1
|
Wongdee J, Piromyou P, Songwattana P, Greetatorn T, Teaumroong N, Boonkerd N, Giraud E, Nouwen N, Tittabutr P. Role of two RpoN in Bradyrhizobium sp. strain DOA9 in symbiosis and free-living growth. Front Microbiol 2023; 14:1131860. [PMID: 36876109 PMCID: PMC9977809 DOI: 10.3389/fmicb.2023.1131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
RpoN is an alternative sigma factor (sigma 54) that recruits the core RNA polymerase to promoters of genes. In bacteria, RpoN has diverse physiological functions. In rhizobia, RpoN plays a key role in the transcription of nitrogen fixation (nif) genes. The Bradyrhizobium sp. DOA9 strain contains a chromosomal (c) and plasmid (p) encoded RpoN protein. We used single and double rpoN mutants and reporter strains to investigate the role of the two RpoN proteins under free-living and symbiotic conditions. We observed that the inactivation of rpoNc or rpoNp severely impacts the physiology of the bacteria under free-living conditions, such as the bacterial motility, carbon and nitrogen utilization profiles, exopolysaccharide (EPS) production, and biofilm formation. However, free-living nitrogen fixation appears to be under the primary control of RpoNc. Interestingly, drastic effects of rpoNc and rpoNp mutations were also observed during symbiosis with Aeschynomene americana. Indeed, inoculation with rpoNp, rpoNc, and double rpoN mutant strains resulted in decreases of 39, 64, and 82% in the number of nodules, respectively, as well as a reduction in nitrogen fixation efficiency and a loss of the bacterium's ability to survive intracellularly. Taken together, the results show that the chromosomal and plasmid encoded RpoN proteins in the DOA9 strain both play a pleiotropic role during free-living and symbiotic states.
Collapse
Affiliation(s)
- Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Eric Giraud
- IRD, Plant Health Institute of Montpellier, UMR-PHIM, IRD/CIRAD/INRAE/Université de Montpellier/SupAgro, Montpellier, France
| | - Nico Nouwen
- IRD, Plant Health Institute of Montpellier, UMR-PHIM, IRD/CIRAD/INRAE/Université de Montpellier/SupAgro, Montpellier, France
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
2
|
The LysR-Type Transcriptional Regulator BsrA (PA2121) Controls Vital Metabolic Pathways in Pseudomonas aeruginosa. mSystems 2021; 6:e0001521. [PMID: 34254827 PMCID: PMC8407307 DOI: 10.1128/msystems.00015-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, a facultative human pathogen causing nosocomial infections, has complex regulatory systems involving many transcriptional regulators. LTTR (LysR-Type Transcriptional Regulator) family proteins are involved in the regulation of various processes, including stress responses, motility, virulence, and amino acid metabolism. The aim of this study was to characterize the LysR-type protein BsrA (PA2121), previously described as a negative regulator of biofilm formation in P. aeruginosa. Genome wide identification of BsrA binding sites using chromatin immunoprecipitation and sequencing analysis revealed 765 BsrA-bound regions in the P. aeruginosa PAO1161 genome, including 367 sites in intergenic regions. The motif T-N11-A was identified within sequences bound by BsrA. Transcriptomic analysis showed altered expression of 157 genes in response to BsrA excess; of these, 35 had a BsrA binding site within their promoter regions, suggesting a direct influence of BsrA on the transcription of these genes. BsrA-repressed loci included genes encoding proteins engaged in key metabolic pathways such as the tricarboxylic acid cycle. The panel of loci possibly directly activated by BsrA included genes involved in pilus/fimbria assembly, as well as secretion and transport systems. In addition, DNA pull-down and regulatory analyses showed the involvement of PA2551, PA3398, and PA5189 in regulation of bsrA expression, indicating that this gene is part of an intricate regulatory network. Taken together, these findings reveal the existence of a BsrA regulon, which performs important functions in P. aeruginosa. IMPORTANCE This study shows that BsrA, a LysR-type transcriptional regulator from Pseudomonas aeruginosa, previously identified as a repressor of biofilm synthesis, is part of an intricate global regulatory network. BsrA acts directly and/or indirectly as the repressor and/or activator of genes from vital metabolic pathways (e.g., pyruvate, acetate, and tricarboxylic acid cycle) and is involved in control of transport functions and the formation of surface appendages. Expression of the bsrA gene is increased in the presence of antibiotics, which suggests its induction in response to stress, possibly reflecting the need to redirect metabolism under stressful conditions. This is particularly relevant for the treatment of infections caused by P. aeruginosa. In summary, the findings of this study demonstrate that the BsrA regulator performs important roles in carbon metabolism, biofilm formation, and antibiotic resistance in P. aeruginosa.
Collapse
|
3
|
Akiyama T, Williamson KS, Franklin MJ. Expression and regulation of the Pseudomonas aeruginosa hibernation promoting factor. Mol Microbiol 2018; 110:161-175. [PMID: 29885070 DOI: 10.1111/mmi.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2018] [Indexed: 12/01/2022]
Abstract
Bacterial biofilms contain subpopulations of cells that are dormant and highly tolerant to antibiotics. While dormant, the bacteria must maintain the integrity of macromolecules required for resuscitation. Previously, we showed that hibernation promoting factor (HPF) is essential for protecting Pseudomonas aeruginosa from ribosomal loss during dormancy. In this study, we mapped the genetic components required for hpf expression. Using 5'-RACE and fluorescent protein reporter fusions, we show that hpf is expressed as part of the rpoN operon, but that hpf also has a second promoter (Phpf ) within the rpoN gene. Phpf is active when the cells enter stationary phase, and expression from Phpf is modulated, but not eliminated, in mutant strains impaired in stationary phase transition (ΔdksA2, ΔrpoS and ΔrelA/ΔspoT mutants). The results of reporter gene studies and mRNA folding predictions indicated that the 5' end of the hpf mRNA may also influence hpf expression. Mutations that opened or that stabilized the mRNA hairpin loop structures strongly influenced the amount of HPF produced. The results demonstrate that hpf is expressed independently of rpoN, and that hpf regulation includes both transcriptional and post-transcriptional processes, allowing the cells to produce sufficient HPF during stationary phase to maintain viability while dormant.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Kerry S Williamson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Michael J Franklin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
4
|
Anupama R, Mukherjee A, Babu S. Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem. Genomics 2018; 110:89-97. [DOI: 10.1016/j.ygeno.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
|
5
|
Bartosik AA, Glabski K, Jecz P, Mikulska S, Fogtman A, Koblowska M, Jagura-Burdzy G. Transcriptional profiling of ParA and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa. PLoS One 2014; 9:e87276. [PMID: 24498062 PMCID: PMC3909081 DOI: 10.1371/journal.pone.0087276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022] Open
Abstract
Accurate chromosome segregation to progeny cells is a fundamental process ensuring proper inheritance of genetic material. In bacteria with simple cell cycle, chromosome segregation follows replication initiation since duplicated oriC domains start segregating to opposite halves of the cell soon after they are made. ParA and ParB proteins together with specific DNA sequences are parts of the segregation machinery. ParA and ParB proteins in Pseudomonas aeruginosa are important for optimal growth, nucleoid segregation, cell division and motility. Comparative transcriptome analysis of parAnull and parBnull mutants versus parental P. aeruginosa PAO1161 strain demonstrated global changes in gene expression pattern in logarithmically growing planktonic cultures. The set of genes similarly affected in both mutant strains is designated Par regulon and comprises 536 genes. The Par regulon includes genes controlled by two sigma factors (RpoN and PvdS) as well as known and putative transcriptional regulators. In the absence of Par proteins, a large number of genes from RpoS regulon is induced, reflecting the need for slowing down the cell growth rate and decelerating the metabolic processes. Changes in the expression profiles of genes involved in c-di-GMP turnover point out the role of this effector in such signal transmission. Microarray data for chosen genes were confirmed by RT-qPCR analysis. The promoter regions of selected genes were cloned upstream of the promoter-less lacZ gene and analyzed in the heterologous host E. coliΔlac. Regulation by ParA and ParB of P. aeruginosa was confirmed for some of the tested promoters. Our data demonstrate that ParA and ParB besides their role in accurate chromosome segregation may act as modulators of genes expression. Directly or indirectly, Par proteins are part of the wider regulatory network in P. aeruginosa linking the process of chromosome segregation with the cell growth, division and motility.
Collapse
Affiliation(s)
- Aneta A. Bartosik
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | - Krzysztof Glabski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Jecz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Mikulska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
|
7
|
Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 2010; 18:205-14. [DOI: 10.1016/j.tim.2010.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/20/2022]
|
8
|
Rojo F. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010; 34:658-84. [PMID: 20412307 DOI: 10.1111/j.1574-6976.2010.00218.x] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metabolically versatile free-living bacteria have global regulation systems that allow cells to selectively assimilate a preferred compound among a mixture of several potential carbon sources. This process is known as carbon catabolite repression (CCR). CCR optimizes metabolism, improving the ability of bacteria to compete in their natural habitats. This review summarizes the regulatory mechanisms responsible for CCR in the bacteria of the genus Pseudomonas, which can live in many different habitats. Although the information available is still limited, the molecular mechanisms responsible for CCR in Pseudomonas are clearly different from those of Enterobacteriaceae or Firmicutes. An understanding of the molecular mechanisms underlying CCR is important to know how metabolism is regulated and how bacteria degrade compounds in the environment. This is particularly relevant for compounds that are degraded slowly and accumulate, creating environmental problems. CCR has a major impact on the genes involved in the transport and metabolism of nonpreferred carbon sources, but also affects the expression of virulence factors in several bacterial species, genes that are frequently directed to allow the bacterium to gain access to new sources of nutrients. Finally, CCR has implications in the optimization of biotechnological processes such as biotransformations or bioremediation strategies.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
9
|
Liu HM, Yan A, Zhang XH, Xu YQ. Phenazine-1-carboxylic acid biosynthesis in Pseudomonas Chlororaphis GP72 is positively regulated by the sigma factor RpoN. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9655-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1038] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
11
|
Lee CR, Koo BM, Cho SH, Kim YJ, Yoon MJ, Peterkofsky A, Seok YJ. Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol 2005; 58:334-44. [PMID: 16164569 DOI: 10.1111/j.1365-2958.2005.04834.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system (carbohydrate PTS) have been shown to regulate numerous targets, little such information is available for the nitrogen-metabolic phosphotransferase system (nitrogen-metabolic PTS). To elucidate the physiological role of the nitrogen-metabolic PTS, we carried out phenotype microarray (PM) analysis with Escherichia coli K-12 strain MG1655 deleted for the ptsP gene encoding the first enzyme of the nitrogen-metabolic PTS. Together with the PM data, growth studies revealed that a ptsN (encoding enzyme IIA(Ntr)) mutant became extremely sensitive to leucine-containing peptides (LCPs), while both ptsP (encoding enzyme I(Ntr)) and ptsO (encoding NPr) mutants were more resistant than wild type. The toxicity of LCPs was found to be due to leucine and the dephospho-form of enzyme IIA(Ntr) was found to be necessary to neutralize leucine toxicity. Further studies showed that the dephospho-form of enzyme IIA(Ntr) is required for derepression of the ilvBN operon encoding acetohydroxy acid synthase I catalysing the first step common to the biosynthesis of the branched-chain amino acids.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Laboratory of Macromolecular Interactions, Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Péchy-Tarr M, Bottiglieri M, Mathys S, Lejbølle KB, Schnider-Keel U, Maurhofer M, Keel C. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:260-272. [PMID: 15782640 DOI: 10.1094/mpmi-18-0260] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.
Collapse
Affiliation(s)
- Maria Péchy-Tarr
- Department de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Jacobi S, Schade R, Heuner K. Characterization of the alternative sigma factor sigma54 and the transcriptional regulator FleQ of Legionella pneumophila, which are both involved in the regulation cascade of flagellar gene expression. J Bacteriol 2004; 186:2540-7. [PMID: 15090493 PMCID: PMC387802 DOI: 10.1128/jb.186.9.2540-2547.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned and analyzed Legionella pneumophila Corby homologs of rpoN (encoding sigma(54)) and fleQ (encoding sigma(54) activator protein). Two other genes (fleR and pilR) whose products have a sigma(54) interaction domain were identified in the genome sequence of L. pneumophila. An rpoN mutant strain was nonflagellated and expressed very small amounts of the FlaA (flagellin) protein. Like the rpoN mutant, the fleQ mutant strain of L. pneumophila was also nonflagellated and expressed only small amounts of FlaA protein compared to the amounts expressed by the wild type. In this paper we show that the sigma(54) factor and the FleQ protein are involved in regulation of flagellar gene operons in L. pneumophila. RpoN and FleQ positively regulate the transcription of FliM and FleN, both of which have a sigma(54)-dependent promoter consensus sequence. However, they seemed to be dispensable for transcription of flaA, fliA, or icmR. Our results confirmed a recently described model of the flagellar gene regulation cascade in L. pneumophila (K. Heuner and M. Steinert, Int. J. Med. Microbiol. 293:133-145, 2003). Flagellar gene regulation was found to be different from that of Enterobacteriaceae but seems to be comparable to that described for Pseudomonas or Vibrio spp.
Collapse
Affiliation(s)
- Sebastian Jacobi
- Institut für Molekulare Infektionsbiologie, Julius-Maximilians Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | |
Collapse
|
14
|
Rediers H, Bonnecarrère V, Rainey PB, Hamonts K, Vanderleyden J, De Mot R. Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl Environ Microbiol 2004; 69:6864-74. [PMID: 14602651 PMCID: PMC262291 DOI: 10.1128/aem.69.11.6864-6874.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas stutzeri A15 is a nitrogen-fixing bacterium isolated from paddy rice. Strain A15 is able to colonize and infect rice roots. This strain may provide rice plants with fixed nitrogen and hence promote plant growth. In this article, we describe the use of dapB-based in vivo expression technology to identify P. stutzeri A15 genes that are specifically induced during colonization and infection (cii). We focused on the identification of P. stutzeri A15 genes that are switched on during rice root colonization and are switched off during free-living growth on synthetic medium. Several transcriptional fusions induced in the rice rhizosphere were isolated. Some of the corresponding genes are involved in the stress response, chemotaxis, metabolism, and global regulation, while others encode putative proteins with unknown functions or without significant homology to known proteins.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D. Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:2227-35. [PMID: 12644493 PMCID: PMC151487 DOI: 10.1128/jb.185.7.2227-2235.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor sigma(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa.
Collapse
Affiliation(s)
- Karin Heurlier
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Abstract
A biofilm may be defined as a microbially derived, sessile community characterized by cells that attach to an interface, embed in a matrix of exopolysaccharide, and demonstrate an altered phenotype. This review covers the current understanding of the nature of biofilms and the impact that molecular interactions may have on biofilm development and phenotype using the motile gram-negative rod Pseudomonas aeruginosa and the nonmotile gram-positive cocci Staphylococcus aureus as examples.
Collapse
Affiliation(s)
- Mark E Shirtliff
- Center for Biofilm Engineering, Montana State University, Bozeman 59717, USA
| | | | | |
Collapse
|
17
|
Hendrickson EL, Plotnikova J, Mahajan-Miklos S, Rahme LG, Ausubel FM. Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol 2001; 183:7126-34. [PMID: 11717271 PMCID: PMC95561 DOI: 10.1128/jb.183.24.7126-7134.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the rpoN (ntrA, glnF) gene encoding the alternate sigma factor sigma(54) from the opportunistic multihost pathogen Pseudomonas aeruginosa strain PA14. A marker exchange protocol was used to construct the PA14 rpoN insertional mutation rpoN::Gen(r). PA14 rpoN::Gen(r) synthesized reduced levels of pyocyanin and displayed a variety of phenotypes typical of rpoN mutants, including a lack of motility and the failure to grow on nitrate, glutamate, or histidine as the sole nitrogen source. Compared to wild-type PA14, rpoN::Gen(r) was ca. 100-fold less virulent in a mouse thermal injury model and was significantly impaired in its ability to kill the nematode Caenorhabditis elegans. In an Arabidopsis thaliana leaf infectivity assay, although rpoN::Gen(r) exhibited significantly reduced attachment to trichomes, stomata, and the epidermal cell surface, did not attach perpendicularly to or perforate mesophyll cell walls, and proliferated less rapidly in Arabidopsis leaves, it nevertheless elicited similar disease symptoms to wild-type P. aeruginosa PA14 at later stages of infection. rpoN::Gen(r) was not impaired in virulence in a Galleria mellonella (greater wax moth) pathogenicity model. These data indicate that rpoN does not regulate the expression of any genes that encode virulence factors universally required for P. aeruginosa pathogenicity in diverse hosts.
Collapse
Affiliation(s)
- E L Hendrickson
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | | |
Collapse
|
18
|
Cases I, Velázquez F, de Lorenzo V. Role of ptsO in carbon-mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid. J Bacteriol 2001; 183:5128-33. [PMID: 11489866 PMCID: PMC95389 DOI: 10.1128/jb.183.17.5128-5133.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An investigation was made into the role of the ptsO gene in carbon source inhibition of the Pu promoter belonging to the Pseudomonas putida upper TOL (toluene degradation) operon. ptsO is coexpressed with ptsN, the loss of which is known to render Pu unresponsive to glucose. Both ptsN and ptsO, coding for the phosphoenolpyruvate:sugar phosphotransferase system (PTS) family proteins IIA(Ntr) and NPr, respectively, have been mapped adjacent to the rpoN gene of P. putida. The roles of these two genes in the responses of Pu to glucose were monitored by lacZ reporter technology with a P. putida strain engineered with all regulatory elements in monocopy gene dosage. In cells lacking ptsO, Pu activity seemed to be inhibited even in the absence of glucose. A functional relationship with ptsN was revealed by the phenotype of a double ptsN ptsO mutant that was equivalent to the phenotype of a mutant with a single ptsN disruption. Moreover, phosphorylation of the product of ptsO seemed to be required for C inhibition of Pu, since an H15A change in the NPr sequence that prevents phosphorylation of this conserved amino acid residue did not restore the wild-type phenotype. A genomic search for proteins able to phosphorylate ptsO revealed the presence of two open reading frames, designated ptsP and mtp, with the potential to encode PTS type I enzymes in P. putida. However, neither an insertion in ptsP nor an insertion in mtp resulted in a detectable change in inhibition of Pu by glucose. These results indicate that some PTS proteins have regulatory functions in P. putida that are independent of their recognized role in sugar transport in other bacteria.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología del CSIC, Madrid 28049, Spain
| | | | | |
Collapse
|
19
|
Alarcón-Chaidez FJ, Bender CL. Analysis of the rpoN locus in the plant pathogenic bacterium, Pseudomonas syringae pv. glycinea. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:77-84. [PMID: 11697147 DOI: 10.3109/10425170109042054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
sigma 54, which is encoded by rpoN, is required for a variety of metabolic functions in bacteria including the utilization of alternative carbon and nitrogen sources, nitrogen fixation, and the expression of virulence determinants. Sequence analysis of a 3,020-bp DNA fragment from the plant pathogen Pseudomonas syringae pv. glycinea PG4180 revealed four ORFs designated rpoN, orfA, orfB, and orfC delta, which were related to rpoN and rpoN-associated genes from other microorganisms. The rpoN upstream region in P. syringae contained two overlapping promoters, which may suggest a complex regulatory pattern. This is the first study describing the organization of the rpoN locus in P. syringae.
Collapse
Affiliation(s)
- F J Alarcón-Chaidez
- 127 Noble Research Center, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
20
|
Mouz S, Coursange E, Toussaint A. Ralstonia metallidurans CH34 RpoN sigma factor and the control of nitrogen metabolism and biphenyl utilization. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1947-1954. [PMID: 11429471 DOI: 10.1099/00221287-147-7-1947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ralstonia metallidurans CH34 can use biphenyl as carbon and energy source when provided with the catabolic transposon Tn4371. Previous results suggested that this property was dependent on the RNA polymerase subunit sigma(54). The authors sequenced the CH34 rpoN gene and flanking DNA and isolated a CH34 rpoN-deficient strain. Analysis of the sequence revealed a set of features conserved in all rpoN genes and flanking DNA regions previously analysed in other bacterial species. Nevertheless, despite this conservation, CH34 differed even from the closely related strain R. eutropha H16 by one particular ORF. The rpoN null mutation did not affect expression of the Tn4371 bph operon although it did alter the ability of the Tn4371 host strain to grow on biphenyl. The CH34 rpoN mutant had lost the capacity for autotrophic growth and for responding to poor nitrogen sources by a decrease in urease and proline oxidase activity. CH34 RNA polymerase sigma(54) thus positively controls autotrophy as well as nitrogen metabolism but only indirectly affects Tn4371-directed biphenyl utilization.
Collapse
Affiliation(s)
- Sébastien Mouz
- Department of Genetics, The John Innes Centre, Norwich NR4 7UH, UK3
- Laboratoire de Microbiologie, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex-9, France1
| | - Evelyne Coursange
- Laboratoire de Microbiologie, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex-9, France1
| | - Ariane Toussaint
- Laboratoire de Génétique des Prokaryotes, Université Libre de Bruxelles, IBBM 12, rue de Pr R. Jeneer et J. Brachet, 6041 Gosselies, Belgium2
- Laboratoire de Microbiologie, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex-9, France1
| |
Collapse
|
21
|
Cases I, Lopez JA, Albar JP, De Lorenzo V. Evidence of multiple regulatory functions for the PtsN (IIA(Ntr)) protein of Pseudomonas putida. J Bacteriol 2001; 183:1032-7. [PMID: 11208802 PMCID: PMC94971 DOI: 10.1128/jb.183.3.1032-1037.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ptsN gene of Pseudomonas putida encodes IIA(Ntr), a protein of the phosphoenol pyruvate:sugar phosphotransferase (PTS) system which is required for the C source inhibition of the sigma(54)-dependent promoter Pu of the TOL (toluate degradation) plasmid pWW0. Using two-dimensional gel electrophoresis, we have examined the effect of ptsN disruption on the general expression pattern of P. putida. To this end, cells were grown in the presence or absence of glucose, and a 1,117-spot subset of the P. putida proteome was used as a reference for comparisons. Among all gene products whose expression was lowered by this carbon source (247 spots [about 22%]), only 6 behaved as Pu (i.e., were depressed in the ptsN background). This evidenced only a minor role for IIA(Ntr) in the extensive inhibition of gene expression in P. putida caused by glucose. However, the same experiments revealed a large incidence of glucose-independent effects brought about by the ptsN mutation. As many as 108 spots (ca. 9% of the cell products analyzed) were influenced, positively or negatively, by the loss of IIA(Ntr). By matching this pattern with that of an rpoN::OmegaKm strain of P. putida, which lacks the sigma(54) protein, we judge that most proteins whose expression was affected by ptsN were unrelated to the alternative sigma factor. These data suggest a role of IIA(Ntr) as a general regulator, independent of the presence of repressive carbon sources and not limited to sigma(54)-dependent genes.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Yang H, Matewish M, Loubens I, Storey DG, Lam JS, Jin S. migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2509-2519. [PMID: 11021926 DOI: 10.1099/00221287-146-10-2509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen which poses a major threat to patients with cystic fibrosis (CF). Excessive amounts of mucus present in the lungs of CF patients promotes the colonization of P. aeruginosa. The migA gene, encoding a putative glycosyltransferase, has been shown to be highly inducible by respiratory mucus derived from CF patients. In this study, it is further demonstrated by population transcript analysis that the migA gene is highly expressed in the CF lung environment. Deletion analysis of the migA promoter identified a las-box-like sequence commonly found in promoters that are responsive to quorum sensing regulation. Further analysis of migA expression in quorum-sensing-defective strains, as well as its expression in response to autoinducer molecules, demonstrated that migA is regulated by the RhlI/RhlR quorum sensing regulatory system. Functionally, as the MigA sequence homology data suggested, the migA gene indeed affects the structure of LPS in P. aeruginosa. Increased expression of the migA gene results in a loss of core-plus-one LPS, while having no obvious effect on the long-chain O-antigen-bearing LPS. Although the exact biological role of the core-plus-one LPS is not clear, these experimental results suggest that migA up-regulation in the CF lung environment is part of the adaptive response which confers on P. aeruginosa a survival advantage.
Collapse
Affiliation(s)
- Hongjiang Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA1
| | - Mauricia Matewish
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada2
| | - Isabelle Loubens
- Department of Biological Sciences, University of Calgary, Calgary, Canada3
| | - Douglas G Storey
- Department of Biological Sciences, University of Calgary, Calgary, Canada3
| | - Joseph S Lam
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada2
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA1
| |
Collapse
|
23
|
Hendrickson EL, Guevera P, Ausubel FM. The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. J Bacteriol 2000; 182:3508-16. [PMID: 10852884 PMCID: PMC101944 DOI: 10.1128/jb.182.12.3508-3516.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Glucuronidase (uidA) reporter gene fusions were constructed for the hrpZ, hrpL, and hrpS genes from the phytopathogen Pseudomonas syringae pv. maculicola strain ES4326. These reporters, as well as an avrRpt2-uidA fusion, were used to measure transcriptional activity in ES4326 and a ES4326 rpoN mutant. rpoN was required for the expression of avrRpt2, hrpZ, and hrpL in vitro in minimal media and in vivo when infiltrated into Arabidopsis thaliana leaves. In contrast, the expression of hrpS was essentially the same in wild-type and rpoN mutant strains. Constitutive expression of hrpL in an rpoN mutant restored hrpZ transcription to wild-type levels, restored the hypersensitive response when infiltrated into tobacco (Nicotiana tobacum), and partially restored the elicitation of virulence-related symptoms but not growth when infiltrated into Arabidopsis leaves. These data indicate that rpoN-mediated control of hrp gene expression acts at the level of hrpL and that in planta growth of P. syringae is not required for the elicitation of disease symptoms.
Collapse
Affiliation(s)
- E L Hendrickson
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, Boston 02114, USA
| | | | | |
Collapse
|
24
|
Hendrickson EL, Guevera P, Peñaloza-Vàzquez A, Shao J, Bender C, Ausubel FM. Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. J Bacteriol 2000; 182:3498-507. [PMID: 10852883 PMCID: PMC101941 DOI: 10.1128/jb.182.12.3498-3507.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the rpoN (ntrA and glnF) gene encoding sigma(54) from the phytopathogen Pseudomonas syringae pv. maculicola strain ES4326. The P. syringae ES4326 rpoN gene complemented Pseudomonas aeruginosa, Escherichia coli, and Klebsiella aerogenes rpoN mutants for a variety of rpoN mutant phenotypes, including the inability to utilize nitrate as sole nitrogen source. DNA sequence analysis of the P. syringae ES4326 rpoN gene revealed that the deduced amino acid sequence was most similar (86% identity; 95% similarity) to the sigma(54) protein encoded by the Pseudomonas putida rpoN gene. A marker exchange protocol was used to construct an ES4326 rpoN insertional mutation, rpoN::Km(r). In contrast to wild-type ES4326, ES4326 rpoN::Km(r) was nonmotile and could not utilize nitrate, urea, C(4)-dicarboxylic acids, several amino acids, or concentrations of ammonia below 2 mM as nitrogen sources. rpoN was essential for production of the phytotoxin coronatine and for expression of the structural genes encoding coronamic acid. In addition, ES4326 rpoN::Km(r) did not multiply or elicit disease symptoms when infiltrated into Arabidopsis thaliana leaves, did not elicit the accumulation of several Arabidopsis defense-related mRNAs, and did not elicit a hypersensitive response (HR) when infiltrated into tobacco (Nicotiana tabacum) leaves. Furthermore, whereas P. syringae ES4326 carrying the avirulence gene avrRpt2 elicited an HR when infiltrated into Arabidopsis ecotype Columbia leaves, ES4326 rpoN::Km(r) carrying avrRpt2 elicited no response. Constitutive expression of ES4326 hrpL in ES4326 rpoN::Km(r) partially restored defense-related mRNA accumulation, showing a direct role for the hrp cluster in host defense gene induction in a compatible host-pathogen interaction. However, constitutive expression of hrpL in ES4326 rpoN::Km(r) did not restore coronatine production, showing that coronatine biosynthesis requires factors other than hrpL.
Collapse
Affiliation(s)
- E L Hendrickson
- Department of Genetics, Harvard Medical School, Bosston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
25
|
Boyd JM. Localization of the histidine kinase PilS to the poles of Pseudomonas aeruginosa and identification of a localization domain. Mol Microbiol 2000; 36:153-62. [PMID: 10760172 DOI: 10.1046/j.1365-2958.2000.01836.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcription of the type IV pilus subunit gene of Pseudomonas aeruginosa is controlled by a two-component signal transduction system. PilS, the histidine kinase, is membrane bound and PilR, its cognate response regulator, is cytoplasmic. The signal that activates PilS is unknown. PilS has three domains: (i) The N-terminus, predicted to form six transmembrane (TM) helices; (ii) a central linker domain; and (iii) the C-terminal transmitter domain containing all the conserved residues of sensor kinases. A translational fusion of the gfp gene (green fluorescent protein) to the 3' end of pilS was used to determine the position of PilS in the bacterial cell. Epifluorescence microscopy revealed that PilS is retained to the poles of P. aeruginosa but is distributed evenly about the membrane of Escherichia coli. Deletions of the PilS-GFP fusion revealed that the TM domain was sufficient and necessary to bring GFP to the membrane of P. aeruginosa and E. coli but was not sufficient to confine GFP to the poles. Retention to the poles of P. aeruginosa required both the TM and linker domains. Replacement of the PilS TM domain with an E. coli membrane protein, MalG, still allowed polar localization. Therefore, the PilS TM domain positions the linker domain close to the membrane allowing it to interact with the putative polar anchor which is specific to P. aeruginosa.
Collapse
Affiliation(s)
- J M Boyd
- University of Calgary, Microbiology and Infectious Diseases, 3330 Hospital Drive, N.W. Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
26
|
Rabus R, Reizer J, Paulsen I, Saier MH. Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J Biol Chem 1999; 274:26185-91. [PMID: 10473571 DOI: 10.1074/jbc.274.37.26185] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) phosphorylates sugars and regulates cellular metabolic processes using a phosphoryl transfer chain including the general energy coupling proteins, Enzyme I (EI) and HPr as well as the sugar-specific Enzyme II complexes. Analysis of the Escherichia coli genome has revealed the presence of 5 paralogues of EI and 5 paralogues of HPr, most of unknown function. The ptsP gene encodes an EI paralogue designated Enzyme I(nitrogen) (EI(Ntr)), and two genes located in the rpoN operon encode PTS protein paralogues, NPr and IIA(Ntr), both implicated in the regulation of sigma(54) activity. The ptsP gene was polymerase chain reaction amplified from the E. coli chromosome and cloned into an overexpression vector allowing the overproduction and purification of EI(Ntr). EI(Ntr) was shown to phosphorylate NPr in vitro using either a [(32)P]PEP-dependent protein phosphorylation assay or a quantitative sugar phosphorylation assay. EI(Ntr) phosphorylated NPr but not HPr, whereas Enzyme I exhibited a strong preference for HPr. These two pairs of proteins (EI(Ntr)/NPr and EI/HPr) thus exhibit little cross-reactivity. Phosphoryl transfer from PEP to NPr catalyzed by EI(Ntr) has a pH optimum of 8.0, is dependent on Mg(2+), is stimulated by high ionic strength, and exhibits two K(m) values for NPr (2 and 10 microM) possibly because of negative cooperativity. The results suggest that E. coli possesses at least two distinct PTS phosphoryl transfer chains, EI(Ntr) --> NPr --> IIA(Ntr) and EI --> HPr --> IIA(sugar). Sequence comparisons allow prediction of residues likely to be important for specificity. This is the first report demonstrating specificity at the level of the energy coupling proteins of the PTS.
Collapse
Affiliation(s)
- R Rabus
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | |
Collapse
|
27
|
Cases I, Pérez-Martín J, de Lorenzo V. The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma54-dependent Pu promoter of the TOL plasmid. J Biol Chem 1999; 274:15562-8. [PMID: 10336451 DOI: 10.1074/jbc.274.22.15562] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene cluster adjacent to the sequence of rpoN (encoding sigma factor sigma54) of Pseudomonas putida has been studied with respect to the C source regulation of the Pu promoter of the upper TOL (toluene catabolism) operon. The region includes four open reading frames (ORFs), two of which (named ptsN and ptsO genes) encode proteins similar to components of the phosphoenolpyruvate:sugar phosphotransferase system. Each of the four genes was disrupted with a nonpolar insertion, and the effects in the inhibition caused by glucose on Pu activity were inspected with a lacZ reporter system. Although cells lacking ORF102, ORF284, and ptsO did not display any evident phenotype under the conditions tested, the loss of ptsN, which encodes the IIANtr protein, made Pu unresponsive to repression by glucose. The ptsN mutant had rates of glucose/gluconate consumption identical to those of the wild type, thus ruling out indirect effects mediated by the transport of the carbohydrate. A site-directed ptsN mutant in which the conserved phospho-acceptor site His68 of IIANtr was replaced by an aspartic acid residue made Pu blind to the presence or absence of glucose, thus supporting the notion that phosphorylation of IIANtr mediates the C source inhibition of the promoter. These data substantiate the existence of a molecular pathway for co-regulation of some sigma54 promoters in which IIANtr is a key protein intermediate.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | | | | |
Collapse
|
28
|
Wang J, Li C, Yang H, Mushegian A, Jin S. A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice. J Bacteriol 1998; 180:6764-8. [PMID: 9852028 PMCID: PMC107787 DOI: 10.1128/jb.180.24.6764-6768.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic locus of Pseudomonas aeruginosa was identified that is highly and specifically inducible during infection of neutropenic mice. This locus, ppkA, encodes a protein that is highly homologous to eukaryote-type serine/threonine protein kinases. A ppkA null mutant strain shows reduced virulence in neutropenic mice compared to the wild type. Overexpression of the PpkA protein greatly inhibited the growth of Escherichia coli or P. aeruginosa. However, a single amino acid change at the catalytic site of the kinase domain eliminated the toxic effect of PpkA on bacterial cells, suggesting that the kinase domain of PpkA is functional within bacterial cells.
Collapse
Affiliation(s)
- J Wang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
29
|
Leary BA, Ward-Rainey N, Hoover TR. Cloning and characterization of Planctomyces limnophilus rpoN: complementation of a Salmonella typhimurium rpoN mutant strain. Gene 1998; 221:151-7. [PMID: 9852960 DOI: 10.1016/s0378-1119(98)00423-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rpoN gene, which encodes the alternative sigma factor sigma 54, was cloned from the budding, peptidoglycan-less bacterium Planctomyces limnophilus. P. limnophilus rpoN complemented the Ntr- phenotype of a Salmonella typhimurium rpoN mutant strain. The P. limnophilus rpoN gene encoded a predicted polypeptide that was 495 residues in length and shared a significant homology with other members of the sigma 54 family. The protein sequence displayed all of the characteristic motifs found in members of this family, including the C-terminal helix-turn-helix motif and the well-conserved RpoN box. A potential sigma 54-dependent activator was also identified in P. limnophilus. These findings extend the range of phylogenetic groups within the Domain Bacteria that are known to contain sigma 54.
Collapse
Affiliation(s)
- B A Leary
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
30
|
Härtig E, Zumft WG. The requirement of RpoN (sigma factor sigma54) in denitrification by Pseudomonas stutzeri is indirect and restricted to the reduction of nitrite and nitric oxide. Appl Environ Microbiol 1998; 64:3092-5. [PMID: 9687481 PMCID: PMC106823 DOI: 10.1128/aem.64.8.3092-3095.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rpoN region of Pseudomonas stutzeri was cloned, and an rpoN null mutant was constructed. RpoN was not essential for denitrification in this bacterium but affected the expression levels and enzymatic activities of cytochrome cd1 nitrite reductase and nitric oxide reductase, whereas those of respiratory nitrate reductase and nitrous oxide reductase were comparable to wild-type levels. Since the transcription of the structural genes nirS and norCB, coding for nitrite reductase and the nitric oxide reductase complex, respectively, proceeded unabated, our data indicate a posttranslational process for the two key enzymes of denitrification depending on RpoN.
Collapse
Affiliation(s)
- E Härtig
- Lehrstuhl für Mikrobiologie der Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
31
|
Klose KE, Mekalanos JJ. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol Microbiol 1998; 28:501-20. [PMID: 9632254 DOI: 10.1046/j.1365-2958.1998.00809.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vibrio cholerae, the bacterium that causes cholera, has a pathogenic cycle consisting of a free-swimming phase outside its host, and a sessile virulent phase when colonizing the human small intestine. We have cloned the V. cholerae homologue of the rpoN gene (encoding sigma54) and determined its role in the cholera pathogenic cycle by constructing an rpoN null mutant. The V. cholerae rpoN mutant is non-motile; examination of this mutant by electron microscopy revealed that it lacks a flagellum. In addition to flagellar synthesis, sigma54 is involved in glutamine synthetase expression. Moreover, the rpoN mutant is defective for colonization in an infant mouse model of cholera. We present evidence that the colonization defect is distinct from the non-motile and Gln phenotypes of the rpoN mutant, implicating multiple and distinct roles of sigma54 during the V. cholerae pathogenic cycle. RNA polymerase containing sigma54 (sigma54-holoenzyme) has an absolute requirement for an activator protein to initiate transcription. We have identified three regulatory genes, flrABC (flagellar regulatory proteins ABC) that are additionally required for flagellar synthesis. The flrA and flrC gene products are sigma54-activators and form a flagellar transcription cascade. flrA and flrC mutants are also defective for colonization; this phenotype is probably independent of non-motility. An flrC constitutive mutation (M114-->I) was isolated that is independent of its cognate kinase FlrB. Expression of the constitutive FlrCM114-->I from the cholera toxin promoter resulted in a change in cell morphology, implicating involvement of FlrC in cell division. Thus, sigma54 holoenzyme, FlrA and FlrC transcribe genes for flagellar synthesis and possibly cell division during the free-swimming phase of the V. cholerae life cycle, and some as yet unidentified gene(s) that aid colonization within the host.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Michiels J, Van Soom T, D'hooghe I, Dombrecht B, Benhassine T, de Wilde P, Vanderleyden J. The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol 1998; 180:1729-40. [PMID: 9537369 PMCID: PMC107084 DOI: 10.1128/jb.180.7.1729-1740.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The rpoN region of Rhizobium etli was isolated by using the Bradyrhizobium japonicum rpoN1 gene as a probe. Nucleotide sequence analysis of a 5,600-bp DNA fragment of this region revealed the presence of four complete open reading frames (ORFs), ORF258, rpoN, ORF191, and ptsN, coding for proteins of 258, 520, 191, and 154 amino acids, respectively. The gene product of ORF258 is homologous to members of the ATP-binding cassette-type permeases. ORF191 and ptsN are homologous to conserved ORFs found downstream from rpoN genes in other bacterial species. Unlike in most other microorganisms, rpoN and ORF191 are separated by approximately 1.6 kb. The R. etli rpoN gene was shown to control in free-living conditions the production of melanin, the activation of nifH, and the metabolism of C4-dicarboxylic acids and several nitrogen sources (ammonium, nitrate, alanine, and serine). Expression of the rpoN gene was negatively autoregulated and occurred independently of the nitrogen source. Inactivation of the ptsN gene resulted in a decrease of melanin synthesis and nifH expression. In a search for additional genes controlling the synthesis of melanin, an R. etli mutant carrying a Tn5 insertion in ptsA, a gene homologous to the Escherichia coli gene coding for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system, was obtained. The R. etli ptsA mutant also displayed reduced expression of nifH. The ptsN and ptsA mutants also displayed increased sensitivity to the toxic effects of malate and succinate. Growth of both mutants was inhibited by these C4-dicarboxylates at 20 mM at pH 7.0, while wild-type cells grow normally under these conditions. The effect of malate occurred independently of the nitrogen source used. Growth inhibition was decreased by lowering the pH of the growth medium. These results suggest that ptsN and ptsA are part of the same regulatory cascade, the inactivation of which renders the cells sensitive to toxic effects of elevated concentrations of malate or succinate.
Collapse
Affiliation(s)
- J Michiels
- F. A. Janssens Laboratory of Genetics, K.U. Leuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Type IV pili are required for social gliding motility in Myxococcus xanthus. In this work, the expression of pilin (the pilA gene product) during vegetative growth and fruiting-body development was examined. A polyclonal antibody against the pilA gene product (prepilin) was prepared, along with a pilA-lacZ fusion, and was used to assay expression of pilA in M. xanthus in different mutant backgrounds. pilA expression required the response regulator pilR but was negatively regulated by the putative sensor kinase pilS. pilA expression did not require pilB, pilC, or pilT. pilA was also autoregulated; a mutation which altered an invariant glutamate five residues from the presumed prepilin processing site eliminated this autoregulation, as did a deletion of the pilA gene. Primer extension and S1 nuclease analysis identified a sigma54 promoter upstream of pilA, consistent with the homology of pilR to the NtrC family of response regulators. Expression of pilA was found to be developmentally regulated; however, the timing of this expression pattern was not entirely dependent on pilS or pilR. Finally, pilA expression was induced by high nutrient concentrations, an effect that was also not dependent on pilS or pilR.
Collapse
Affiliation(s)
- S S Wu
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
34
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
35
|
Janakiraman RS, Brun YV. Transcriptional and mutational analyses of the rpoN operon in Caulobacter crescentus. J Bacteriol 1997; 179:5138-47. [PMID: 9260957 PMCID: PMC179373 DOI: 10.1128/jb.179.16.5138-5147.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The alternative sigma factor sigma54 is required for the biogenesis of both the flagellum and the stalk in Caulobacter crescentus. The DNA sequence downstream of the sigma54 gene (rpoN) has been determined, revealing three open reading frames (ORFs) encoding peptides of 203, 208, and 159 amino acids. ORF208 and ORF159 are homologous to ORFs found downstream of rpoN in other microorganisms. The organization of this region in C. crescentus is similar to that in other bacteria, with the exception of an additional ORF, ORF203, immediately downstream from rpoN. There is a single temporally regulated promoter that drives the expression of both rpoN and ORF203. Promoter probe analysis indicates the presence of another promoter downstream from ORF203 which exhibits a temporal control that is different from that of the rpoN promoter. Mutational analysis was used to address the function of the proteins encoded by these three downstream ORFs. The mutations have no effect on the transcription of previously known sigma54-dependent flagellar promoters except for a slight effect of an ORF159 mutation on transcription of fljK.
Collapse
Affiliation(s)
- R S Janakiraman
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
36
|
Wang J, Mushegian A, Lory S, Jin S. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc Natl Acad Sci U S A 1996; 93:10434-9. [PMID: 8816818 PMCID: PMC38402 DOI: 10.1073/pnas.93.19.10434] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic human pathogen, is a major causative agent of mortality and morbidity in immunocompromised patients and those with cystic fibrosis genetic disease. To identify new virulence genes of P. aeruginosa, a selection system was developed based on the in vivo expression technology (IVET) that was first reported in Salmonella system. An adenine-requiring auxotrophic mutant strain of P. aeruginosa was isolated and found avirulent on neutropenic mice. A DNA fragment that can complement the mutant strain, containing purEK operon that is required for de novo biosynthesis of purine, was sequenced and used in the IVET vector construction. By applying the IVET selection system to a neutropenic mouse infection model, genetic loci that are specifically induced in vivo were identified. Twenty-two such loci were partially sequenced and analyzed. One of them was a well-studied virulence factor, pyochelin receptor (FptA), that is involved in iron acquisition. Fifteen showed significant homology to reported sequences in GenBank, while the remaining six did not. One locus, designated np20, encodes an open reading frame that shares amino acid sequence homology to transcriptional regulators, especially to the ferric uptake regulator (Fur) proteins of other bacteria. An insertional np20 null mutant strain of P. aeruginosa did not show a growth defect on laboratory media; however, its virulence on neutropenic mice was significantly reduced compared with that of a wild-type parent strain, demonstrating the importance of the np20 locus in the bacterial virulence. The successful isolation of genetic loci that affect bacterial virulence demonstrates the utility of the IVET system in identification of new virulence genes of P. aeruginosa.
Collapse
Affiliation(s)
- J Wang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | |
Collapse
|
37
|
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74. [PMID: 8840786 PMCID: PMC239456 DOI: 10.1128/mr.60.3.539-574.1996] [Citation(s) in RCA: 854] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|
38
|
Leoni L, Ciervo A, Orsi N, Visca P. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J Bacteriol 1996; 178:2299-313. [PMID: 8636031 PMCID: PMC177938 DOI: 10.1128/jb.178.8.2299-2313.1996] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pvdA gene, encoding the enzyme L-ornithine N5-oxygenase, catalyzes a key step of the pyoverdin biosynthetic pathway in Pseudomonas aeruginosa. Expression studies with a promoter probe vector made it possible to identify three tightly iron-regulated promoter regions in the 5.9-kb DNA fragment upstream of pvdA. The promoter governing pvdA expression was located within the 154-bp sequence upstream of the pvdA translation start site. RNA analysis showed that expression of PvdA is iron regulated at the transcriptional level. Primer extension and S1 mapping experiments revealed two 5'termini of the pvdA transcript, 68 bp (T1) and 43 bp (T2) 5' of the PvdA initiation. The pvdA transcripts were monocystronic, with T1 accounting for 90% of the pvdA mRNA. Fur box-like sequences were apparently absent in the regions 5' of pvdA transcription start sites. A sequence motif resembling the -10 hexamer of AlgU-dependent promoters and the iron starvation box of pyoverdin genes controlled by the sigmaE -like factor PvdS were identified 5' of the T1 start site. The minimum DNA region required for iron-regulated promoter activity was mapped from bp -41 to -154 relative to the ATG translation start site of pvdA. We used pvdA'::lacZ transcriptional fusions and Northern (RNA) analyses to study the involvement of Fur and PvdS in the iron-regulated expression of pvdA. Two fur mutants of P. aeruginosa were much less responsive than wild-type PAO1 to the iron-dependent regulation of pvdA expression. Transcription from the pvdA promoter did not occur in a heterologous host unless in the presence of the pvdS gene in trans and was abrogated in a pvdS mutant of P. aeruginosa. Interaction of the Fur repressor with a 150-bp fragment encompassing the pvdS promoter was demonstrated in vivo by the Fur titration assay and confirmed in vitro by gel retardation experiments with a partially purified Fur preparation. Conversely, the promoter region of pvdA did not interact with Fur. Our results support the hypothesis that the P. aeruginosa Fur repressor indirectly controls pvdA transcription through the intermediary sigma factor PvdS; in the presence of sufficient iron, Fur blocks the pvdS promoter, thus preventing PvdS expression and consequently transcription of pvdA and other pyoverdin biosynthesis genes.
Collapse
Affiliation(s)
- L Leoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | | |
Collapse
|
39
|
Hungerer C, Troup B, Römling U, Jahn D. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:375-80. [PMID: 7565600 DOI: 10.1007/bf02191605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rate-limiting step in the biosynthesis of tetrapyrroles is the formation of 5-aminolevulinic acid (ALA). In Pseudomonas aeruginosa ALA is synthesized via a two-step reaction from aminoacylated tRNA(Glu) by the action of glutamyl-tRNA reductase and glutamate-1-semialdehyde-2,1-amino mutase. To initiate an investigation of the regulation of the second step in ALA formation, the hemL gene was cloned from P. aeruginosa by complementation of an Escherichia coli hemL mutant. An open reading frame of 1284 bp encoding a protein of 427 amino acids with a calculated molecular mass of 45,404 Da was identified. The hemL gene was mapped to the SpeI fragment Z and the DpnI fragment J1 of the P. aeruginosa chromosome corresponding approximately to min 0.3-0.9. One transcription start site was located 280 bp upstream of the translational start site of the hemL gene. No classical sigma 70-dependent promoter was detected. Oxygen stress induced by the addition of H2O2 to the growth medium led to an approximately 3.5-fold increase in hemL expression as determined by mRNA dot blot assays. Anaerobic denitrifying growth led to a 2-fold stimulation of hemL transcription. Two additional open reading frames were detected downstream of the hemL gene. One open reading frame (orf1) of 549 bp encodes a protein of 182 amino acids with a calculated molecular mass of 19,638 Da.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
40
|
Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 1995; 23:2685-91. [PMID: 7651829 PMCID: PMC307093 DOI: 10.1093/nar/23.14.2685] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity.
Collapse
Affiliation(s)
- A D Baxevanis
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
41
|
Fyfe JA, Carrick CS, Davies JK. The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol 1995; 177:3781-7. [PMID: 7601844 PMCID: PMC177096 DOI: 10.1128/jb.177.13.3781-3787.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type 4 pili are essential for virulence in Neisseria gonorrhoeae. The gonococcal pilin subunit is encoded by pilE, upstream of which three putative promoter sequences (P1, P2, and P3) have been identified. P1 and P2 are sigma 70-like promoters and are functional when a PpiE::cat transcriptional fusion is expressed in Escherichia coli DH5 alpha. P3 is sigma 54 dependent and overlaps the P1 sequence. Site-directed mutagenesis of the pilE promoters followed by transcriptional analysis in E. coli indicated that in the absence of an appropriate activator protein, binding of RNA polymerase-sigma 54 to P3 inhibits transcription from P1 on the order of 30-fold. Transcription from P3 was undetectable in E. coli. However, PilR-dependent, P3-associated expression was detected in Pseudomonas aeruginosa PAK containing a PpilE::cat fusion, with P3 the only intact promoter. A similar analysis was performed on gonococcal reporter strains containing wild-type and mutated PpilE::cat cassettes recombined into the chromosome. In such piliated gonococcal recombinants cultured in vitro, P1 was responsible for cat expression and almost certainly for transcription of pilE. Transcription from P2 and P3 was not detectable under these conditions. Inhibition of transcription from P1 by sigma 54 binding to P3 was not apparent in N. gonorrhoeae MS11-A, suggesting that sigma 54 was either absent or unable to bind to P3 in these cells.
Collapse
Affiliation(s)
- J A Fyfe
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
42
|
Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 1995; 270:4822-39. [PMID: 7876255 DOI: 10.1074/jbc.270.9.4822] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two rpoN-linked delta Tn10-kan insertions suppress the conditionally lethal erats allele. One truncates rpoN while the second disrupts another gene (ptsN) in the rpoN operon and does not affect classical nitrogen regulation. Neither alter expression of era indicating that suppression is post-translational. Plasmid clones of ptsN prevent suppression by either disruption mutation indicating that this gene is important for lethality caused by erats. rpoN and six neighboring genes were sequenced and compared with sequences in the database. Two of these genes encode proteins homologous to Enzyme IIAFru and HPr of the phosphoenolpyruvate:sugar phosphotransferase system. We designate these proteins IIANtr (ptsN) and NPr (npr). Purified IIANtr and NPr exchange phosphate appropriately with Enzyme I, HPr, and Enzyme IIA proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Several sugars and tricarboxylic acid cycle intermediates inhibited growth of the ptsN disruption mutant on medium containing an amino acid or nucleoside base as a combined source of nitrogen, carbon, and energy. This growth inhibition was relieved by supplying the ptsN gene or ammonium salts but was not aleviated by altering levels of exogenously supplied cAMP. These results support our previous proposal of a novel mechanism linking carbon and nitrogen assimilation and relates IIANtr to the unknown process regulated by the essential GTPase Era.
Collapse
Affiliation(s)
- B S Powell
- Laboratory of Chromosome Biology, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hungerer C, Troup B, Römling U, Jahn D. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 1995; 177:1435-43. [PMID: 7883699 PMCID: PMC176757 DOI: 10.1128/jb.177.6.1435-1443.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined transcription start sites.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
45
|
Begley GS, Jacobson GR. Overexpression, phosphorylation, and growth effects of ORF162, a Klebsiella pneumoniae protein that is encoded by a gene linked to rpoN, the gene encoding sigma 54. FEMS Microbiol Lett 1994; 119:389-94. [PMID: 8050721 DOI: 10.1111/j.1574-6968.1994.tb06918.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The product of a Klebsiella pneumoniae gene, orf162, may regulate sigma 54-dependent transcription and has sequence similarity to proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). We have overproduced the product of orf162 and demonstrated its PTS-dependent phosphorylation in Escherichia coli extracts. We have also observed moderate growth inhibition of a wild-type, but not a sigma 54-mutant, strain by overexpression of orf162. These results are consistent with the hypothesis that the product of orf162 could be a regulatory link between the PTS and sigma 54 activity in bacteria.
Collapse
Affiliation(s)
- G S Begley
- Department of Biology, Boston University, MA 02215
| | | |
Collapse
|