcription of the whole set of late competence genes and suggested that ComK(OK2) was not activated in strain OK2 during competence development. We therefore sequenced the comS gene of OK2 and compared it with that of 168. The comS(OK2) had a single-base change, resulting in the replacement of Ser (strain 168) by Cys (strain OK2) at position 11.
Collapse
Affiliation(s)
- S Ashikaga
- Laboratory of Molecular Genetics, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|