1
|
Khadka R, Maravich B, Demarest N, Hartwig M, Tom A, Das NK, Cabeen MT. Stressosome-independent but RsbT-dependent environmental stress sensing in Bacillus subtilis. Nat Commun 2025; 16:1591. [PMID: 39939311 PMCID: PMC11821858 DOI: 10.1038/s41467-025-56871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
Bacillus subtilis uses cytoplasmic complexes called stressosomes to initiate the σB-mediated general stress response to environmental stress. Each stressosome comprises two types of proteins - RsbS and four paralogous RsbR proteins - that are thought to sequester the RsbT protein until stress causes RsbT release and subsequent σB activation. RsbR proteins have been assumed to sense stress, but evidence for their sensing function has been elusive, and the identity of the true sensor has remained unknown. Here, we conduct an alanine-scanning analysis of the putative sensing domain of one of the RsbR paralogs, RsbRA. We find that single substitutions impact but do not abolish the σB response, suggesting that RsbRA has a key role in σB response dynamics and is "tunable" and robust to substitution, but not directly supporting a sensing function. Surprisingly, deletion of the stressosome does not abolish environmental stress-inducible σB activity and instead leads to a stronger and longer-lived response than in strains with stressosomes. Finally, we show that RsbT is necessary for the stressosome-independent response and that its kinase activity is also important. RsbT thus has a previously unappreciated role in initiating stress responses and may itself be a stress sensor in the general stress response.
Collapse
Affiliation(s)
- Rabindra Khadka
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brannon Maravich
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Natalie Demarest
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mitchell Hartwig
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andrew Tom
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Niloy Kumar Das
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
2
|
Harms M, Michalik S, Hildebrandt P, Schaffer M, Gesell Salazar M, Gerth U, Mäder U, van Dijl JM, Hecker M, Völker U, Reder A. Activation of the general stress response sigma factor SigB prevents competence development in Bacillus subtilis. mBio 2024; 15:e0227424. [PMID: 39470193 PMCID: PMC11633097 DOI: 10.1128/mbio.02274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Seemingly simple bacteria mount intricate adaptive responses when exposed to physical stress or nutrient limitation, and the activation of these responses is governed by complex signal transduction networks. Upon entry into the stationary growth phase, the soil bacterium Bacillus subtilis may develop natural competence, form biofilms or stress-resistant cells, or ultimately trigger a cellular differentiation program leading to spore formation. Master regulators, such as Spo0A, ComK, SinR, and SigB, constantly monitor the bacterium's environment and then determine appropriate adaptive responses. Here, we show that exposure of B. subtilis to visible light and other stresses triggers a general stress response-dependent block in competence development. SigB serves as an "emergency system" to silence inappropriate expression of an alternative developmental program in the face of unfavorable conditions. In particular, we document a stress-dependent molecular mechanism that prevents accumulation of the central competence regulator ComK via expression of a SigB-driven antisense RNA (as-comK, S365) which is part of a noncontiguous operon. IMPORTANCE Bacillus subtilis exhibits a large number of different specific and general adaptation reactions, which need to be well balanced to sustain survival under largely unfavorable conditions. Under specific conditions, natural competence develops, which enables B. subtilis to actively take up exogenous DNA to integrate it into its own genome. In contrast to this specific adaptation, the general stress response is induced by a variety of exogenous stress and starvation stimuli, providing comprehensive protection and enabling survival of vegetative B. subtilis cells. In the present work, we reveal the molecular basis for the interconnection of these two important responses in the regulatory network. We describe that the master regulator of the general stress response SigB is activated by physiological stress stimuli, including daylight and ethanol stress, leading to the inactivation of the competence master regulator ComK by transcriptional anti-sense regulation, showing a strict hierarchy of adaptational responses under severe stress.
Collapse
Affiliation(s)
- Marco Harms
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Stephan Michalik
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Petra Hildebrandt
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Marc Schaffer
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Manuela Gesell Salazar
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Ulf Gerth
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Ulrike Mäder
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Hecker
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Uwe Völker
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Alexander Reder
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| |
Collapse
|
3
|
Oh Y, Oh JI. The RsfSR two-component system regulates SigF function by monitoring the state of the respiratory electron transport chain in Mycobacterium smegmatis. J Biol Chem 2024; 300:105764. [PMID: 38367670 PMCID: PMC10950880 DOI: 10.1016/j.jbc.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea; Microbiological Resource Research Institute, Pusan National University, Busan, Korea.
| |
Collapse
|
4
|
Georgalis L, Yeak KYC, Tsimpou C, Fernandez PS, Wells-Bennik M, Garre A. Disentangling the contributions of initial heterogeneities and dynamic stress adaptation to nonlinearities in bacterial survival curves. Food Res Int 2023; 173:113385. [PMID: 37803723 DOI: 10.1016/j.foodres.2023.113385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The deviations from log-linearity that are often observed in bacterial survivor curves can be explained using different arguments, both biological and experimental. In this study, we used Bacillus subtilis as a model organism to demonstrate that the generally accepted vitalistic arguments (initial heterogeneities in the stress resistance of the cells in the population) may fail to describe microbial inactivation in some situations. In this sense, we showed how dynamic stress acclimation during an isothermal treatment provides an alternative explanation for survivor curves with an upwards curvature. We also provided an innovative experimental approach based on preadaptation experiments to evaluate which hypothesis is more suitable for the bacterial response. Furthermore, we used our experimental results to define bounds for the possible stress acclimation that may take place during dynamic treatments, concluding that the magnitude of stress acclimation may be larger for dynamic treatments than for isothermal experiments. We also evaluated the contribution of the SigB general stress response system to heat resistance by comparing the heat survival of wt and the ΔsigB mutant. Both strains survived better in 51, 52.5 and 55 °C when cells were pre-adapted at 48 °C than non-pre-adapted cells. However, ΔsigB was less resistant to heat than wt due to the missing SigB general stress system. Although these conclusions were based on B. subtilis as a model organism, this study can be the first step towards the development of a novel methodology able to estimate dynamic effects using only isothermal experiments. This would improve the models developed within the predictive microbiology community, improving our ability to predict microbial inactivation during industrial treatments, which are most often dynamic.
Collapse
Affiliation(s)
- Leonidas Georgalis
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Paseo Alfonso XIII, 48, 30203, Spain
| | - Kah Yen Claire Yeak
- NIZO, Kernhemseweg 2, 6718 ZB Ede, the Netherlands; Food Microbiology, Wageningen University and Research, 6700 EV Wageningen, the Netherlands
| | - Christina Tsimpou
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Paseo Alfonso XIII, 48, 30203, Spain
| | - Pablo S Fernandez
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Paseo Alfonso XIII, 48, 30203, Spain
| | | | - Alberto Garre
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Murcia, Paseo Alfonso XIII, 48, 30203, Spain.
| |
Collapse
|
5
|
Milton ME, Visick KL. Computational and cellular exploration of the protein-protein interaction between Vibrio fischeri STAS domain protein SypA and serine kinase SypE. Commun Integr Biol 2023; 16:2203626. [PMID: 37091830 PMCID: PMC10120452 DOI: 10.1080/19420889.2023.2203626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-sigma factor antagonists SpoIIAA and RsbV from Bacillus subtilis are the archetypes for single-domain STAS proteins in bacteria. The structures and mechanisms of these proteins along with their cognate anti-sigma factors have been well studied. SpoIIAA and RsbV utilize a partner-switching mechanism to regulate gene expression through protein-protein interactions to control the activity of their downstream anti-sigma factor partners. The Vibrio fischeri STAS domain protein SypA is also proposed to employ a partner-switching mechanism with its partner SypE, a serine kinase/phosphatase that controls SypA's phosphorylation state. However, this regulation appears opposite to the canonical pathway, with SypA being the more downstream component rather than SypE. Here we explore the commonalities and differences between SypA and the canonical single-domain STAS proteins SpoIIAA and RsbV. We use a combination of AlphaFold 2 structure predictions and computational modeling to investigate the SypA-SypE binding interface. We then test a subset of our predictions in V.fischeri by generating and expressing SypA variants. Our findings suggest that, while SypA shares many sequence and structural traits with anti-sigma factor antagonist STAS domain proteins, there are significant differences that may account for SypA's distinct regulatory output.
Collapse
Affiliation(s)
- Morgan E. Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
6
|
Bacillus subtilis Stressosome Sensor Protein Sequences Govern the Ability To Distinguish among Environmental Stressors and Elicit Different σ B Response Profiles. mBio 2022; 13:e0200122. [PMID: 36409125 PMCID: PMC9765535 DOI: 10.1128/mbio.02001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria use a variety of systems to sense stress and mount an appropriate response to ensure fitness and survival. Bacillus subtilis uses stressosomes-cytoplasmic multiprotein complexes-to sense environmental stressors and enact the general stress response by activating the alternative sigma factor σB. Each stressosome includes 40 RsbR proteins, representing four paralogous (RsbRA, RsbRB, RsbRC, and RsbRD) putative stress sensors. Population-level analyses suggested that the RsbR paralogs are largely redundant, while our prior work using microfluidics-coupled fluorescence microscopy uncovered differences among the RsbR paralogs' σB response profiles with respect to timing and intensity when facing an identical stressor. Here, we use a similar approach to address the question of whether the σB responses mediated by each paralog differ in the presence of different environmental stressors: can they distinguish among stressors? Wild-type cells (with all four paralogs) and RsbRA-only cells activate σB with characteristic transient response timing irrespective of stressor but show various response magnitudes. However, cells with other individual RsbR paralogs show distinct timing and magnitude in their responses to ethanol, salt, oxidative, and acid stress, implying that RsbR proteins can distinguish among stressors. Experiments with hybrid fusion proteins comprising the N-terminal half of one paralog and the C-terminal half of another argue that the N-terminal identity influences response magnitude and that determinants in both halves of RsbRA are important for its stereotypical transient σB response timing. IMPORTANCE Bacterial survival depends on appropriate responses to diverse stressors. The general stress-response system in the environmental model bacterium Bacillus subtilis is constantly poised for an immediate response and uses unusual stress-sensing protein complexes called stressosomes. Stressosomes typically contain four different types of putative sensing protein. We asked whether each type of sensor has a distinct role in mediating response dynamics to different environmental stressors. We find that one sensor type always mediates a transient response, while the others show distinct response magnitude and timing to different stressors. We also find that a transient response is exceptional, as several engineered hybrid proteins did not show strong transient responses. Our work reveals functional distinctions among subunits of the stressosome complex and represents a step toward understanding how the general stress response of B. subtilis ensures its survival in natural environmental settings.
Collapse
|
7
|
Activation of the Listeria monocytogenes Stressosome in the Intracellular Eukaryotic Environment. Appl Environ Microbiol 2021; 87:e0039721. [PMID: 33811030 DOI: 10.1128/aem.00397-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection is unknown. Here, we analyzed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. However, another core protein, RsbS, is undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) postinfection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supramacromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite the fact that many structural data on the complex are available and analyses have been performed in mutants lacking components of the stressosome or the signaling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favoring the idea of a unique stressosome architecture responding to intracellular host cues.
Collapse
|
8
|
Dessaux C, Guerreiro DN, Pucciarelli MG, O'Byrne CP, García-Del Portillo F. Impact of osmotic stress on the phosphorylation and subcellular location of Listeria monocytogenes stressosome proteins. Sci Rep 2020; 10:20837. [PMID: 33257749 PMCID: PMC7705745 DOI: 10.1038/s41598-020-77738-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes responds to environmental stress using a supra-macromolecular complex, the stressosome, to activate the stress sigma factor SigB. The stressosome structure, inferred from in vitro-assembled complexes, consists of the core proteins RsbR (here renamed RsbR1) and RsbS and, the kinase RsbT. The active complex is proposed to be tethered to the membrane and to support RsbR1/RsbS phosphorylation by RsbT and the subsequent release of RsbT following signal perception. Here, we show in actively-growing cells that L. monocytogenes RsbR1 and RsbS localize mostly in the cytosol in a fully phosphorylated state regardless of osmotic stress. RsbT however distributes between cytosolic and membrane-associated pools. The kinase activity of RsbT on RsbR1/RsbS and its requirement for maximal SigB activation in response to osmotic stress were demonstrated in vivo. Cytosolic RsbR1 interacts with RsbT, while this interaction diminishes at the membrane when RsbR1 paralogues (RsbR2, RsbR3 and RsbL) are present. Altogether, the data support a model in which phosphorylated RsbR1/RsbS may sustain basal SigB activity in unstressed cells, probably assuring a rapid increase in such activity in response to stress. Our findings also suggest that in vivo the active RsbR1-RsbS-RsbT complex forms only transiently and that membrane-associated RsbR1 paralogues could modulate its assembly.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain
| | - Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.,Department of Molecular Biology, Centre of Molecular Biology 'Severo Ochoa' (CBMSO)-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
9
|
Ritchey LE, Tack DC, Yakhnin H, Jolley EA, Assmann SM, Bevilacqua PC, Babitzke P. Structure-seq2 probing of RNA structure upon amino acid starvation reveals both known and novel RNA switches in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2020; 26:1431-1447. [PMID: 32611709 PMCID: PMC7491331 DOI: 10.1261/rna.075986.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/28/2020] [Indexed: 06/01/2023]
Abstract
RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of Bacillus subtilis grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces yfmG expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of yfmG regulates yfmG expression. Our results are consistent with a model in which a slow rate of yfmH translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the yfmG leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.
Collapse
Affiliation(s)
- Laura E Ritchey
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Rodriguez Ayala F, Bartolini M, Grau R. The Stress-Responsive Alternative Sigma Factor SigB of Bacillus subtilis and Its Relatives: An Old Friend With New Functions. Front Microbiol 2020; 11:1761. [PMID: 33042030 PMCID: PMC7522486 DOI: 10.3389/fmicb.2020.01761] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.
Collapse
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Micro y Nanotecnología, Instituto de Nanociencia y Nanotecnología - Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Bartolini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Roberto Grau
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
11
|
Pathak D, Jin KS, Tandukar S, Kim JH, Kwon E, Kim DY. Structural insights into the regulation of SigB activity by RsbV and RsbW. IUCRJ 2020; 7:737-747. [PMID: 32695420 PMCID: PMC7340262 DOI: 10.1107/s2052252520007617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/05/2020] [Indexed: 05/09/2023]
Abstract
Bacillus subtilis SigB is an alternative sigma factor that initiates the transcription of stress-responsive genes. The anti-sigma factor RsbW tightly binds SigB to suppress its activity under normal growth conditions and releases it when nonphosphorylated RsbV binds to RsbW in response to stress signals. To understand the regulation of SigB activity by RsbV and RsbW based on structural features, crystal structures and a small-angle X-ray scattering (SAXS) envelope structure of the RsbV-RsbW complex were determined. The crystal structures showed that RsbV and RsbW form a heterotetramer in a similar manner to a SpoIIAA-SpoIIAB tetramer. Multi-angle light scattering and SAXS revealed that the RsbV-RsbW complex is an octamer in solution. Superimposition of the crystal structure on the SAXS envelope structure showed that the unique dimeric interface of RsbW mediates the formation of an RsbV-RsbW octamer and does not prevent RsbV and SigB from binding to RsbW. These results provide structural insights into the molecular assembly of the RsbV-RsbW complex and the regulation of SigB activity.
Collapse
Affiliation(s)
- Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sudarshan Tandukar
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jun Ha Kim
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
12
|
Rath H, Sappa PK, Hoffmann T, Gesell Salazar M, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol 2020; 22:3266-3286. [PMID: 32419322 DOI: 10.1111/1462-2920.15087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen K Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michael Hecker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
13
|
Lilge L, Reder A, Tippmann F, Morgenroth F, Grohmann J, Becher D, Riedel K, Völker U, Hecker M, Gerth U. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Bacillus subtilis. Front Microbiol 2020; 11:900. [PMID: 32477307 PMCID: PMC7235348 DOI: 10.3389/fmicb.2020.00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Collapse
Affiliation(s)
- Lars Lilge
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Frank Tippmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Janice Grohmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Rath H, Reder A, Hoffmann T, Hammer E, Seubert A, Bremer E, Völker U, Mäder U. Management of Osmoprotectant Uptake Hierarchy in Bacillus subtilis via a SigB-Dependent Antisense RNA. Front Microbiol 2020; 11:622. [PMID: 32373088 PMCID: PMC7186363 DOI: 10.3389/fmicb.2020.00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 01/20/2023] Open
Abstract
Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Trösch R, Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol Chem 2020; 400:879-893. [PMID: 30653464 DOI: 10.1515/hsz-2018-0436] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Felix Willmund
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
16
|
Soules KR, Dmitriev A, LaBrie SD, Dimond ZE, May BH, Johnson DK, Zhang Y, Battaile KP, Lovell S, Hefty PS. Structural and ligand binding analyses of the periplasmic sensor domain of RsbU in Chlamydia trachomatis support a role in TCA cycle regulation. Mol Microbiol 2020; 113:68-88. [PMID: 31637787 PMCID: PMC7007330 DOI: 10.1111/mmi.14401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.
Collapse
Affiliation(s)
- Katelyn R Soules
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Aidan Dmitriev
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Scott D LaBrie
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Zoë E Dimond
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Benjamin H May
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - David K Johnson
- Computational Chemical Biology Core Facility, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66047, USA
| | - Yang Zhang
- Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, IL, 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66047, USA
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
17
|
Kwon E, Pathak D, Kim HU, Dahal P, Ha SC, Lee SS, Jeong H, Jeoung D, Chang HW, Jung HS, Kim DY. Structural insights into stressosome assembly. IUCRJ 2019; 6:938-947. [PMID: 31576226 PMCID: PMC6760441 DOI: 10.1107/s205225251900945x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/02/2019] [Indexed: 05/05/2023]
Abstract
The stressosome transduces environmental stress signals to SigB to upregulate SigB-dependent transcription, which is required for bacterial viability. The stressosome core is composed of RsbS and at least one of the RsbR paralogs. A previous cryo-electron microscopy (cryo-EM) structure of the RsbRA-RsbS complex determined under a D2 symmetry restraint showed that the stressosome core forms a pseudo-icosahedron consisting of 60 STAS domains of RsbRA and RsbS. However, it is still unclear how RsbS and one of the RsbR paralogs assemble into the stressosome. Here, an assembly model of the stressosome is presented based on the crystal structure of the RsbS icosahedron and cryo-EM structures of the RsbRA-RsbS complex determined under diverse symmetry restraints (nonsymmetric C1, dihedral D2 and icosahedral I envelopes). 60 monomers of the crystal structure of RsbS fitted well into the I-restrained cryo-EM structure determined at 4.1 Å resolution, even though the STAS domains in the I envelope were averaged. This indicates that RsbS and RsbRA share a highly conserved STAS fold. 22 protrusions observed in the C1 envelope, corresponding to dimers of the RsbRA N-domain, allowed the STAS domains of RsbRA and RsbS to be distinguished in the stressosome core. Based on these, the model of the stressosome core was reconstructed. The mutation of RsbRA residues at the binding interface in the model (R189A/Q191A) significantly reduced the interaction between RsbRA and RsbS. These results suggest that nonconserved residues in the conserved STAS folds between RsbS and RsbR paralogs determine stressosome assembly.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Han-ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Pawan Dahal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyeongseop Jeong
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
18
|
Tran V, Geraci K, Midili G, Satterwhite W, Wright R, Bonilla CY. Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in Bacillus subtilis. J Basic Microbiol 2019; 59:834-845. [PMID: 31210376 DOI: 10.1002/jobm.201900076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 05/11/2019] [Indexed: 01/19/2023]
Abstract
A bacterium's ability to thrive in the presence of multiple environmental stressors simultaneously determines its resilience. We showed that activation of the SigB-controlled general stress response by mild environmental or energy stress provided significant cross-protection to subsequent lethal oxidative, disulfide and nitrosative stress in Bacillus subtilis. SigB activation is mediated via the stressosome and RsbP, the main conduits of environmental and energy stress, respectively. Cells exposed to mild environmental stress while lacking the major stressosome components RsbT or RsbRA were highly sensitive to subsequent oxidative stress, whereas rsbRB, rsbRC, rsbRD, and ytvA null mutants showed a spectrum of sensitivity, confirming their redundant roles and suggesting they could modulate the signals generated by environmental or oxidative stress. By contrast, cells encountering stationary phase stress required RsbP but not RsbT to survive subsequent oxidative stress. Interestingly, optimum cross-protection against nitrosative stress caused by sodium nitropruside required SigB but not the known regulators, RsbT and RsbP, suggesting an additional and as yet uncharacterized route of SigB activation independent of the known regulators. Together, these results provide mechanistic information on how B. subtilis promotes enhanced resistance against lethal oxidative stress during mild environmental and energy stress conditions.
Collapse
Affiliation(s)
- Vina Tran
- Biology Department, Gonzaga University, Spokane, Washington
| | - Kara Geraci
- Biology Department, Gonzaga University, Spokane, Washington
| | | | | | - Rachel Wright
- Biology Department, Gonzaga University, Spokane, Washington
| | | |
Collapse
|
19
|
The σBsignalling activation pathway in the enteropathogenClostridioides difficile. Environ Microbiol 2019; 21:2852-2870. [DOI: 10.1111/1462-2920.14642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023]
|
20
|
Stress-Responsive Alternative Sigma Factor SigB Plays a Positive Role in the Antifungal Proficiency of Bacillus subtilis. Appl Environ Microbiol 2019; 85:AEM.00178-19. [PMID: 30824454 DOI: 10.1128/aem.00178-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/16/2019] [Indexed: 01/05/2023] Open
Abstract
Different Bacillus species with PGPR (plant growth-promoting rhizobacterium) activity produce potent biofungicides and stimulate plant defense responses against phytopathogenic fungi. However, very little is known about how these PGPRs recognize phytopathogens and exhibit the antifungal response. Here, we report the antagonistic interaction between Bacillus subtilis and the phytopathogenic fungus Fusarium verticillioides We demonstrate that this bacterial-fungal interaction triggers the induction of the SigB transcription factor, the master regulator of B. subtilis stress adaptation. Dual-growth experiments performed with live or dead mycelia or culture supernatants of F. verticillioides showed that SigB was activated and required for the biocontrol of fungal growth. Mutations in the different regulatory pathways of SigB activation in the isogenic background revealed that only the energy-related RsbP-dependent arm of SigB activation was responsible for specific fungal detection and triggering the antagonistic response. The activation of SigB increased the expression of the operon responsible for the production of the antimicrobial cyclic lipopeptide surfactin (the srfA operon). SigB-deficient B. subtilis cultures produced decreased amounts of surfactin, and B. subtilis cultures defective in surfactin production (ΔsrfA) were unable to control the growth of F. verticillioides In vivo experiments of seed germination efficiency and early plant growth inhibition in the presence of F. verticillioides confirmed the physiological importance of SigB activity for plant bioprotection.IMPORTANCE Biological control using beneficial bacteria (PGPRs) represents an attractive and environment-friendly alternative to pesticides for controlling plant diseases. Different PGPR Bacillus species produce potent biofungicides and stimulate plant defense responses against phytopathogenic fungi. However, very little is known about how PGPRs recognize phytopathogens and process the antifungal response. Here, we report how B. subtilis triggers the induction of the stress-responsive sigma B transcription factor and the synthesis of the lipopeptide surfactin to fight the phytopathogen. Our findings show the participation of the stress-responsive regulon of PGPR Bacillus in the detection and biocontrol of a phytopathogenic fungus of agronomic impact.
Collapse
|
21
|
Regulation of Biofilm Aging and Dispersal in Bacillus subtilis by the Alternative Sigma Factor SigB. J Bacteriol 2018; 201:JB.00473-18. [PMID: 30396900 DOI: 10.1128/jb.00473-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are important in natural settings, biotechnology, and medicine. However, regulation of biofilm development and its persistence in different niches is complex and only partially understood. One key step during the biofilm life cycle is dispersal, when motile cells abandon the mature biofilm to spread out and colonize new niches. Here, we show that in the model bacterium Bacillus subtilis the general stress transcription factor SigB is essential for halting detrimental overgrowth of mature biofilm and for triggering dispersal when nutrients become limited. Specifically, SigB-deficient biofilms were larger than wild-type biofilms but exhibited accelerated cell death, significantly greater sensitivity to different stresses, and reduced dispersal. Interestingly, the signal detected by SigB to limit biofilm growth was transduced through the RsbP-dependent metabolic arm of the SigB regulatory cascade, which in turn positively controlled expression of SinR, the master regulator of biofilm formation and cell motility. This novel SigB-SinR regulatory circuit might be important in controlling the fitness of biofilms (either beneficial or harmful) in diverse environments.IMPORTANCE Biofilms are crucial for bacterial survival, adaptation, and dissemination in natural, industrial, and medical systems. Sessile cells embedded in the self-produced extracellular matrix of the biofilm benefit from a division of labor and are protected from environmental insults. However, as the biofilm ages, cells become stressed because of overcrowding, starvation, and accumulation of waste products. How does the sessile biofilm community sense and respond to stressful conditions? Here, we show that in Bacillus subtilis, the transcription factors SigB and SinR control whether cells remain in or leave a biofilm when metabolic conditions become unfavorable. This novel SigB-SinR regulatory circuit might be important for controlling the fitness of biofilms (either beneficial or harmful) in diverse environments.
Collapse
|
22
|
Fluorescein Diacetate Hydrolysis Using the Whole Biofilm as a Sensitive Tool to Evaluate the Physiological State of Immobilized Bacterial Cells. Catalysts 2018. [DOI: 10.3390/catal8100434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to the increasing interest and the use of immobilized biocatalysts in bioremediation studies, there is a need for the development of an assay for quick and reliable measurements of their overall enzymatic activity. Fluorescein diacetate (FDA) hydrolysis is a widely used assay for measuring total enzymatic activity (TEA) in various environmental samples or in monoculture researches. However, standard FDA assays for TEA measurements in immobilized samples include performing an assay on cells detached from the carrier. This causes an error, because it is not possible to release all cells from the carrier without affecting their metabolic activity. In this study, we developed and optimized a procedure for TEA quantification in the whole biofilm formed on the carrier without disturbing it. The optimized method involves pre-incubation of immobilized carrier in phosphate buffer (pH 7.6) on the orbital shaker for 15 min, slow injection of FDA directly into the middle of the immobilized carrier, and incubation on the orbital shaker (130 rpm, 30 °C) for 1 h. Biofilm dry mass was obtained by comparing the dried weight of the immobilized carrier with that of the unimmobilized carrier. The improved protocol provides a simple, quick, and more reliable quantification of TEA during the development of immobilized biocatalysts compared to the original method.
Collapse
|
23
|
Chen JC, Chang CF, Hsu DW, Shu JC, Chen HY, Chen CY, Lu CY, Chen CC. Temporal regulation of σ B by partner-switching mechanism at a distinct growth stage in Bacillus cereus. Int J Med Microbiol 2017; 307:521-532. [PMID: 28919098 DOI: 10.1016/j.ijmm.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 12/01/2022] Open
Abstract
The alternative transcription factor σB in Bacillus cereus governs the transcription of a number of genes that confer protection against general stress. This transcription factor is regulated by protein-protein interactions among RsbV, RsbW, σB, RsbY, RsbM and RsbK, all encoded in the sigB cluster. Among these regulatory proteins, RsbV, RsbW and σB comprise a partner-switching mechanism. Under normal conditions, σB remains inactive by associating with anti-sigma factor RsbW, which prevents σB from binding to the core RNA polymerase. During environmental stress, RsbK activates RsbY to hydrolyze phosphorylated RsbV, and the dephosphorylated RsbV then sequesters RsbW to liberate σB from RsbW. Although the σB partner-switching module is thought to be the core mechanism for σB regulation, the actual protein-protein interactions among these three proteins in the cell remain to be investigated. In the current study, we show that RsbW and RsbV form a long-lived complex under transient stress treatment, resulting in high persistent expression of RsbV, RsbW and σB from mid-log phase to stationary phase. Full sequestration of RsbW by excess RsbV and increased RsbW:RsbV complex stability afforded by cellular ADP contribute to the prolonged activation of σB. Interestingly, the high expression levels of RsbV, RsbW and σB were dramatically decreased beginning from the transition stage to the stationary phase. Thus, protein interactions among σB partner-switching components are required for the continued induction of σB during environmental stress in the log phase and significant down-regulation of σB is observed in the stationary phase. Our data show that σB is temporally regulated in B. cereus.
Collapse
Affiliation(s)
- Jung-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Chuan-Fu Chang
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan County 333, Taiwan
| | - Hong-Yi Chen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan County 333, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan.
| |
Collapse
|
24
|
Han LL, Shao HH, Liu YC, Liu G, Xie CY, Cheng XJ, Wang HY, Tan XM, Feng H. Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06. BMC Microbiol 2017; 17:156. [PMID: 28693413 PMCID: PMC5504735 DOI: 10.1186/s12866-017-1066-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bacillus pumilus can secret abundant extracellular enzymes, and may be used as a potential host for the industrial production of enzymes. It is necessary to understand the metabolic processes during cellular growth. Here, an RNA-seq based transcriptome analysis was applied to examine B. pumilus BA06 across various growth stages to reveal metabolic changes under two conditions. RESULTS Based on the gene expression levels, changes to metabolism pathways that were specific to various growth phases were enriched by KEGG analysis. Upon entry into the transition from the exponential growth phase, striking changes were revealed that included down-regulation of the tricarboxylic acid cycle, oxidative phosphorylation, flagellar assembly, and chemotaxis signaling. In contrast, the expression of stress-responding genes was induced when entering the transition phase, suggesting that the cell may suffer from stress during this growth stage. As expected, up-regulation of sporulation-related genes was continuous during the stationary growth phase, which was consistent with the observed sporulation. However, the expression pattern of the various extracellular proteases was different, suggesting that the regulatory mechanism may be distinct for various proteases. In addition, two protein secretion pathways were enriched with genes responsive to the observed protein secretion in B. pumilus. However, the expression of some genes that encode sporulation-related proteins and extracellular proteases was delayed by the addition of gelatin to the minimal medium. CONCLUSIONS The transcriptome data depict global alterations in the genome-wide transcriptome across the various growth phases, which will enable an understanding of the physiology and phenotype of B. pumilus through gene expression.
Collapse
Affiliation(s)
- Lin-Li Han
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Huan-Huan Shao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Yong-Cheng Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Gang Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Chao-Ying Xie
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Xiao-Jie Cheng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Hai-Yan Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Xue-Mei Tan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Hong Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| |
Collapse
|
25
|
Cabeen MT, Russell JR, Paulsson J, Losick R. Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of Bacillus subtilis. PLoS Genet 2017; 13:e1006901. [PMID: 28727759 PMCID: PMC5542698 DOI: 10.1371/journal.pgen.1006901] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/03/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022] Open
Abstract
Bacteria use a variety of stress-sensing systems to sense and respond to diverse stressors and to ensure their survival under adverse conditions. The gram-positive bacterium Bacillus subtilis responds to energy stress (ATP depletion) and to environmental stressors using two distinct stress-sensing pathways that converge on the alternative sigma factor σB to provoke a general stress response. Past efforts to study the σB stress response in bulk culture and on agarose pads were unable to visualize the responses of individual cells under tightly controlled conditions for extended periods of time. Here we use a microfluidics-based strategy to discern the basic features of σB activation in single cells in response to energy and environmental stress, both immediately upon stressor exposure and for tens of generations thereafter. Upon energy stress at various levels of stressor, cells exhibited fast, transient, and amplitude-modulated responses but not frequency modulation as previously reported. Upon environmental stress, which is mediated by the stressosome complex, wild-type cells primarily exhibited a transient and amplitude-modulated response. However, mutant cells producing only one of the four paralogous RsbR stressosome proteins showed striking and previously unseen differences. Whereas RsbRA-only cells mimicked the wild type, RsbRC-only cells displayed a slower but sustained overall response composed of repeated activation events in single cells.
Collapse
Affiliation(s)
- Matthew T. Cabeen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jonathan R. Russell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
A Mutation in the Bacillus subtilis rsbU Gene That Limits RNA Synthesis during Sporulation. J Bacteriol 2017; 199:JB.00212-17. [PMID: 28461450 DOI: 10.1128/jb.00212-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
Mutants of Bacillis subtilis that are temperature sensitive for RNA synthesis during sporulation were isolated after selection with a 32P suicide agent. Whole-genome sequencing revealed that two of the mutants carried an identical lesion in the rsbU gene, which encodes a phosphatase that indirectly activates SigB, the stress-responsive RNA polymerase sigma factor. The mutation appeared to cause RsbU to be hyperactive, because the mutants were more resistant than the parent strain to ethanol stress. In support of this hypothesis, pseudorevertants that regained wild-type levels of sporulation at high temperature had secondary mutations that prevented expression of the mutant rsbU gene. The properties of these RsbU mutants support the idea that activation of SigB diminishes the bacterium's ability to sporulate.IMPORTANCE Most bacterial species encode multiple RNA polymerase promoter recognition subunits (sigma factors). Each sigma factor directs RNA polymerase to different sets of genes; each gene set typically encodes proteins important for responses to specific environmental conditions, such as changes in temperature, salt concentration, and nutrient availability. A selection for mutants of Bacillus subtilis that are temperature sensitive for RNA synthesis during sporulation unexpectedly yielded strains with a point mutation in rsbU, a gene that encodes a protein that normally activates sigma factor B (SigB) under conditions of salt stress. The mutation appears to cause RsbU, and therefore SigB, to be active inappropriately, thereby inhibiting, directly or indirectly, the ability of the cells to transcribe sporulation genes.
Collapse
|
27
|
Hingston P, Chen J, Dhillon BK, Laing C, Bertelli C, Gannon V, Tasara T, Allen K, Brinkman FSL, Truelstrup Hansen L, Wang S. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress. Front Microbiol 2017; 8:369. [PMID: 28337186 PMCID: PMC5340757 DOI: 10.3389/fmicb.2017.00369] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/22/2017] [Indexed: 01/11/2023] Open
Abstract
The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased sequencing of L. monocytogenes isolates in combination with stress tolerance profiling, will enhance the ability to identify genetic elements associated with higher risk strains.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Bhavjinder K. Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Claire Bertelli
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Victor Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| | - Kevin Allen
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Lisbeth Truelstrup Hansen
- Division for Microbiology and Production, National Food Institute, Technical University of DenmarkKongens Lyngby, Denmark
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
28
|
Stepanek JJ, Lukežič T, Teichert I, Petković H, Bandow JE. Dual mechanism of action of the atypical tetracycline chelocardin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:645-654. [DOI: 10.1016/j.bbapap.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
|
29
|
To Modulate Survival under Secondary Stress Conditions, Listeria monocytogenes 10403S Employs RsbX To Downregulate σB Activity in the Poststress Recovery Stage or Stationary Phase. Appl Environ Microbiol 2015; 82:1126-1135. [PMID: 26637594 DOI: 10.1128/aem.03218-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes is a saprophytic bacterium that thrives in diverse environments and causes listeriosis via ingestion of contaminated food. RsbX, a putative sigma B (σ(B)) regulator, is thought to maintain the ready state in the absence of stress and reset the bacterium to the initial state in the poststress stage in Bacillus subtilis. We wondered whether RsbX is functional in L. monocytogenes under different stress scenarios. Genetic deletion and complementation of the rsbX gene were combined with survival tests and transcriptional and translational analyses of σ(B) expression in response to stresses. We found that deletion of rsbX increased survival under secondary stress following recovery of growth after primary stress or following stationary-phase culturing. The ΔrsbX mutant had higher expression of σ(B) than its parent strain in the recovery stage following primary sodium stress and in stationary-phase cultures. Apparently, increased σ(B) expression had contributed to improved survival in the absence of RsbX. There were no significant differences in survival rates or σ(B) expression levels in response to primary stresses between the rsbX mutant and its parent strain during the exponential phase. Therefore, we provide clear evidence that RsbX is a negative regulator of L. monocytogenes σ(B) during the recovery period after a primary stress or in the stationary phase, thus affecting its survival under secondary stress.
Collapse
|
30
|
Synergism of regulatory elements in σB- and σA-dependent promoters enhances recombinant protein expression in Bacillus subtilis. J Biosci Bioeng 2015; 120:470-5. [DOI: 10.1016/j.jbiosc.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/05/2015] [Accepted: 02/08/2015] [Indexed: 11/22/2022]
|
31
|
van der Steen JB, Hellingwerf KJ. Activation of the General Stress Response of Bacillus subtilis by Visible Light. Photochem Photobiol 2015; 91:1032-45. [PMID: 26189730 DOI: 10.1111/php.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
A key challenge for microbiology is to understand how evolution has shaped the wiring of regulatory networks. This is amplified by the paucity of information of power-spectra of physicochemical stimuli to which microorganisms are exposed. Future studies of genome evolution, driven by altered stimulus regimes, will therefore require a versatile signal transduction system that allows accurate signal dosing. Here, we review the general stress response of Bacillus subtilis, and its upstream signal transduction network, as a candidate system. It can be activated by red and blue light, and by many additional stimuli. Signal integration therefore is an intricate function of this system. The blue-light response is elicited via the photoreceptor YtvA, which forms an integral part of stressosomes, to activate expression of the stress regulon of B. subtilis. Signal transfer through this network can be assayed with reporter enzymes, while intermediate steps can be studied with live-cell imaging of fluorescently tagged proteins. Different parts of this system have been studied in vitro, such that its computational modeling has made significant progress. One can directly relate the microscopic characteristics of YtvA with activation of the general stress regulon, making this system a very well-suited system for network evolution studies.
Collapse
Affiliation(s)
- Jeroen B van der Steen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Jia N, Du J, Ding MZ, Gao F, Yuan YJ. Genome Sequence of Bacillus endophyticus and Analysis of Its Companion Mechanism in the Ketogulonigenium vulgare-Bacillus Strain Consortium. PLoS One 2015; 10:e0135104. [PMID: 26248285 PMCID: PMC4527741 DOI: 10.1371/journal.pone.0135104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Bacillus strains have been widely used as the companion strain of Ketogulonigenium vulgare in the process of vitamin C fermentation. Different Bacillus strains generate different effects on the growth of K. vulgare and ultimately influence the productivity. First, we identified that Bacillus endophyticus Hbe603 was an appropriate strain to cooperate with K. vulgare and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the B. endophyticus Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of B. endophyticus Hbe603 has a size of 4.87 Mb with GC content of 36.64% and has the highest similarity with that of Bacillus megaterium among all the bacteria with complete genomes. By comparing the distribution of COGs with that of Bacillus thuringiensis, Bacillus cereus and B. megaterium, B. endophyticus has less genes related to cell envelope biogenesis and signal transduction mechanisms, and more genes related to carbohydrate transport and metabolism, energy production and conversion, as well as lipid transport and metabolism. Genome-based functional studies revealed the specific capability of B. endophyticus in sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular proteins and nutrients synthesis, which would be beneficial for K. vulgare. In particular, B. endophyticus lacks the Rap-Phr signal cascade system and, in part, spore coat related proteins. In addition, it has specific pathways for vitamin B12 synthesis and sorbitol metabolism. The genome analysis of the industrial B. endophyticus will help us understand its cooperative mechanism in the K. vulgare-Bacillus strain consortium to improve the fermentation of vitamin C.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jin Du
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
- * E-mail: (FG); (YJY)
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- * E-mail: (FG); (YJY)
| |
Collapse
|
33
|
Mars RAT, Mendonça K, Denham EL, van Dijl JM. The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2553-9. [PMID: 26115952 DOI: 10.1016/j.bbamcr.2015.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023]
Abstract
One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress.
Collapse
Affiliation(s)
- Ruben A T Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Karoline Mendonça
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| | - Emma L Denham
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands; Division of Translational and Systems Medicine, Unit of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
34
|
Meyer H, Weidmann H, Mäder U, Hecker M, Völker U, Lalk M. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 10:1812-23. [PMID: 24727859 DOI: 10.1039/c4mb00112e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.
Collapse
Affiliation(s)
- Hanna Meyer
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
36
|
Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol 2014; 17:346-63. [PMID: 25367190 DOI: 10.1111/1462-2920.12676] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 11/27/2022]
Abstract
Nutrient scarcity is a common condition in nature, but the resulting extremely low growth rates (below 0.025 h(-1) ) are an unexplored research area in Bacillus subtilis. To understand microbial life in natural environments, studying the adaptation of B. subtilis to near-zero growth conditions is relevant. To this end, a chemostat modified for culturing an asporogenous B. subtilis sigF mutant strain at extremely low growth rates (also named a retentostat) was set up, and biomass accumulation, culture viability, metabolite production and cell morphology were analysed. During retentostat culturing, the specific growth rate decreased to a minimum of 0.00006 h(-1) , corresponding to a doubling time of 470 days. The energy distribution between growth and maintenance-related processes showed that a state of near-zero growth was reached. Remarkably, a filamentous cell morphology emerged, suggesting that cell separation is impaired under near-zero growth conditions. To evaluate the corresponding molecular adaptations to extremely low specific growth, transcriptome changes were analysed. These revealed that cellular responses to near-zero growth conditions share several similarities with those of cells during the stationary phase of batch growth. However, fundamental differences between these two non-growing states are apparent by their high viability and absence of stationary phase mutagenesis under near-zero growth conditions.
Collapse
Affiliation(s)
- Wout Overkamp
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Maaβ S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, Becher D, Hecker M. Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis. Mol Cell Proteomics 2014; 13:2260-76. [PMID: 24878497 PMCID: PMC4159648 DOI: 10.1074/mcp.m113.035741] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition. Furthermore, analysis of protein repartition during glucose starvation showed that biomass seems to be redistributed from proteins involved in amino acid biosynthesis to enzymes of the central carbon metabolism. In contrast, during heat stress most resources of the cell, namely those from amino acid synthetic pathways, are used to increase the amount of chaperones and proteases. Analysis of dynamical aspects of protein synthesis during heat stress adaptation revealed, that these proteins make up almost 30% of the protein mass accumulated during early phases of this stress.
Collapse
Affiliation(s)
- Sandra Maaβ
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Gerhild Wachlin
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Christine Eymann
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Vincent Fromion
- §INRA, Mathématique Informatique et Génome UR1077, 78350 Jouy-en-Josas, France
| | - Katharina Riedel
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany;
| | - Michael Hecker
- From the ‡Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Pförtner H, Burian MS, Michalik S, Depke M, Hildebrandt P, Dhople VM, Pané-Farré J, Hecker M, Schmidt F, Völker U. Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells – An in vivo proteomics perspective. Int J Med Microbiol 2014; 304:177-87. [DOI: 10.1016/j.ijmm.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant. Infect Immun 2014; 82:1500-10. [PMID: 24452679 DOI: 10.1128/iai.01635-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.
Collapse
|
40
|
Panahi R, Vasheghani-Farahani E, Shojaosadati SA, Bambai B. Induction of Bacillus subtilis expression system using environmental stresses and glucose starvation. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0719-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
41
|
Yang CK, Tai PC, Lu CD. Time-related transcriptome analysis of B. subtilis 168 during growth with glucose. Curr Microbiol 2013; 68:12-20. [PMID: 23934352 DOI: 10.1007/s00284-013-0432-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/01/2013] [Indexed: 11/25/2022]
Abstract
Gene expression in Bacillus subtilis from late exponential to stationary phase was monitored by DNA microarrays with samples taken from the culture in LB broth with glucose supplement to prevent sporulation. Three major patterns of gene expression as revealed in this study were consistent to the expression profiling of PerR/Spx regulons and three major sigma factors-SigA, SigB, and SigW. Expression of most SigA-dependent house-keeping genes was significantly decreased and remained at low levels in the stationary phase. The sigB gene and additional genes of the SigB regulon for stress response exhibited a distinct pattern of transient induction with a peak in transition phase. The majority of induced genes after cessation of SigB-dependent surge were subjected to regulation by SigW, PerR, and Spx in response to oxidative stress. No induction of spo0A and skfA regulons supports the suppression of sporulation and cannibalism processes in the stationary phase by glucose supplement. In summary, these results depicted complicated strategies by cells to adapt changes from the fast growing exponential phase toward the stationary phase. The absence of programmed cell death and sporulation greatly facilitated data analysis and the identification of distinct expression patterns in the stationary phase of growth in B. subtilis.
Collapse
Affiliation(s)
- Chun-Kai Yang
- Department of Biology, Georgia State University, 161 Jesse Hill Drive, Atlanta, GA, 30303, USA
| | | | | |
Collapse
|
42
|
Fluoro-phenyl-styrene-sulfonamide, a novel inhibitor of σB activity, prevents the activation of σB by environmental and energy stresses in Bacillus subtilis. J Bacteriol 2013; 195:2509-17. [PMID: 23524614 DOI: 10.1128/jb.00107-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sigma B (σ(B)) is an alternative sigma factor that regulates the general stress response in Bacillus subtilis and in many other Gram-positive organisms. σ(B) activity in B. subtilis is tightly regulated via at least three distinct pathways within a complex signal transduction cascade in response to a variety of stresses, including environmental stress, energy stress, and growth at high or low temperatures. We probed the ability of fluoro-phenyl-styrene-sulfonamide (FPSS), a small-molecule inhibitor of σ(B) activity in Listeria monocytogenes, to inhibit σ(B) activity in B. subtilis through perturbation of signal transduction cascades under various stress conditions. FPSS inhibited the activation of σ(B) in response to multiple categories of stress known to induce σ(B) activity in B. subtilis. Specifically, FPSS prevented the induction of σ(B) activity in response to energy stress, including entry into stationary phase, phosphate limitation, and azide stress. FPSS also inhibited chill induction of σ(B) activity in a ΔrsbV strain, suggesting that FPSS does not exclusively target the RsbU and RsbP phosphatases or the anti-anti-sigma factor RsbV, all of which contribute to posttranslational regulation of σ(B) activity. Genetic and biochemical experiments, including artificial induction of σ(B), analysis of the phosphorylation state of the anti-anti-sigma factor RsbV, and in vitro transcription assays, indicate that while FPSS does not bind directly to σ(B) to inhibit activity, it appears to prevent the release of B. subtilis σ(B) from its anti-sigma factor RsbW.
Collapse
|
43
|
Rate of environmental change determines stress response specificity. Proc Natl Acad Sci U S A 2013; 110:4140-5. [PMID: 23407164 DOI: 10.1073/pnas.1213060110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells use general stress response pathways to activate diverse target genes in response to a variety of stresses. However, general stress responses coexist with more specific pathways that are activated by individual stresses, provoking the fundamental question of whether and how cells control the generality or specificity of their response to a particular stress. Here we address this issue using quantitative time-lapse microscopy of the Bacillus subtilis environmental stress response, mediated by σ(B). We analyzed σ(B) activation in response to stresses such as salt and ethanol imposed at varying rates of increase. Dynamically, σ(B) responded to these stresses with a single adaptive activity pulse, whose amplitude depended on the rate at which the stress increased. This rate-responsive behavior can be understood from mathematical modeling of a key negative feedback loop in the underlying regulatory circuit. Using RNAseq we analyzed the effects of both rapid and gradual increases of ethanol and salt stress across the genome. Because of the rate responsiveness of σ(B) activation, salt and ethanol regulons overlap under rapid, but not gradual, increases in stress. Thus, the cell responds specifically to individual stresses that appear gradually, while using σ(B) to broaden the cellular response under more rapidly deteriorating conditions. Such dynamic control of specificity could be a critical function of other general stress response pathways.
Collapse
|
44
|
Liebal UW, Millat T, Marles-Wright J, Lewis RJ, Wolkenhauer O. Simulations of stressosome activation emphasize allosteric interactions between RsbR and RsbT. BMC SYSTEMS BIOLOGY 2013; 7:3. [PMID: 23320651 PMCID: PMC3556497 DOI: 10.1186/1752-0509-7-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The stressosome is a bacterial signalling complex that responds to environmental changes by initiating a protein partner switching cascade, which leads to the release of the alternative sigma factor, σB. Stress perception increases the phosphorylation of the stressosome sensor protein, RsbR, and the scaffold protein, RsbS, by the protein kinase, RsbT. Subsequent dissociation of RsbT from the stressosome activates the σB cascade. However, the sequence of physical events that occur in the stressosome during signal transduction is insufficiently understood. RESULTS Here, we use computational modelling to correlate the structure of the stressosome with the efficiency of the phosphorylation reactions that occur upon activation by stress. In our model, the phosphorylation of any stressosome protein is dependent upon its nearest neighbours and their phosphorylation status. We compare different hypotheses about stressosome activation and find that only the model representing the allosteric activation of the kinase RsbT, by phosphorylated RsbR, qualitatively reproduces the experimental data. CONCLUSIONS Our simulations and the associated analysis of published data support the following hypotheses: (i) a simple Boolean model is capable of reproducing stressosome dynamics, (ii) different stressors induce identical stressosome activation patterns, and we also confirm that (i) phosphorylated RsbR activates RsbT, and (ii) the main purpose of RsbX is to dephosphorylate RsbS-P.
Collapse
Affiliation(s)
- Ulf W Liebal
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, 18051, Rostock, Germany
| | - Thomas Millat
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, 18051, Rostock, Germany
| | - Jon Marles-Wright
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Institute of Structural and Molecular Biology, School of Biological Sciences, Edinburgh University, Edinburgh, EH9 3JR, UK
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, 18051, Rostock, Germany
- Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
45
|
Reder A, Pöther DC, Gerth U, Hecker M. The modulator of the general stress response, MgsR, ofBacillus subtilisis subject to multiple and complex control mechanisms. Environ Microbiol 2012; 14:2838-50. [DOI: 10.1111/j.1462-2920.2012.02829.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Reder A, Albrecht D, Gerth U, Hecker M. Cross-talk between the general stress response and sporulation initiation inBacillus subtilis- the σBpromoter ofspo0Erepresents an AND-gate. Environ Microbiol 2012; 14:2741-56. [DOI: 10.1111/j.1462-2920.2012.02755.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Differentiation of function among the RsbR paralogs in the general stress response of Bacillus subtilis with regard to light perception. J Bacteriol 2012; 194:1708-16. [PMID: 22287516 DOI: 10.1128/jb.06705-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general stress response of Bacillus subtilis can be activated by a wide range of signals, including low intensities of visible light. It is regulated by a dedicated σ factor via a complex signal transduction pathway that makes use of stressosomes: hetero-oligomeric complexes that include one or more of the RsbR proteins (RsbRA, RsbRB, RsbRC, and RsbRD). The response to blue light is mediated by the photoreceptor YtvA. We show here which of the four RsbR proteins are necessary for the activation of the σ(B) response by blue light. Experiments performed with single-, double-, and triple-deletion strains in the rsbR genes show that RsbRB and RsbRA function antagonistically, with the former being a negative regulator and the latter a positive regulator of the YtvA-dependent light activation of the stress response. A strain with RsbRB as the only RsbR protein is unable to respond to light-activation of σ(B). Furthermore, RsbRC and RsbRD can replace RsbRA's function only in the absence of RsbRB. This differentiation of function is confined to light stress, since strains with RsbRA or RsbRB as the only RsbR protein behave similarly in our experimental conditions in response to physicochemical stresses. Interestingly, RsbRB's absence is sufficient to result in light activation of the general stress response at wild-type expression levels of ytvA, while it was previously reported that YtvA could only activate σ(B) when overproduced, or when cells are supplemented with an additional environmental stress.
Collapse
|
48
|
Liebal UW, Sappa PK, Millat T, Steil L, Homuth G, Völker U, Wolkenhauer O. Proteolysis of beta-galactosidase following SigmaB activation in Bacillus subtilis. MOLECULAR BIOSYSTEMS 2012; 8:1806-14. [DOI: 10.1039/c2mb25031d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Nannapaneni P, Hertwig F, Depke M, Hecker M, Mäder U, Völker U, Steil L, van Hijum SAFT. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. MICROBIOLOGY-SGM 2011; 158:696-707. [PMID: 22174379 DOI: 10.1099/mic.0.055434-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structure of the SigB-dependent general stress regulon of Bacillus subtilis has previously been characterized by proteomics approaches as well as DNA array-based expression studies. However, comparing the SigB targets published in three previous major transcriptional profiling studies it is obvious that although each of them identified well above 100 target genes, only 67 were identified in all three studies. These substantial differences can likely be attributed to the different strains, growth conditions, microarray platforms and experimental setups used in the studies. In order to gain a better understanding of the structure of this important regulon, a targeted DNA microarray analysis covering most of the known SigB-inducing conditions was performed, and the changes in expression kinetics of 252 potential members of the SigB regulon and appropriate control genes were recorded. Transcriptional data for the B. subtilis wild-type strain 168 and its isogenic sigB mutant BSM29 were analysed using random forest, a machine learning algorithm, by incorporating the knowledge from previous studies. This analysis revealed a strictly SigB-dependent expression pattern for 166 genes following ethanol, butanol, osmotic and oxidative stress, low-temperature growth and heat shock, as well as limitation of oxygen or glucose. Kinetic analysis of the data for the wild-type strain identified 30 additional members of the SigB regulon, which were also subject to control by additional transcriptional regulators, thus displaying atypical SigB-independent induction patterns in the mutant strain under some of the conditions tested. For 19 of these 30 SigB regulon members, published reports support control by secondary regulators along with SigB. Thus, this microarray-based study assigns a total of 196 genes to the SigB-dependent general stress regulon of B. subtilis.
Collapse
Affiliation(s)
- Priyanka Nannapaneni
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Falk Hertwig
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Maren Depke
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Ulrike Mäder
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Sacha A F T van Hijum
- NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands.,Radboud University Nijmegen Medical Centre, Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| |
Collapse
|
50
|
Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. J Bacteriol 2011; 193:6939-49. [PMID: 22001508 DOI: 10.1128/jb.06197-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.
Collapse
|