1
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
2
|
Korshunov S, Imlay JA. Antioxidants are ineffective at quenching reactive oxygen species inside bacteria and should not be used to diagnose oxidative stress. Mol Microbiol 2024; 122:113-128. [PMID: 38889382 DOI: 10.1111/mmi.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
3
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
4
|
Wang NE, Courcelle EJ, Coltman SM, Spolek RL, Courcelle J, Courcelle CT. Manganese transporters regulate the resumption of replication in hydrogen peroxide-stressed Escherichia coli. Biometals 2023; 36:1361-1376. [PMID: 37493920 DOI: 10.1007/s10534-023-00523-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Following hydrogen peroxide treatment, ferrous iron (Fe2+) is oxidized to its ferric form (Fe3+), stripping it from and inactivating iron-containing proteins. Many mononuclear iron enzymes can be remetallated by manganese to restore function, while other enzymes specifically utilize manganese as a cofactor, having redundant activities that compensate for iron-depleted counterparts. DNA replication relies on one or more iron-dependent protein(s) as synthesis abates in the presence of hydrogen peroxide and requires manganese in the medium to resume. Here, we show that manganese transporters regulate the ability to resume replication following oxidative challenge in Escherichia coli. The absence of the primary manganese importer, MntH, impairs the ability to resume replication; whereas deleting the manganese exporter, MntP, or transporter regulator, MntR, dramatically increases the rate of recovery. Unregulated manganese import promoted recovery even in the absence of Fur, which maintains iron homeostasis. Similarly, replication was not restored in oxyR mutants, which cannot upregulate manganese import following hydrogen peroxide stress. Taken together, the results define a central role for manganese transport in restoring replication following oxidative stress.
Collapse
Affiliation(s)
- Natalie E Wang
- Department of Biology, Portland State University, Portland, OR, 97201, USA
| | | | - Samantha M Coltman
- Department of Biology, Portland State University, Portland, OR, 97201, USA
| | - Raymond L Spolek
- Department of Biology, Portland State University, Portland, OR, 97201, USA
| | - Justin Courcelle
- Department of Biology, Portland State University, Portland, OR, 97201, USA.
| | | |
Collapse
|
5
|
Lamoureux CR, Decker KT, Sastry AV, Rychel K, Gao Y, McConn J, Zielinski D, Palsson BO. A multi-scale expression and regulation knowledge base for Escherichia coli. Nucleic Acids Res 2023; 51:10176-10193. [PMID: 37713610 PMCID: PMC10602906 DOI: 10.1093/nar/gkad750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Cameron R Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine T Decker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Luke McConn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Bharathan G, Mundra S, Darwich DM, Saeed MM, Al Hafri ASA, Alsalmi MMSM, Maqsood S, Mudgil P, Fanning S, Srikumar S. Regulation of iron metabolism is critical for the survival of Salmonella Typhimurium in pasteurized milk. Food Microbiol 2023; 115:104326. [PMID: 37567619 DOI: 10.1016/j.fm.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/13/2023]
Abstract
Salmonella is known to survive in raw/pasteurized milk and cause foodborne outbreaks. Lactoferrin, present in milk from all animal sources, is an iron-binding glycoprotein that limits the availability of iron to pathogenic bacteria. Despite the presence of lactoferrins, Salmonella can grow in milk obtained from different animal sources. However, the mechanism by which Salmonella overcomes iron scarcity induced by lactoferrin in milk is not evaluated yet. Salmonella employs the DNA binding transcriptional regulator Fur (ferric update regulator) to mediate iron uptake during survival in iron deplete conditions. To understand the importance of Fur in Salmonella milk growth, we profiled the growth of Salmonella Typhimurium Δfur (ST4/74Δfur) in both bovine and camel milk. ST4/74Δfur was highly inhibited in milk compared to wild-type ST4/74, confirming the importance of Fur mediated regulation of iron metabolism in Salmonella milk growth. We further studied the biology of ST4/74Δfur to understand the importance of iron metabolism in Salmonella milk survival. Using increasing concentrations of FeCl3, and the antibiotic streptonigrin we show that iron accumulates in the cytoplasm of ST4/74Δfur. We hypothesized that the accumulated iron could activate oxidative stress via Fenton's reaction leading to growth inhibition. However, the inhibition of ST4/74Δfur in milk was not due to Fenton's reaction, but due to the 'iron scarce' conditions of milk and microaerophilic incubation conditions which made the presence of the fur gene indispensable for Salmonella milk growth. Subsequently, survival studies of 14 other transcriptional mutants of ST4/74 in milk confirmed that RpoE-mediated response to extracytoplasmic stress is also important for the survival of Salmonella in milk. Though we have data only for fur and rpoE, many other Salmonella transcriptional factors could play important roles in the growth of Salmonella in milk, a theme for future research on Salmonella milk biology. Nevertheless, our data provide early insights into the biology of milk-associated Salmonella.
Collapse
Affiliation(s)
- Greeshma Bharathan
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Dania Mustafa Darwich
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Maitha Mohammad Saeed
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Ahad Saeed Ali Al Hafri
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | | | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, D04 N2E5, Ireland
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
7
|
Zhai Y, Minnick PJ, Pribis JP, Garcia-Villada L, Hastings PJ, Herman C, Rosenberg SM. ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells. Mol Cell 2023; 83:1298-1310.e4. [PMID: 36965481 PMCID: PMC10317147 DOI: 10.1016/j.molcel.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
9
|
Harten T, Nimzyk R, Gawlick VEA, Reinhold-Hurek B. Elucidation of Essential Genes and Mutant Fitness during Adaptation toward Nitrogen Fixation Conditions in the Endophyte Azoarcus olearius BH72 Revealed by Tn-Seq. Microbiol Spectr 2022; 10:e0216222. [PMID: 36416558 PMCID: PMC9769520 DOI: 10.1128/spectrum.02162-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Theresa Harten
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Rolf Nimzyk
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Nucleic Acid Analysis Facility (NAA), Bremen, Germany
| | - Vivian E. A. Gawlick
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Barbara Reinhold-Hurek
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| |
Collapse
|
10
|
Wu CM, Li LH, Lin YL, Wu CJ, Lin YT, Yang TC. The sbiTRS Operon Contributes to Stenobactin-Mediated Iron Utilization in Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0267322. [PMID: 36453931 PMCID: PMC9769818 DOI: 10.1128/spectrum.02673-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Iron is an essential micronutrient for various bacterial cellular processes. Fur is a global transcriptional regulator participating in iron homeostasis. Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has emerged as an opportunistic pathogen. To elucidate the novel regulatory mechanism behind iron homeostasis in S. maltophilia, wild-type KJ and KJΔFur, a fur mutant, were subjected to transcriptome assay. A five-gene cluster, sbiBA-sbiTRS, was significantly upregulated in KJΔFur. SbiAB is an ATP type efflux pump, SbiT is an inner membrane protein, and SbiSR is a two-component regulatory system (TCS). The sbiTRS operon organization was verified by reverse transcription-PCR (RT-PCR). Localization prediction and bacterial two-hybrid studies revealed that SbiT resided in the inner membrane and had an intramembrane interaction with SbiS. In iron-replete conditions, SbiT interacted with SbiS and maintained SbiSR TCS in a resting state. In response to iron depletion stress, SbiT no longer interacted with SbiS, leading to SbiSR TCS activation. The iron source utilization assay demonstrated the contribution of SbiSR TCS to stenobactin-mediated ferric iron utilization but notto the utilization of hemin and ferric citrate. Furthermore, SmeDEF and SbiAB pumps, known stenobactin secretion outlets, were members of the SbiSR regulon. Collectively, in an iron-depleted condition, SbiSR activation is regulated by Fur at the transcriptional level and by SbiT at the posttranslational level. Activated SbiSR contributes to stenobactin-mediated ferric iron utilization by upregulating the smeDEF and sbiAB operons. SbiSR is the first TCS found to be involved in iron homeostasis in S. maltophilia. IMPORTANCE Therapeutic options for Stenotrophomonas maltophilia infections are limited because S. maltophilia is intrinsically resistant to several antibiotics. Iron is an essential element for viability, but iron overload is a lethal threat to bacteria. Therefore, disruption of iron homeostasis can be an alternative strategy to cope with S. maltophilia infection. The intricate regulatory networks involved in iron hemostasis have been reported in various pathogens; however, little is known about S. maltophilia. Herein, a novel sbiTRS operon, a member of Fur regulon, was characterized. SbiT, an inner membrane protein, negatively modulated the SbiSR two-component regulatory system by intramembrane protein-protein interaction with SbiS. In response to iron-depleted stress, SbiSR was activated via the regulation of Fur and SbiT. Activated SbiSR upregulated smeDEF and sbiAB, which contributed to stenobactin-mediated ferric iron utilization. A novel fur-sbiT-sbiSR-smeDEF/sbiAB regulatory circuit in S. maltophilia was revealed.
Collapse
Affiliation(s)
- Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Choi WW, Jeong H, Kim Y, Lee HS. Gene nceA encodes a Ni/Co-sensing transcription factor to regulate metal efflux in Corynebacterium glutamicum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865361. [PMID: 36460048 DOI: 10.1093/mtomcs/mfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The function of Corynebacterium glutamicum open reading frame (ORF) NCgl2684 (named nceA in this study), which was annotated to encode a metalloregulator, was assessed using physiological, genetic, and biochemical approaches. Cells with deleted-nceA (ΔnceA) showed a resistant phenotype to NiSO4 and CoSO4 and showed faster growth in minimal medium containing 20 μM NiSO4 or 10 μM CoSO4 than both the wild-type and nceA-overexpressing (P180-nceA) cells. In the ΔnceA strain, the transcription of the downstream-located ORF NCgl2685 (nceB), annotated to encode efflux protein, was increased approximately 4-fold, whereas gene transcription decreased down to 30% level in the P180-nceA strain. The transcriptions of the nceA and nceB genes were stimulated, even when as little as 5 nM NiSO4 was added to the growth medium. Protein NceA was able to bind DNA comprising the promoter region (from -14 to + 18) of the nceA--nceB operon. The protein-DNA interaction was abolished in the presence of 20 μM NiSO4, 50 μM CoSO4, or 50 μM CdSO4. Although manganese induced the transcription of the nceA and nceB genes, it failed to interrupt protein-DNA interaction. Simultaneously, the P180-nceA cells showed increased sensitivity to oxidants such as menadione, hydrogen peroxide, and cumene hydroperoxide, but not diamide. Collectively, our data show that NceA is a nickel- and cobalt-sensing transcriptional regulator that controls the transcription of the probable efflux protein-encoding nceB. The genes are able to suppress intracellular levels of nickel to prevent reactions, which can cause oxidative damage to cellular components.
Collapse
Affiliation(s)
- Won-Woo Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
12
|
Lagage V, Chen V, Uphoff S. Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress. EMBO Rep 2022; 24:e55640. [PMID: 36397732 PMCID: PMC9827559 DOI: 10.15252/embr.202255640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In bacteria, the oxidative stress response prevents mutagenesis by reactive oxygen species (ROS). We hypothesise that the stress response dynamics can therefore affect the timing of the mutation supply that fuels genetic adaptation to oxidative stress. We uncover that sudden hydrogen peroxide stress causes a burst of mutations. By developing single-molecule and single-cell microscopy methods, we determine how these mutation dynamics arise from phenotypic adaptation mechanisms. H2 O2 signalling by the transcription factor OxyR rapidly induces ROS-scavenging enzymes. However, an adaptation delay leaves cells vulnerable to the mutagenic and toxic effects of hydroxyl radicals generated by the Fenton reaction. Resulting DNA damage is counteracted by a spike in DNA repair activities during the adaptation delay. Absence of a mutation burst in cells with prior stress exposure or constitutive OxyR activation shows that the timing of phenotypic adaptation directly controls stress-induced mutagenesis. Similar observations for alkylation stress show that mutation bursts are a general phenomenon associated with adaptation delays.
Collapse
Affiliation(s)
| | - Victor Chen
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | |
Collapse
|
13
|
Giannakis S, Gupta A, Pulgarin C, Imlay J. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. WATER RESEARCH 2022; 221:118740. [PMID: 35717710 PMCID: PMC11136163 DOI: 10.1016/j.watres.2022.118740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Solar disinfection (SODIS) was probed for its underlying mechanism. When Escherichia coli was exposed to UVA irradiation, the dominant solar fraction acting in SODIS process, cells exhibited a shoulder before death ensued. This profile resembles cell killing by hydrogen peroxide (H2O2). Indeed, the use of specialized strains revealed that UVA exposure triggers intracellular H2O2 formation. The resultant H2O2 stress was especially impactful because UVA also inactivated the processes that degrade H2O2-peroxidases through the suppression of metabolism, and catalases through direct enzyme damage. Cell killing was enhanced when water was replaced with D2O, suggesting that singlet oxygen plays a role, possibly as a precursor to H2O2 and/or as the mediator of catalase damage. UVA was especially toxic to mutants lacking miniferritin (dps) or recombinational DNA repair (recA) enzymes, indicating that reactions between ferrous iron and UVA-generated H2O2 lead to lethal DNA damage. Importantly, experiments showed that the intracellular accumulation of H2O2 alone is insufficient to kill cells; therefore, UVA must do something more to enable death. A possibility is that UVA stimulates the reduction of intracellular ferric iron to its ferrous form, either by stimulating O2•- formation or by generating photoexcited electron donors. These observations and methods open the door to follow-up experiments that can probe the mechanisms of H2O2 formation, catalase inactivation, and iron reduction. Of immediate utility, the data highlight the intracellular pathways formed under UVA light during SODIS, and that the presence of micromolar iron accelerates the rate at which radiation disinfects water.
Collapse
Affiliation(s)
- Stefanos Giannakis
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA; School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, Universidad Politécnica de Madrid (UPM), c/ Profesor Aranguren, s/n, Madrid ES-28040, Spain.
| | - Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - James Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Liu Y, Wang Z, Wu S, Yuan X, Gao T. Microbial metal homeostasis of biological soil crusts as a mechanism for promoting soil restoration during desert revegetation. SOIL BIOLOGY AND BIOCHEMISTRY 2022; 169:108659. [DOI: 10.1016/j.soilbio.2022.108659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
15
|
Wang S, Xiao X, Qiu M, Wang W, Xiao Y, Yang H, Dang Y, Wang W. Transcriptomic Responses of Salmonella enterica Serovars Enteritidis in Sodium Hypochlorite. Front Cell Infect Microbiol 2022; 12:853064. [PMID: 35521218 PMCID: PMC9065344 DOI: 10.3389/fcimb.2022.853064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Salmonella enterica serovars Enteritidis (S. Enteritidis) can survive extreme food processing environments including bactericidal sodium hypochlorite (NaClO) treatments generally recognized as safe. In order to reveal the molecular regulatory mechanisms underlying the phenotypes, the overall regulation of genes at the transcription level in S. Enteritidis after NaClO stimulation were investigated by RNA-sequencing. We identified 1399 differentially expressed genes (DEG) of S. Enteritidis strain CVCC 1806 following treatment in liquid culture with 100 mg/L NaClO for 20 min (915 upregulated and 484 downregulated). NaClO stress affects the transcription of genes related to a range of important biomolecular processes such as membrane damage, membrane transport function, energy metabolism, oxidative stress, DNA repair, and other important processes in Salmonella enterica. First, NaClO affects the structural stability of cell membranes, which induces the expression of a range of outer and inner membrane proteins. This may lead to changes in cell membrane permeability, accelerating the frequency of DNA conversion and contributing to the production of drug-resistant bacteria. In addition, the expression of exocytosis pump genes (emrB, yceE, ydhE, and ydhC) was able to expel NaClO from the cell, thereby increasing bacterial tolerance to NaClO. Secondly, downregulation of genes related to the Kdp-ATPase transporter system (kdpABC) and the amino acid transporter system (aroP, brnQ and livF) may to some extent reduce active transport by bacterial cells, thereby reducing their own metabolism and the entry of disinfectants. Downregulation of genes related to the tricarboxylic acid (TCA) cycle may drive bacterial cells into a viable but non-culturable (VBNC) state, resisting NaClO attack by reducing energy metabolism. In addition, significant upregulation of genes related to oxidative stress could mitigate damage caused by disinfectants by eliminating alkyl hydroperoxides, while upregulation of genes related to DNA repair could repair damage to bacterial cells caused by oxidative stress. Therefore, this study indicated that S. Enteritidis has genomic mechanisms to adapt to NaClO stress.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mengjia Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wensi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- *Correspondence: Wen Wang, ; Yali Dang,
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Wen Wang, ; Yali Dang,
| |
Collapse
|
16
|
Shi YG, Li DH, Kong YM, Zhang RR, Gu Q, Hu MX, Tian SY, Jin WG. Enhanced antibacterial efficacy and mechanism of octyl gallate/beta-cyclodextrins against Pseudomonas fluorescens and Vibrio parahaemolyticus and incorporated electrospun nanofibers for Chinese giant salamander fillets preservation. Int J Food Microbiol 2022; 361:109460. [PMID: 34785387 DOI: 10.1016/j.ijfoodmicro.2021.109460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
A series of alkyl gallates were evaluated for the antibacterial activity against two common Gram-negative foodborne bacteria (Pseudomonas fluorescens and Vibrio parahaemolyticus) associated with seafood. The length of the alkyl chain plays a pivotal role in eliciting their antibacterial activities and octyl gallate (OG) exerted an excellent inhibitory efficacy. To extend the aqueous solubility, stability, and bactericidal properties of octyl gallate (OG), an inclusion complex between OG and β-cyclodextrin (βCD), OG/βCD, was prepared and identified with various methods including X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the enhanced inhibitory effect and potential antibacterial mechanism of OG/βCD against two Gram-negative and Gram-positive foodborne bacteria were comprehensively investigated. The results show that OG/βCD could function against bacteria through effectively damaging the membrane, permeating into cells, and then disturbing the activity of the respiratory electron transport chain to cause the production of high-level intracellular hydroxyl radicals. Moreover, the reinforced OG/βCD-incorporated polylactic acid (PLA) nanofibers were fabricated using the electrospinning technique as food packaging to extend the Chinese giant salamander fillet's shelf life at 4 °C. This research highlights the antibacterial effectiveness of OG/βCD in aqueous media, which can be used as a safe multi-functionalized food additive combined with the benefits of electrospun nanofibers to extend the Chinese giant salamander fillets shelf life by 15 d at 4 °C.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Dong-Hui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yi-Ming Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Run-Run Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Gang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
17
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
18
|
Seregina TA, Lobanov KV, Shakulov RS, Mironov AS. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol 2022; 56:638-648. [PMID: 36217334 PMCID: PMC9534473 DOI: 10.1134/s0026893322050120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Counteraction of the origin and distribution of multidrug-resistant pathogens responsible for intra-hospital infections is a worldwide issue in medicine. In this brief review, we discuss the results of our recent investigations, which argue that many antibiotics, along with inactivation of their traditional biochemical targets, can induce oxidative stress (ROS production), thus resulting in increased bactericidal efficiency. As we previously showed, hydrogen sulfide, which is produced in the cells of different pathogens protects them not only against oxidative stress but also against bactericidal antibiotics. Next, we clarified the interplay of oxidative stress, cysteine metabolism, and hydrogen sulfide production. Finally, demonstrated that small molecules, which inhibit a bacterial enzyme involved in hydrogen sulfide production, potentiate bactericidal antibiotics including quinolones, beta-lactams, and aminoglycosides against bacterial pathogens in in vitro and in mouse models of infection. These inhibitors also suppress bacterial tolerance to antibiotics by disrupting the biofilm formation and substantially reducing the number of persister bacteria, which survive the antibiotic treatment. We hypothesise that agents which limit hydrogen sulfide biosynthesis are effective tools to counteract the origin and distribution of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- T. A. Seregina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - K. V. Lobanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - R. S. Shakulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - A. S. Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
19
|
Bactericidal Activity of Multilayered Hybrid Structures Comprising Titania Nanoparticles and CdSe Quantum Dots under Visible Light. NANOMATERIALS 2021; 11:nano11123331. [PMID: 34947680 PMCID: PMC8708662 DOI: 10.3390/nano11123331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.
Collapse
|
20
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
21
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Weerasooriya G, McWhorter AR, Khan S, Chousalkar KK. Transcriptomic response of Campylobacter jejuni following exposure to acidified sodium chlorite. NPJ Sci Food 2021; 5:23. [PMID: 34341355 PMCID: PMC8329286 DOI: 10.1038/s41538-021-00103-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chemical decontamination during processing is used in many countries to mitigate the Campylobacter load on chicken meat. Chlorine is a commonly used sanitizer in poultry processing to limit foodborne bacterial pathogens but its efficacy is limited by high bacterial loads and organic material. Acidified sodium chlorite (ASC) is a potential alternative for poultry meat sanitization but little is known about its effects on the cellular response of Campylobacter. In this study, the sensitivity of C. jejuni isolates to ASC was established. RNAseq was performed to characterize the transcriptomic response of C. jejuni following exposure to either chlorine or ASC. Following chlorine exposure, C. jejuni induced an adaptive stress response mechanism. In contrast, exposure to ASC induced higher oxidative damage and cellular death by inhibiting all vital metabolic pathways and upregulating the genes involved in DNA damage and repair. The transcriptional changes in C. jejuni in response to ASC exposure suggest its potential as an effective sanitizer for use in the chicken meat industry.
Collapse
Affiliation(s)
- Gayani Weerasooriya
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Andrea R McWhorter
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|
23
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
24
|
Singh A, Dubey AK. Improved antibacterial and cellular response of electrets and piezobioceramics. J Biomater Appl 2021; 36:441-459. [PMID: 33599133 DOI: 10.1177/0885328221991965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bacterial contamination in implants has been recognized as one of the key issues in orthopedics. In this article, a new technique of electrical polarization of various non-piezoelectric and piezoelectric biocompatible ceramics has been explored to develop antibacterial implants. Optimally processed hydroxyapatite (HA), BaTiO3 (BT), CaTiO3 (CT), Na0.5K0.5NbO3 (NKN) and their composites have been used as model biomaterials to verify the concept. The phase evolution analyses and microstructural characterizations were performed for sintered samples. The samples were polarized at polarizing voltage and temperature of 20 kV and 500°C, respectively, for 30 min. The hydrophilicity of polarized surfaces was examined using deionized water and culture media. The polarization induced in-vitro antibacterial study was performed for both, gram positive and gram negative bacteria. The viability of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria reduces significantly on the polarized surfaces. In addition, the influence of polarization on antibacterial response has been explored via various mechanisms such as development of reactive oxygen species (ROS), catalase activity and lipoperoxidation. Furthermore, the cellular response of polarized surfaces was also examined using SaOS2 and MG-63 cells. The viability of SaOS2 and MG-63 cells was observed to increase significantly on negatively polarized surfaces. Overall, the surface treatment enhances the antibacterial response of HA, NKN, BT, CT and their composites surfaces with positive influence on cellular response.
Collapse
Affiliation(s)
- Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
25
|
Petkovic J, Kojic M, Milisavljevic M. Self-Generated Hypoxia Leads to Oxidative Stress and Massive Death in Ustilago maydis Populations under Extreme Starvation and Oxygen-Limited Conditions. J Fungi (Basel) 2021; 7:jof7020092. [PMID: 33525319 PMCID: PMC7912166 DOI: 10.3390/jof7020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/02/2022] Open
Abstract
Ustilago maydis and Saccharomyces cerevisiae differ considerably in their response to water-transfer treatments. When stationary phase cells were transferred to pure water and incubated under limited supply of oxygen, the U. maydis cells suffered a catastrophic loss of viability while the S. cerevisiae population was virtually unaffected by the treatment. The major factor underlying the death of the U. maydis cells under those conditions was an oxygen-consuming cellular activity that generated a hypoxic environment, thereby inducing oxidative stress and accumulation of reactive oxygen species, which resulted in lethality. Importantly, a small residue of U. maydis cells that did survive was able to resume growth and repopulate up to the initial culture density when sufficient aeration was restored. The regrowth was dependent on the cellular factors (Adr1, Did4, Kel1, and Tbp1), previously identified as required for repopulation, after killing with hydrogen peroxide. Surprisingly, the survivors were also able to resume growth under apparently hypoxic conditions, indicating that these remnant cells likely switched to a fermentative mode of growth. We discuss the findings in terms of their possible relevance to the eco-evolutionary adaptation of U. maydis to risky environments.
Collapse
|
26
|
Shi YG, Zhang RR, Zhu CM, Xu MF, Gu Q, Ettelaie R, Lin S, Wang YF, Leng XY. Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation. Food Chem 2020; 346:128949. [PMID: 33418419 DOI: 10.1016/j.foodchem.2020.128949] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
The objective of this study was to investigate the antibacterial activity and potential mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus. Results show that the length of the alkyl chain plays a pivotal role in eliciting the activity and octyl gallate (OG) exerted excellent bactericidal activity through a multiple bactericidal mechanism. OG functions against both bacteria through damaging bacterial cell wall integrity, permeating into cells and then interacting with DNA, as well as disturbing the activity of the respiratory electron transport chain to induce a high-level toxic ROS (hydroxyl radicals) generation and up-regulation of the ROS genes. Also, electrospun nanofibers with OG have unique superiorities for maintaining the freshness of the icefish (4 °C). This research not only provides a more in-depth understanding of the interaction between OG and microorganisms but also highlights the great promise of using OG as a safe multi-functionalized food additive for food preservations.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Run-Run Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ming-Feng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Shan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yi-Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Xin-Yi Leng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
27
|
Liu L, Feng X, Wang W, Chen Y, Chen Z, Gao H. Free Rather Than Total Iron Content Is Critically Linked to the Fur Physiology in Shewanella oneidensis. Front Microbiol 2020; 11:593246. [PMID: 33329474 PMCID: PMC7732582 DOI: 10.3389/fmicb.2020.593246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Ferric uptake regulator (Fur) is a transcriptional regulator playing a central role in iron homeostasis of many bacteria, and Fur inactivation commonly results in pleiotropic phenotypes. In Shewanella oneidensis, a representative of dissimilatory metal-reducing γ-proteobacteria capable of respiring a variety of chemicals as electron acceptors (EAs), Fur loss substantially impairs respiration. However, to date the mechanism underlying the physiological phenomenon remains obscure. This investigation reveals that Fur loss compromises activity of iron proteins requiring biosynthetic processes for their iron cofactors, heme in particular. We then show that S. oneidensis Fur is critical for maintaining heme homeostasis by affecting both its biosynthesis and decomposition of the molecule. Intriguingly, the abundance of iron-containing proteins controlled by H2O2-responding regulator OxyR increases in the fur mutant because the Fur loss activates OxyR. By comparing suppression of membrane-impermeable, membrane-permeable, and intracellular-only iron chelators on heme deficiency and elevated H2O2 resistance, our data suggest that the elevation of the free iron content by the Fur loss is likely to be the predominant factor for the Fur physiology. Overall, these results provide circumstantial evidence that Fur inactivation disturbs bacterial iron homeostasis by altering transcription of its regulon members, through which many physiological processes, such as respiration and oxidative stress response, are transformed.
Collapse
Affiliation(s)
| | | | | | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Kirthika P, Senevirathne A, Jawalagatti V, Park S, Lee JH. Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes 2020; 11:1695-1712. [PMID: 32567462 PMCID: PMC7524146 DOI: 10.1080/19490976.2020.1777923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/03/2023] Open
Abstract
In the present study, we characterized the involvement of Lon protease in bacterial virulence and intracellular survival in Salmonella under abiotic stress conditions resembling the conditions of a natural infection. Wild type (JOL401) and the lon mutant (JOL909) Salmonella Typhimurium were exposed to low temperature, pH, osmotic, and oxidative stress conditions and changes in gene expression profiles related to virulence and metal ion uptake were investigated. Expression of candidate genes invF and hilC of Salmonella Pathogenicity Island (SPI)-1 and sifA and sseJ of SPI-2 revealed that Lon protease controls SPI-1 genes and not SPI-2 genes under all stress conditions tested. The lon mutant exhibited increased accumulation of hydroxyl (OH·) ions that lead to cell damage due to oxidative stress. This oxidative damage can also be linked to an unregulated influx of iron due to the upregulation of ion channel genes such as fepA in the lon mutant. The deletion of lon from the Salmonella genome causes oxidative damage and increased expression of virulence genes. It also prompts the secretion of host pro-inflammatory cytokines leading to early clearance of the bacteria from host cells. We conclude that poor bacterial recovery from mice infected with the lon mutant is a result of disrupted bacterial intracellular equilibrium and rapid activation of cytokine expression leading to bacterial lysis.
Collapse
Affiliation(s)
- Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | | | - SungWoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
29
|
Kaur S, Benov LT. Methylene blue induces the soxRS regulon of Escherichia coli. Chem Biol Interact 2020; 329:109222. [PMID: 32771325 DOI: 10.1016/j.cbi.2020.109222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
Extensive application of methylene blue (MB) for therapeutic and diagnostic purposes, and reports for unwanted side effects, demand better understanding of the mechanisms of biological action of this thiazine dye. Because MB is redox-active, its biological activities have been attributed to transfer of electrons, generation of reactive oxygen species, and antioxidant action. Results of this study show that MB is more toxic to a superoxide dismutase-deficient Escherichia coli mutant than to its SOD-proficient parent, which indicates that superoxide anion radical is involved. Incubation of E. coli with MB induced the enzymes fumarase C, SOD, nitroreductase A, and glucose-6-phosphate dehydrogenase, all controlled by the soxRS regulon. Induction of these enzymes was prevented by blocking protein synthesis with chloramphenicol and was not observed when soxRS-negative mutants were incubated with MB. These results show that MB is capable of inducing the soxRS regulon of E. coli, which plays a key role in protecting bacteria against oxidative stress and redox-cycling compounds. Irrespective of the abundance of heme-containing proteins in living cells, which are preferred acceptors of electrons from the reduced form of MB, reduction of oxygen to superoxide radical still takes place. Induction of the soxRS regulon suggests that in humans, beneficial effects of MB could be attributed to activation of redox-sensitive transcription factors like Nrf2 and FoxO. If defense systems are compromised or genes coding for protective proteins are not induced, MB would have deleterious effects.
Collapse
Affiliation(s)
- Simranbir Kaur
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | - Ludmil T Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
30
|
CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc Natl Acad Sci U S A 2020; 117:23565-23570. [PMID: 32900959 DOI: 10.1073/pnas.2007817117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in Escherichia coli the component of cytochrome bd-I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the cydD phenotype, unlike that of the bona fide l-cysteine exporter eamA, parallels that of the l-cystine importer tcyP. Chromosomal induction of eamA, but not of cydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellular l-cysteine, whereas induction of cydDC or tcyP causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of cydD renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of cydDC sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by eamA overexpression. Furthermore, inactivation of the ferric uptake regulator (fur) in Ptet-cydDC or Ptet-tcyP cells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2 These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.
Collapse
|
31
|
Abstract
How do organisms deal with free iron? On the one hand, iron is an essential metal that plays crucial structural and functional roles in many organisms. On the other hand, free iron is extremely toxic, particularly under aerobic conditions, where iron rapidly undergoes the Fenton reaction and produces highly reactive hydroxyl radicals. Our study now demonstrates that we have discovered one of the first physiologically relevant nonproteinaceous iron chelators and Fenton inhibitors. We found that polyphosphate, a highly conserved and ubiquitous inorganic polyanion, chelates iron and, through its multivalency, prevents the interaction of iron with peroxide and therefore the formation of hydroxyl radicals. We show that polyP provides a crucial iron reservoir for metalloproteins under nonstress conditions and effectively chelates free iron during iron stress. Importantly, polyP is present in all cells and organisms and hence is likely to take on this crucial function in both prokaryotic and eukaryotic cells. Maintaining cellular iron homeostasis is critical for organismal survival. Whereas iron depletion negatively affects the many metabolic pathways that depend on the activity of iron-containing enzymes, any excess of iron can cause the rapid formation of highly toxic reactive oxygen species (ROS) through Fenton chemistry. Although several cellular iron chelators have been identified, little is known about if and how organisms can prevent the Fenton reaction. By studying the effects of cisplatin, a commonly used anticancer drug and effective antimicrobial, we discovered that cisplatin elicits severe iron stress and oxidative DNA damage in bacteria. We found that both of these effects are successfully prevented by polyphosphate (polyP), an abundant polymer consisting solely of covalently linked inorganic phosphates. Subsequent in vitro and in vivo studies revealed that polyP provides a crucial iron reservoir under nonstress conditions and effectively complexes free iron and blocks ROS formation during iron stress. These results demonstrate that polyP, a universally conserved biomolecule, plays a hitherto unrecognized role as an iron chelator and an inhibitor of the Fenton reaction.
Collapse
|
32
|
Gerken H, Vuong P, Soparkar K, Misra R. Roles of the EnvZ/OmpR Two-Component System and Porins in Iron Acquisition in Escherichia coli. mBio 2020; 11:e01192-20. [PMID: 32576675 PMCID: PMC7315122 DOI: 10.1128/mbio.01192-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli secretes high-affinity Fe3+ chelators to solubilize and transport chelated Fe3+ via specific outer membrane receptors. In microaerobic and anaerobic growth environments, where the reduced Fe2+ form is predominant, ferrous transport systems fulfill the bacterial need for iron. Expression of genes coding for iron metabolism is controlled by Fur, which when bound to Fe2+ acts as a repressor. Work carried out here shows that the constitutively activated EnvZ/OmpR two-component system, which normally controls expression of the ompC and ompF porin genes, dramatically increases the intracellular pool of accessible iron, as determined by whole-cell electron paramagnetic resonance spectroscopy, by inducing the OmpC/FeoB-mediated ferrous transport pathway. Elevated levels of intracellular iron in turn activated Fur, which inhibited the ferric transport pathway but not the ferrous transport pathway. The data show that the positive effect of constitutively activated EnvZ/OmpR on feoB expression is sufficient to overcome the negative effect of activated Fur on feoB In a tonB mutant, which lacks functional ferric transport systems, deletion of ompR severely impairs growth on rich medium not supplemented with iron, while the simultaneous deletion of ompC and ompF is not viable. These data, together with the observation of derepression of the Fur regulon in an OmpC mutant, show that the porins play an important role in iron homeostasis. The work presented here also resolves a long-standing paradoxical observation of the effect of certain mutant envZ alleles on iron regulon.IMPORTANCE The work presented here solved a long-standing paradox of the negative effects of certain missense alleles of envZ, which codes for kinase of the EnvZ/OmpR two-component system, on the expression of ferric uptake genes. The data revealed that the constitutive envZ alleles activate the Feo- and OmpC-mediated ferrous uptake pathway to flood the cytoplasm with accessible ferrous iron. This activates the ferric uptake regulator, Fur, which inhibits ferric uptake system but cannot inhibit the feo operon due to the positive effect of activated EnvZ/OmpR. The data also revealed the importance of porins in iron homeostasis.
Collapse
Affiliation(s)
- Henri Gerken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Phu Vuong
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Ketaki Soparkar
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
33
|
Orizola J, Ríos-Silva M, Muñoz-Villagrán C, Vargas E, Vásquez C, Arenas F. In vitro biosynthesis of Ag, Au and Te-containing nanostructures by Exiguobacterium cell-free extracts. BMC Biotechnol 2020; 20:29. [PMID: 32471409 PMCID: PMC7260758 DOI: 10.1186/s12896-020-00625-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.
Collapse
Affiliation(s)
- Javier Orizola
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mirtha Ríos-Silva
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Nucleares, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
34
|
Freitas C, Glatter T, Ringgaard S. Specific proteomic adaptation to distinct environments in Vibrio parahaemolyticus includes significant fluctuations in expression of essential proteins. Environ Microbiol 2020; 22:4279-4294. [PMID: 32219943 DOI: 10.1111/1462-2920.14997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022]
Abstract
Bacteria constantly experience changes to their external milieu and need to adapt accordingly to ensure their survival. Certain bacteria adapt by means of cellular differentiation, resulting in the development of a specific cell type that is specialized for life in a distinct environment. Furthermore, to understand how bacteria adapt, it is essential to appreciate the significant changes that occur at the proteomic level. By analysing the proteome of our model organism Vibrio parahaemolyticus from distinct environmental conditions and cellular differential states, we demonstrate that the proteomic expression profile is highly flexible, which likely allows it to adapt to life in different environmental conditions and habitats. We show that, even within the same swarm colony, there are specific zones of cells with distinct expression profiles. Furthermore, our data indicate that cell surface attachment and swarmer cell differentiation are distinct programmes that require specific proteomic expression profiles. This likely allows V. parahaemolyticus to adapt to life in different environmental conditions and habitats. Finally, our analyses reveal that the expression profile of the essential protein pool is highly fluid, with significant fluctuations that dependent on the specific life-style, environment and differentiation state of the bacterium.
Collapse
Affiliation(s)
- Carolina Freitas
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
35
|
Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria. J Microbiol 2019; 58:131-141. [PMID: 31872373 DOI: 10.1007/s12275-020-9290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Response regulator (RR) is known a protein that mediates cell's response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.
Collapse
|
36
|
Manganese Is Required for the Rapid Recovery of DNA Synthesis following Oxidative Challenge in Escherichia coli. J Bacteriol 2019; 201:JB.00426-19. [PMID: 31570529 DOI: 10.1128/jb.00426-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Divalent metals such as iron and manganese play an important role in the cellular response to oxidative challenges and are required as cofactors by many enzymes. However, how these metals affect replication after oxidative challenge is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. We show that the manganese-dependent recovery of DNA synthesis occurs independent of lesion repair, modestly improves cell survival, and is associated with elevated rates of mutagenesis. The Mn-dependent mutagenesis involves both replicative and translesion polymerases and requires prior disruption by H2O2 to occur. Taking these findings together, we propose that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. The data suggest that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity.IMPORTANCE Iron and manganese play important roles in how cell's cope with oxygen stress. However, how these metals affect the ability of cells to replicate after oxidative challenges is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. The manganese-dependent recovery of DNA synthesis occurs independently of lesion repair and modestly improves survival, but it also increases the mutation rate in cells. The results imply that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. We propose that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity.
Collapse
|
37
|
Bacterial ABC transporters of iron containing compounds. Res Microbiol 2019; 170:345-357. [DOI: 10.1016/j.resmic.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
38
|
Liu X, Wang J, Chen M, Che R, Ding W, Yu F, Zhou Y, Cui W, Xiaoxu X, God'spower BO, Li Y. Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. BMC Vet Res 2019; 15:224. [PMID: 31266490 PMCID: PMC6604186 DOI: 10.1186/s12917-019-1959-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background As a kind of opportunist pathogen, Staphylococcus xylosus (S. xylosus) can cause mastitis. Antibiotics are widely used for treating infected animals and tylosin is a member of such group. Thus, the continuous use of antibiotics in dairy livestock enterprise will go a long way in increasing tylosin resistance. However, the mechanism of tylosin-resistant S. xylosus is not clear. Here, isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods was used to find resistance-related proteins. Results We compared the differential expression of S. xylosus in response to tylosin stress by iTRAQ. A total of 155 proteins (59 up-regulated, 96 down-regulated) with the fold-change of >1.2 or <0.8 (p value ≤0.05) were observed between the S. xylosus treated with 1/2 MIC (0.25 μg/mL) tylosin and the untreated S. xylosus. Bioinformatic analysis revealed that these proteins play important roles in stress-response and transcription. Then, in order to verify the relationship between the above changed proteins and mechanism of tylosin-resistant S. xylosus, we induced the tylosin-resistant S. xylosus, and performed quantitative PCR analysis to verify the changes in the transcription proteins and the stress-response proteins in tylosin-resistant S. xylosus at the mRNA level. The data displayed that ribosomal protein L23 (rplw), thioredoxin(trxA) and Aldehyde dehydrogenase A(aldA-1) are up-regulated in the tylosin-resistant S. xylosus, compared with the tylosin-sensitive strains. Conclusion Our findings demonstrate the important of stress-response and transcription in the tylosin resistance of S. xylosus and provide an insight into the prevention of this resistance, which would aid in finding new medicines . Electronic supplementary material The online version of this article (10.1186/s12917-019-1959-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Mo Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Ruixiang Che
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Wenya Ding
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Fei Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Xing Xiaoxu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Bello-Onaghise God'spower
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Road Changjiang, Xiangfang, Harbin, Heilongjiang, 150030, People's Republic of China.
| |
Collapse
|
39
|
Campos AI, Zampieri M. Metabolomics-Driven Exploration of the Chemical Drug Space to Predict Combination Antimicrobial Therapies. Mol Cell 2019; 74:1291-1303.e6. [PMID: 31047795 PMCID: PMC6591011 DOI: 10.1016/j.molcel.2019.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/27/2018] [Accepted: 03/28/2019] [Indexed: 01/12/2023]
Abstract
Alternative to the conventional search for single-target, single-compound treatments, combination therapies can open entirely new opportunities to fight antibiotic resistance. However, combinatorial complexity prohibits experimental testing of drug combinations on a large scale, and methods to rationally design combination therapies are lagging behind. Here, we developed a combined experimental-computational approach to predict drug-drug interactions using high-throughput metabolomics. The approach was tested on 1,279 pharmacologically diverse drugs applied to the gram-negative bacterium Escherichia coli. Combining our metabolic profiling of drug response with previously generated metabolic and chemogenomic profiles of 3,807 single-gene deletion strains revealed an unexpectedly large space of inhibited gene functions and enabled rational design of drug combinations. This approach is applicable to other therapeutic areas and can unveil unprecedented insights into drug tolerance, side effects, and repurposing. The compendium of drug-associated metabolome profiles is available at https://zampierigroup.shinyapps.io/EcoPrestMet, providing a valuable resource for the microbiological and pharmacological communities.
Collapse
Affiliation(s)
- Adrian I Campos
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
40
|
Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. J Bacteriol 2019; 201:JB.00697-18. [PMID: 30642990 DOI: 10.1128/jb.00697-18] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lag is a temporary period of nonreplication seen in bacteria that are introduced to new media. Despite latency being described by Müller in 1895, only recently have we gained insights into the cellular processes characterizing lag phase. This review covers literature to date on the transcriptomic, proteomic, metabolomic, physiological, biochemical, and evolutionary features of prokaryotic lag. Though lag is commonly described as a preparative phase that allows bacteria to harvest nutrients and adapt to new environments, the implications of recent studies indicate that a refinement of this view is well deserved. As shown, lag is a dynamic, organized, adaptive, and evolvable process that protects bacteria from threats, promotes reproductive fitness, and is broadly relevant to the study of bacterial evolution, host-pathogen interactions, antibiotic tolerance, environmental biology, molecular microbiology, and food safety.
Collapse
|
41
|
Contreras F, Vargas E, Jiménez K, Muñoz-Villagrán C, Figueroa M, Vásquez C, Arenas F. Reduction of Gold (III) and Tellurium (IV) by Enterobacter cloacae MF01 Results in Nanostructure Formation Both in Aerobic and Anaerobic Conditions. Front Microbiol 2018; 9:3118. [PMID: 30619192 PMCID: PMC6305273 DOI: 10.3389/fmicb.2018.03118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
Microorganism survival in the presence of toxic substances such as metal(loid)s lies chiefly on their ability to resist (or tolerate) such elements through specific resistance mechanisms. Among them, toxicant reduction has attracted the attention of researchers because metal(loid)-reducing bacteria are being used to recover and/or decontaminate polluted sites. Particularly, our interest is to analyze the toxicity of gold and tellurium compounds for the environmental microorganism Enterobacter cloacae MF01 and also to explore the generation of nanostructures to be used in future biotechnological processes. Resistance of E. cloacae MF01 to gold and tellurium salts as well as the putative mechanisms involved -both in aerobic and anaerobic growth conditions- was evaluated. These metal(loid)s were selected because of their potential application in biotechnology. Resistance to auric tetrachloride acid (HAuCl4) and potassium tellurite (K2TeO3) was assessed by determining areas of growth inhibition, minimum inhibitory concentrations, and growth curves as well as by viability tests. E. cloacae MF01 exhibited higher resistance to HAuCl4 and K2TeO3 under aerobic and anaerobic conditions, respectively. In general, their toxicity is mediated by the generation of reactive oxygen species and by a decrease of intracellular reduced thiols (RSH). To assess if resistance implies toxicant reduction, intra- and extra-cellular toxicant-reducing activities were evaluated. While E. cloacae MF01 exhibited intra- and extra-cellular HAuCl4-reducing activity, tellurite reduction was observed only intracellularly. Then, Au- and Te-containing nanostructures (AuNS and TeNS, respectively) were synthesized using crude extracts from E. cloacae MF01 and their size, morphology, and chemical composition was evaluated.
Collapse
Affiliation(s)
- Fernanda Contreras
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Karla Jiménez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Maximiliano Figueroa
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
42
|
Coping with Reactive Oxygen Species to Ensure Genome Stability in Escherichia coli. Genes (Basel) 2018; 9:genes9110565. [PMID: 30469410 PMCID: PMC6267047 DOI: 10.3390/genes9110565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The facultative aerobic bacterium Escherichia coli adjusts its cell cycle to environmental conditions. Because of its lifestyle, the bacterium has to balance the use of oxygen with the potential lethal effects of its poisonous derivatives. Oxidative damages perpetrated by molecules such as hydrogen peroxide and superoxide anions directly incapacitate metabolic activities relying on enzymes co-factored with iron and flavins. Consequently, growth is inhibited when the bacterium faces substantial reactive oxygen insults coming from environmental or cellular sources. Although hydrogen peroxide and superoxide anions do not oxidize DNA directly, these molecules feed directly or indirectly the generation of the highly reactive hydroxyl radical that damages the bacterial chromosome. Oxidized bases are normally excised and the single strand gap repaired by the base excision repair pathway (BER). This process is especially problematic in E. coli because replication forks do not sense the presence of damages or a stalled fork ahead of them. As consequence, single-strand breaks are turned into double-strand breaks (DSB) through replication. Since E. coli tolerates the presence of DSBs poorly, BER can become toxic during oxidative stress. Here we review the repair strategies that E. coli adopts to preserve genome integrity during oxidative stress and their relation to cell cycle control of DNA replication.
Collapse
|
43
|
Sibiya N, Mabandla M. The pectin-insulin patch application prevents the onset of peripheral neuropathy-like symptoms in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2018; 96:1286-1292. [PMID: 30326192 DOI: 10.1139/cjpp-2018-0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peripheral neuropathic condition is amongst the classical symptoms of progressed diabetes. An intensive glycemic control with insulin injections has been shown to delay the onset and the progression of this condition in diabetes. In this study, we investigated the effect of pectin-insulin patch application on peripheral neuropathic symptoms in streptozotocin-induced diabetic rats. Pectin-insulin patches (20.0, 40.8, and 82.9 μg/kg) were daily applied thrice in streptozotocin-induced diabetic rats for 45 days. The diabetic animals sham treated with insulin-free patch served as negative control, while diabetic animals receiving subcutaneous insulin served as positive controls. The locomotor activity, gripping strength, and thermal perception were assessed at day 36, day 40, and day 44, respectively. On the 45th day, the animals were sacrificed, after which the plasma insulin, nitric oxide, C-reactive protein, tumor necrosis factor alpha, and malondialdehyde were measured. The patch application attenuated hyperglycemia with an improvement in the locomotor activity, thermal perception, and gripping strength in diabetic animals. Furthermore, the application of the patch augmented plasma nitric oxide while attenuating plasma malondialdehyde and tumor necrosis factor alpha. The application of pectin-insulin patch delays the onset of peripheral neuropathic-like symptoms in diabetic animals.
Collapse
Affiliation(s)
| | - Musa Mabandla
- b School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
44
|
Leaden L, Silva LG, Ribeiro RA, Dos Santos NM, Lorenzetti APR, Alegria TGP, Schulz ML, Medeiros MHG, Koide T, Marques MV. Iron Deficiency Generates Oxidative Stress and Activation of the SOS Response in Caulobacter crescentus. Front Microbiol 2018; 9:2014. [PMID: 30210482 PMCID: PMC6120978 DOI: 10.3389/fmicb.2018.02014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023] Open
Abstract
In C. crescentus, iron metabolism is mainly controlled by the transcription factor Fur (ferric uptake regulator). Iron-bound Fur represses genes related to iron uptake and can directly activate the expression of genes for iron-containing proteins. In this work, we used total RNA sequencing (RNA-seq) of wild type C. crescentus growing in minimal medium under iron limitation and a fur mutant strain to expand the known Fur regulon, and to identify novel iron-regulated genes. The RNA-seq of cultures treated with the iron chelator 2-2-dypiridyl (DP) allowed identifying 256 upregulated genes and 236 downregulated genes, being 176 and 204 newly identified, respectively. Sixteen transcription factors and seven sRNAs were upregulated in iron limitation, suggesting that the response to low iron triggers a complex regulatory network. Notably, lexA along with most of its target genes were upregulated, suggesting that DP treatment caused DNA damage, and the SOS DNA repair response was activated in a RecA-dependent manner, as confirmed by RT-qPCR. Fluorescence microscopy assays using an oxidation-sensitive dye showed that wild type cells in iron limitation and the fur mutant were under endogenous oxidative stress, and a direct measurement of cellular H2O2 showed that cells in iron-limited media present a higher amount of endogenous H2O2. A mutagenesis assay using the rpoB gene as a reporter showed that iron limitation led to an increase in the mutagenesis rate. These results showed that iron deficiency causes C. crescentus cells to suffer oxidative stress and to activate the SOS response, indicating an increase in DNA damage.
Collapse
Affiliation(s)
- Laura Leaden
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa G Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rodolfo A Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Naara M Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan P R Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane L Schulz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Shishido S, Miyano R, Nakashima T, Matsuo H, Iwatsuki M, Nakamura K, Kanno T, Egusa H, Niwano Y. A novel pathway for the photooxidation of catechin in relation to its prooxidative activity. Sci Rep 2018; 8:12888. [PMID: 30150642 PMCID: PMC6110801 DOI: 10.1038/s41598-018-31195-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/14/2018] [Indexed: 01/13/2023] Open
Abstract
In the present study, we evaluated the prooxidative mode of action of photoirradiated (+)-catechin at 400 nm in relation to reactive oxygen species generation and its possible application to disinfection. Photoirradiation of (+)-catechin at a concentration of 1 mg/mL yielded not only hydrogen peroxide (H2O2) but hydroxyl radical (·OH) in a total amount of approximately 20 μM in 10 min. As a result, photoirradiated catechin killed Staphylococcus aureus, and a > 5-log reduction in viable bacteria counts was observed within 20 min. Liquid chromatography-high-resolution-electrospray ionization-mass spectrometry showed that photoirradiation decreased the (+)-catechin peak (molecular formula C15H14O6) whilst it increased two peaks of a substance with the molecular formula C15H12O6 with increasing irradiation time. Nuclear magnetic resonance analysis revealed that the two C15H12O6 peaks were allocated to intramolecular cyclization products that are enantiomers of each other. These results suggest that photoirradiation induces oxidation of (+)-catechin resulting in the reduction of oxygen to generate H2O2. This H2O2 is then homolytically cleaved to ·OH, and alongside this process, (+)-catechin is finally converted to two intramolecular cyclization products that are different from the quinone structure of the B ring, as proposed previously for the autoxidation and enzymatic oxidation of catechins.
Collapse
Affiliation(s)
- Shunichi Shishido
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan
| | - Rei Miyano
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hirotaka Matsuo
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Keisuke Nakamura
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan
| | - Taro Kanno
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroshi Egusa
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshimi Niwano
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan.
- Faculty of Nursing, Shumei University, 1-1 Daigaku-cho, Yachiyo, Chiba, 276-0003, Japan.
| |
Collapse
|
46
|
Abstract
A growing body of research suggests bacterial metabolism and membrane bioenergetics affect the lethality of a broad spectrum of antibiotics. Electrochemical gradients spanning energy-transducing membranes are the foundation of the chemiosmotic hypothesis and are essential for life; accordingly, their dysfunction appears to be a critical factor in bacterial death. Proton flux across energy-transducing membranes is central for cellular homeostasis as vectorial proton translocation generates a proton motive force used for ATP synthesis, pH homeostasis, and maintenance of solute gradients. Our recent investigations indicate that maintenance of pH homeostasis is a critical factor in antibiotic killing and suggest an imbalance in proton flux initiates disruptions in chemiosmotic gradients that lead to cell death. The complex and interconnected relationships between electron transport systems, central carbon metabolism, oxidative stress generation, pH homeostasis, and electrochemical gradients provide challenging obstacles to deciphering the roles for each of these processes in antibiotic lethality. In this chapter, we will present evidence for the pH homeostasis hypothesis of antibiotic lethality that bactericidal activity flows from disruption of cellular energetics and loss of chemiosmotic homeostasis. A holistic understanding of the interconnection of energetic processes and antibiotic activity may direct future research toward the development of more effective therapeutic interventions.
Collapse
|
47
|
Iron chelation increases the tolerance of Escherichia coli to hyper-replication stress. Sci Rep 2018; 8:10550. [PMID: 30002429 PMCID: PMC6043582 DOI: 10.1038/s41598-018-28841-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022] Open
Abstract
In Escherichia coli, an increase in the frequency of chromosome replication is lethal. In order to identify compounds that affect chromosome replication, we screened for molecules capable of restoring the viability of hyper-replicating cells. We made use of two E. coli strains that over-initiate DNA replication by keeping the DnaA initiator protein in its active ATP bound state. While viable under anaerobic growth or when grown on poor media, these strains become inviable when grown in rich media. Extracts from actinomycetes strains were screened, leading to the identification of deferoxamine (DFO) as the active compound in one of them. We show that DFO does not affect chromosomal replication initiation and suggest that it was identified due to its ability to chelate cellular iron. This limits the formation of reactive oxygen species, reduce oxidative DNA damage and promote processivity of DNA replication. We argue that the benzazepine derivate (±)-6-Chloro-PB hydrobromide acts in a similar manner.
Collapse
|
48
|
Robertson J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Swift S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018; 6:e5135. [PMID: 29967756 PMCID: PMC6026458 DOI: 10.7717/peerj.5135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Polyaniline (PANI) and functionalised polyanilines (fPANI) are novel antimicrobial agents whose mechanism of action was investigated. Escherichia coli single gene deletion mutants revealed that the antimicrobial mechanism of PANI likely involves production of hydrogen peroxide while homopolymer poly(3-aminobenzoic acid), P3ABA, used as an example of a fPANI, disrupts metabolic and respiratory machinery, by targeting ATP synthase and causes acid stress. PANI was more active against E. coli in aerobic, compared to anaerobic, conditions, while this was apparent for P3ABA only in rich media. Greater activity in aerobic conditions suggests involvement of reactive oxygen species. P3ABA treatment causes an increase in intracellular free iron, which is linked to perturbation of metabolic enzymes and could promote reactive oxygen species production. Addition of exogenous catalase protected E. coli from PANI antimicrobial action; however, this was not apparent for P3ABA treated cells. The results presented suggest that PANI induces production of hydrogen peroxide, which can promote formation of hydroxyl radicals causing biomolecule damage and potentially cell death. P3ABA is thought to act as an uncoupler by targeting ATP synthase resulting in a futile cycle, which precipitates dysregulation of iron homeostasis, oxidative stress, acid stress, and potentially the fatal loss of proton motive force.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Gao J, Xi B, Chen K, Song R, Qin T, Xie J, Pan L. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen 2018; 8:e00664. [PMID: 29897673 PMCID: PMC6460269 DOI: 10.1002/mbo3.664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Stress is an important contributing factor in the outbreak of infectious fish diseases. To comprehensively understand the impact of catecholamine stress hormone norepinephrine (NE) on the pathogenicity of Aeromonas hydrophila, we assessed variations in bacterial growth, virulence‐related genes expression and virulence factors activity after NE addition in serum‐SAPI medium. Further, we assessed the effects of NE on A. hydrophila virulence in vivo by challenging fish with pathogenic strain AH196 and following with or without NE injection. The NE‐associated stimulation of A. hydrophila strain growth was not linear‐dose‐dependent, and only 100 μM, or higher concentrations, could stimulate growth. Real‐time PCR analyses revealed that NE notably changed 13 out of the 16 virulence‐associated genes (e.g. ompW, ahp, aha, ela, ahyR, ompA, and fur) expression, which were all significantly upregulated in A. hydrophila AH196 (p < 0.01). NE could enhance the protease activity, but not affect the lipase activity, hemolysis, and motility. Further, the mortality of crucian carp challenged with A. hydrophila AH196 was significantly higher in the group treated with NE (p < 0.01). Collectively, our results showed that NE enhanced the growth and virulence of pathogenic bacterium A. hydrophila.
Collapse
Affiliation(s)
- Jinwei Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Hunan Fisheries Science Institute, Changsha, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Ting Qin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
50
|
Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. Br J Nutr 2018; 120:283-289. [PMID: 29789023 DOI: 10.1017/s0007114518001149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fe is an essential nutrient for many bacteria, and Fe supplementation has been reported to affect the composition of the gut microbiota in both Fe-deficient and Fe-replete individuals outside pregnancy. This study examined whether the dose of Fe in pregnancy multivitamin supplements affects the overall composition of the gut microbiota in overweight and obese pregnant women in early pregnancy. Women participating in the SPRING study with a faecal sample obtained at 16 weeks' gestation were included in this substudy. For each subject, the brand of multivitamin used was recorded. Faecal microbiome composition was assessed by 16S rRNA sequencing and analysed with the QIIME software suite. Dietary intake of Fe was assessed using a FFQ at 16 weeks' gestation. Women were grouped as receiving low (<60 mg/d, n 94) or high (≥60 mg/d; n 65) Fe supplementation. The median supplementary Fe intake in the low group was 10 (interquartile range (IQR) 5-10) v. 60 (IQR 60-60) mg/d in the high group (P<0·001). Dietary Fe intake did not differ between the groups (10·0 (IQR 7·4-13·3) v. 9·8 (IQR 8·2-13·2) mg/d). Fe supplementation did not significantly affect the composition of the faecal microbiome at any taxonomic level. Network analysis showed that the gut microbiota in the low Fe supplementation group had a higher predominance of SCFA producers. Pregnancy multivitamin Fe content has a minor effect on the overall composition of the gut microbiota of overweight and obese pregnant women at 16 weeks' gestation.
Collapse
|