1
|
Mattick JSA, Bromley RE, Watson KJ, Adkins RS, Holt CI, Lebov JF, Sparklin BC, Tyson TS, Rasko DA, Dunning Hotopp JC. Deciphering transcript architectural complexity in bacteria and archaea. mBio 2024; 15:e0235924. [PMID: 39287442 PMCID: PMC11481537 DOI: 10.1128/mbio.02359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.
Collapse
Affiliation(s)
- John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaylee J. Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ricky S. Adkins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher I. Holt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tyonna S. Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Holden ER, Abi Assaf J, Al-Khanaq H, Vimont N, Webber MA, Trampari E. Identification of pathways required for Salmonella to colonize alfalfa using TraDIS- Xpress. Appl Environ Microbiol 2024; 90:e0013924. [PMID: 38904400 PMCID: PMC11267905 DOI: 10.1128/aem.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Enteropathogenic bacteria, such as Salmonella, have been linked to numerous fresh produce outbreaks, posing a significant public health threat. The ability of Salmonella to persist on fresh produce for extended periods is partly attributed to its capacity to form biofilms, which pose a challenge to food decontamination and can increase pathogenic bacterial load in the food chain. Preventing Salmonella colonization of food products and food processing environments is crucial for reducing the incidence of foodborne outbreaks. Understanding the mechanisms of establishment on fresh produce will inform the development of decontamination approaches. We used Transposon-Directed Insertion site Sequencing (TraDIS-Xpress) to investigate the mechanisms used by Salmonella enterica serovar Typhimurium to colonize and establish on fresh produce over time. We established an alfalfa colonization model and compared the findings to those obtained from glass surfaces. Our research identified distinct mechanisms required for Salmonella establishment on alfalfa compared with glass surfaces over time. These include the type III secretion system (sirC), Fe-S cluster assembly (iscA), curcumin degradation (curA), and copper tolerance (cueR). Shared pathways across surfaces included NADH hydrogenase synthesis (nuoA and nuoB), fimbrial regulation (fimA and fimZ), stress response (rpoS), LPS O-antigen synthesis (rfbJ), iron acquisition (ybaN), and ethanolamine utilization (eutT and eutQ). Notably, flagellum biosynthesis differentially impacted the colonization of biotic and abiotic environments over time. Understanding the genetic underpinnings of Salmonella establishment on both biotic and abiotic surfaces over time offers valuable insights that can inform the development of targeted antibacterial therapeutics, ultimately enhancing food safety throughout the food processing chain. IMPORTANCE Salmonella is the second most costly foodborne illness in the United Kingdom, accounting for £0.2 billion annually, with numerous outbreaks linked to fresh produce, such as leafy greens, cucumbers, tomatoes, and alfalfa sprouts. The ability of Salmonella to colonize and establish itself in fresh produce poses a significant challenge, hindering decontamination efforts and increasing the risk of illness. Understanding the key mechanisms of Salmonella to colonize plants over time is key to finding new ways to prevent and control contamination of fresh produce. This study identified genes and pathways important for Salmonella colonization of alfalfa and compared those with colonization of glass using a genome-wide screen. Genes with roles in flagellum biosynthesis, lipopolysaccharide production, and stringent response regulation varied in their significance between plants and glass. This work deepens our understanding of the requirements for plant colonization by Salmonella, revealing how gene essentiality changes over time and in different environments. This knowledge is key to developing effective strategies to reduce the risk of foodborne disease.
Collapse
Affiliation(s)
- Emma R. Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Justin Abi Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Noemie Vimont
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
3
|
Li Y, Tian S, Yang L, Bao X, Su L, Zhang X, Liu S, Zhu Y, Yang J, Lin H, Zhang J, Zeng J, Wang C, Tang T. Combined transcriptomic and metabolomic analysis of Salmonella in the presence or absence of PhoP-PhoQ system under low Mg 2+ conditions. Metabolomics 2022; 18:93. [PMID: 36378357 DOI: 10.1007/s11306-022-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/16/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Previous reports revealed the role played by Salmonella PhoP-PhoQ system in virulence activation, antimicrobial tolerance and intracellular survival, the impact of PhoP-PhoQ on cell metabolism has been less extensively described. OBJECTIVES The aim of this study is to address whether and how the PhoP-PhoQ system affects the cell metabolism of Salmonella. METHODS We constructed a Salmonella phoP deletion mutant strain TT-81 (PhoP-OFF), a Salmonella PhoP constitutively expressed strain TT-82 (PhoP-ON) and a wild-type Salmonella PhoP strain TT-80 (PhoP-N), using P22-mediated generalized transduction or λ Red-mediated targeted mutagenesis. We then measured the in vitro growth kinetics of all test strains and determined their metabolomic and transcriptomic profiles using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) and RNA-seq technique, respectively. RESULTS Low-Mg2+ conditions impaired the growth of the phoP deletion mutant strain TT-81 (PhoP-OFF) dramatically. 42 metabolites in the wild-type PhoP strain TT-80 (PhoP-N) and 28 metabolites in the PhoP constitutively expressed strain TT-82 (PhoP-ON) changed by the absence of phoP. In contrast, the level of 19 compounds in TT-80 (PhoP-N) changed comparing to the PhoP constitutively expressed strain TT-82 (PhoP-N). The mRNA level of 95 genes in TT-80 (PhoP-N) changed when phoP was disrupted, wherein 78 genes downregulated and 17 genes upregulated. 106 genes were determined to be differentially expressed between TT-81 (PhoP-OFF) and TT-82 (PhoP-ON). While only 16 genes were found to differentially expressed between TT-82 (PhoP-ON) and TT-80 (PhoP-N). CONCLUSION Our findings confirmed the impact of PhoP-PhoQ system on lipopolysaccharide (LPS) modification, energy metabolism, and the biosynthesis or transport of amino acids. Most importantly, we demonstrated that the turnover of a given metabolite could respond differentially to the level of phoP. Taken together, the present study provided new insights into the adaptation of Salmonella to the host environment and helped to characterize the impact of the PhoP-PhoQ system on the cell metabolism.
Collapse
Affiliation(s)
- Yongyu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Le Yang
- Shimadzu (China) Co., Ltd., Chengdu, 610063, Sichuan, People's Republic of China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd., Chengdu, 610063, Sichuan, People's Republic of China
| | - Lin Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiang Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sijing Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yalan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jiaxue Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jing Zhang
- Technology Center of Chengdu Customs, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Holden ER, Yasir M, Turner AK, Charles IG, Webber MA. Comparison of the genetic basis of biofilm formation between Salmonella Typhimurium and Escherichia coli. Microb Genom 2022; 8:mgen000885. [PMID: 36326671 PMCID: PMC9836088 DOI: 10.1099/mgen.0.000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most bacteria can form biofilms, which typically have a life cycle from cells initially attaching to a surface before aggregation and growth produces biomass and an extracellular matrix before finally cells disperse. To maximize fitness at each stage of this life cycle and given the different events taking place within a biofilm, temporal regulation of gene expression is essential. We recently described the genes required for optimal fitness over time during biofilm formation in Escherichia coli using a massively parallel transposon mutagenesis approach called TraDIS-Xpress. We have now repeated this study in Salmonella enterica serovar Typhimurium to determine the similarities and differences in biofilm formation through time between these species. A core set of pathways involved in biofilm formation in both species included matrix production, nucleotide biosynthesis, flagella assembly and LPS biosynthesis. We also identified several differences between the species, including a divergent impact of the antitoxin TomB on biofilm formation in each species. We observed deletion of tomB to be detrimental throughout the development of the E. coli biofilms but increased biofilm biomass in S. Typhimurium. We also found a more pronounced role for genes involved in respiration, specifically the electron transport chain, on the fitness of mature biofilms in S. Typhimurium than in E. coli and this was linked to matrix production. This work deepens understanding of the core requirements for biofilm formation in the Enterobacteriaceae whilst also identifying some genes with specialised roles in biofilm formation in each species.
Collapse
Affiliation(s)
- Emma R. Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - A. Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK,*Correspondence: Mark A. Webber,
| |
Collapse
|
5
|
Guleria R, Jain P, Verma M, Mukherjee KJ. Designing next generation recombinant protein expression platforms by modulating the cellular stress response in Escherichia coli. Microb Cell Fact 2020; 19:227. [PMID: 33308214 PMCID: PMC7730785 DOI: 10.1186/s12934-020-01488-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A cellular stress response (CSR) is triggered upon recombinant protein synthesis which acts as a global feedback regulator of protein expression. To remove this key regulatory bottleneck, we had previously proposed that genes that are up-regulated post induction could be part of the signaling pathways which activate the CSR. Knocking out some of these genes which were non-essential and belonged to the bottom of the E. coli regulatory network had provided higher expression of GFP and L-asparaginase. RESULTS We chose the best performing double knockout E. coli BW25113ΔelaAΔcysW and demonstrated its ability to enhance the expression of the toxic Rubella E1 glycoprotein by 2.5-fold by tagging it with sfGFP at the C-terminal end to better quantify expression levels. Transcriptomic analysis of this hyper-expressing mutant showed that a significantly lower proportion of genes got down-regulated post induction, which included genes for transcription, translation, protein folding and sorting, ribosome biogenesis, carbon metabolism, amino acid and ATP synthesis. This down-regulation which is a typical feature of the CSR was clearly blocked in the double knockout strain leading to its enhanced expression capability. Finally, we supplemented the expression of substrate uptake genes glpK and glpD whose down-regulation was not prevented in the double knockout, thus ameliorating almost all the negative effects of the CSR and obtained a further doubling in recombinant protein yields. CONCLUSION The study validated the hypothesis that these up-regulated genes act as signaling messengers which activate the CSR and thus, despite having no casual connection with recombinant protein synthesis, can improve cellular health and protein expression capabilities. Combining gene knockouts with supplementing the expression of key down-regulated genes can counter the harmful effects of CSR and help in the design of a truly superior host platform for recombinant protein expression.
Collapse
Affiliation(s)
- Richa Guleria
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madhulika Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Krishna J Mukherjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India. .,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Colonization efficiency of Pseudomonas putida is influenced by Fis-controlled transcription of nuoA-N operon. PLoS One 2018; 13:e0201841. [PMID: 30071101 PMCID: PMC6072106 DOI: 10.1371/journal.pone.0201841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
Root colonization of plant growth-promoting bacteria is a complex multistep process that is influenced by several factors. For example, during adherence to plant roots, bacteria have to endure reactive oxygen species (ROS) produced by plants. In this study, we report that the global transcriptional regulator Fis is involved in the regulation of ROS-tolerance of Pseudomonas putida and thereby affects barley root colonization. Fis overexpression reduced both ROS-tolerance and adherence to barley roots and activated the transcription of the nuoA-N operon encoding NADH dehydrogenase I, the first enzyme of a membrane-bound electron-transport chain. The nuoA-N knockout mutation in the fis-overexpression background increased the ROS-tolerance and adherence to barley roots. We show that nuoA has two transcriptional start sites located 104 and 377 nucleotides upstream of the coding sequence, indicating the presence of two promoters. The DNase I footprint analysis revealed four Fis binding sites: Fis-nuo1 to Fis-nuo4, situated between these two promoters. Site-directed mutagenesis in a promoter-lacZ reporter and β-galactosidase assay further confirmed direct binding of Fis to Fis-nuo2 and probably to Fis-nuo4 but not to Fis-nuo1 and Fis-nuo3. Additionally, the results implied that Fis binding to Fis-nuo4 could affect transcription of the nuoA-N operon by modification of upstream DNA topology. Moreover, our transposon mutagenesis results indicated that Fis might be involved in the regulation of several alternative ROS detoxification processes utilizing NADH.
Collapse
|
7
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
8
|
REMap: Operon map of M. tuberculosis based on RNA sequence data. Tuberculosis (Edinb) 2016; 99:70-80. [PMID: 27450008 DOI: 10.1016/j.tube.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/18/2022]
Abstract
A map of the transcriptional organization of genes of an organism is a basic tool that is necessary to understand and facilitate a more accurate genetic manipulation of the organism. Operon maps are largely generated by computational prediction programs that rely on gene conservation and genome architecture and may not be physiologically relevant. With the widespread use of RNA sequencing (RNAseq), the prediction of operons based on actual transcriptome sequencing rather than computational genomics alone is much needed. Here, we report a validated operon map of Mycobacterium tuberculosis, developed using RNAseq data from both the exponential and stationary phases of growth. At least 58.4% of M. tuberculosis genes are organized into 749 operons. Our prediction algorithm, REMap (RNA Expression Mapping of operons), considers the many cases of transcription coverage of intergenic regions, and avoids dependencies on functional annotation and arbitrary assumptions about gene structure. As a result, we demonstrate that REMap is able to more accurately predict operons, especially those that contain long intergenic regions or functionally unrelated genes, than previous operon prediction programs. The REMap algorithm is publicly available as a user-friendly tool that can be readily modified to predict operons in other bacteria.
Collapse
|
9
|
Gantzhorn MR, Olsen JE, Thomsen LE. Importance of sigma factor mutations in increased triclosan resistance in Salmonella Typhimurium. BMC Microbiol 2015; 15:105. [PMID: 25986727 PMCID: PMC4437202 DOI: 10.1186/s12866-015-0444-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica is the second most common foodborne pathogen. The use of biocides is crucial to prevent spread of foodborne pathogens, and it would be devastating for food safety if Salmonella would become resistant to the disinfectants used. Another concern is that exposure to disinfectants might lead to decreased susceptibility to antibiotics. The current study aimed to identify genetic changes causing high level triclosan resistance in S. enterica serovar Typhimurium and evaluate how these affected antibiotic resistance and efflux pump activity. RESULTS Wild type strains S. Typhimurium 4/74 and DTU3 were adapted to increasing concentrations of the biocide triclosan by serial passage. High level triclosan resistant isolates (MIC > 1000 μg/ml) were obtained. Strains were genome sequenced, and SNPs in fabI, rpoS and rpoD were found to be associated with high level resistance. However, work with defined mutants revealed that a SNP in fabI was not sufficient to obtain high level resistance. This required additional mutations in the sigma factors rpoS or rpoD. The adapted strains showed triclosan-dependent increased efflux, increased fabI expression and reduced susceptibility towards the antibiotics enrofloxacin and sulphamethoxazole/trimethoprim. CONCLUSIONS Medium level triclosan resistance could be obtained by fabI mutations in S. Typhimurium, however, high level resistance was found to require sigma factor mutations in addition to a fabI mutation. Reduced antibiotic sensitivity was observed for the adapted strains, which could be associated with increased efflux.
Collapse
Affiliation(s)
- Mette Rørbæk Gantzhorn
- Department of Veterinary Disease Biology, University of Copenhagen, Faculty of Health and Medical Sciences, Stigboejlen 4, 1870, Frederiksberg C, Denmark.
| | - John Elmerdahl Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, Faculty of Health and Medical Sciences, Stigboejlen 4, 1870, Frederiksberg C, Denmark.
| | - Line Elnif Thomsen
- Department of Veterinary Disease Biology, University of Copenhagen, Faculty of Health and Medical Sciences, Stigboejlen 4, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
10
|
Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 2011; 11:58. [PMID: 21418628 PMCID: PMC3075218 DOI: 10.1186/1471-2180-11-58] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/21/2011] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s) We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and motility. Furthermore, ArcA and Fnr share in the regulation of 120 S. Typhimurium genes.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wells MA, Mercer J, Mott RA, Pereira-Medrano AG, Burja AM, Radianingtyas H, Wright PC. Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial [NiFe] hydrogenase. Metab Eng 2011; 13:445-53. [PMID: 21276867 DOI: 10.1016/j.ymben.2011.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/05/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Biotechnology is a promising approach for the generation of hydrogen, but is not yet commercially viable. Metabolic engineering is a potential solution, but has largely been limited to native pathway optimisation. To widen opportunities for use of non-native [NiFe] hydrogenases for improved hydrogen production, we introduced a cyanobacterial hydrogen production pathway and associated maturation factors into Escherichia coli. Hydrogen production is observed in vivo in a hydrogenase null host, demonstrating coupling to host electron transfer systems. Hydrogenase activity is also detected in vitro. Hydrogen output is increased when formate production is abolished, showing that the new pathway is distinct from the native formate dependent pathway and supporting the conclusion that it couples cellular NADH and NADPH pools to molecular hydrogen. This work demonstrates non-native hydrogen production in E. coli, showing the wide portability of [NiFe] hydrogenase pathways and the potential for metabolic engineering to improve hydrogen yields.
Collapse
Affiliation(s)
- Mark A Wells
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Han Y, Qiu J, Guo Z, Gao H, Song Y, Zhou D, Yang R. Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression. BMC Microbiol 2007; 7:96. [PMID: 17963531 PMCID: PMC2231364 DOI: 10.1186/1471-2180-7-96] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 10/29/2007] [Indexed: 12/22/2022] Open
Abstract
Background Environmental modulation of gene expression in Yersinia pestis is critical for its life style and pathogenesis. Using cDNA microarray technology, we have analyzed the global gene expression of this deadly pathogen when grown under different stress conditions in vitro. Results To provide us with a comprehensive view of environmental modulation of global gene expression in Y. pestis, we have analyzed the gene expression profiles of 25 different stress conditions. Almost all known virulence genes of Y. pestis were differentially regulated under multiple environmental perturbations. Clustering enabled us to functionally classify co-expressed genes, including some uncharacterized genes. Collections of operons were predicted from the microarray data, and some of these were confirmed by reverse-transcription polymerase chain reaction (RT-PCR). Several regulatory DNA motifs, probably recognized by the regulatory protein Fur, PurR, or Fnr, were predicted from the clustered genes, and a Fur binding site in the corresponding promoter regions was verified by electrophoretic mobility shift assay (EMSA). Conclusion The comparative transcriptomics analysis we present here not only benefits our understanding of the molecular determinants of pathogenesis and cellular regulatory circuits in Y. pestis, it also serves as a basis for integrating increasing volumes of microarray data using existing methods.
Collapse
Affiliation(s)
- Yanping Han
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 20, Dongdajie, Fengtai, Beijing 100071, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
During in vitro broth culture, bacterial gene expression is typically dominated by highly expressed factors involved in protein biosynthesis, maturation, and folding, but it is unclear if this also applies to conditions in natural environments. Here, we used a promoter trap strategy with an unstable green fluorescent protein reporter that can be detected in infected mouse tissues to identify 21 Salmonella enterica promoters with high levels of activity in a mouse enteritis model. We then measured the activities of these and 31 previously identified Salmonella promoters in both the enteritis and a murine typhoid fever model. Surprisingly, the data reveal that instead of protein biosynthesis genes, disease-specific genes such as Salmonella pathogenicity island 1 (SPI-1)-associated genes and genes involved in anaerobic respiration (enteritis) or SPI-2-associated genes and genes of the PhoP regulon (typhoid fever), respectively, dominate Salmonella in vivo gene expression. The overall functional profile of highly expressed genes suggests a marked shift in major transcriptional activities to nutrient utilization during enteritis or to fighting against the host during typhoid fever. The large proportion of known and novel essential virulence factors among the identified genes suggests that high expression levels during infection may correlate with functional relevance.
Collapse
Affiliation(s)
- Claudia Rollenhagen
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | |
Collapse
|
14
|
Turner AK, Barber LZ, Wigley P, Muhammad S, Jones MA, Lovell MA, Hulme S, Barrow PA. Contribution of proton-translocating proteins to the virulence of Salmonella enterica serovars Typhimurium, Gallinarum, and Dublin in chickens and mice. Infect Immun 2003; 71:3392-401. [PMID: 12761123 PMCID: PMC155768 DOI: 10.1128/iai.71.6.3392-3401.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/29/2003] [Accepted: 03/18/2003] [Indexed: 11/20/2022] Open
Abstract
We investigated the attenuating effects of a range of respiratory chain mutations in three Salmonella serovars which might be used in the development of live vaccines. We tested mutations in nuoG, cydA, cyoA, atpB, and atpH in three serovars of Salmonella enterica: Typhimurium, Dublin, and Gallinarum. All three serovars were assessed for attenuation in their relevant virulence assays of typhoid-like infections. Serovar Typhimurium was assessed in 1-day-old chickens and the mouse. Serovar Gallinarum 9 was assessed in 3-week-old chickens, and serovar Dublin was assessed in 6-week-old mice. Our data show variation in attenuation for the nuoG, cydA, and cyoA mutations within the different serovar-host combinations. However, mutations in atpB and atpH were highly attenuating for all three serovars in the various virulence assays. Further investigation of the mutations in the atp operon showed that the bacteria were less invasive in vivo, showing reduced in vitro survival within phagocytic cells and reduced acid tolerance. We present data showing that this reduced acid tolerance is due to an inability to adapt to conditions rather than a general sensitivity to reduced pH. The data support the targeting of respiratory components for the production of live vaccines and suggest that mutations in the atp operon provide suitable candidates for broad-spectrum attenuation of a range of Salmonella serovars.
Collapse
Affiliation(s)
- A K Turner
- Institute for Animal Health, Compton Laboratory, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Claas K, Weber S, Downs DM. Lesions in the nuo operon, encoding NADH dehydrogenase complex I, prevent PurF-independent thiamine synthesis and reduce flux through the oxidative pentose phosphate pathway in Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:228-32. [PMID: 10613887 PMCID: PMC94264 DOI: 10.1128/jb.182.1.228-232.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, PurF-independent thiamine synthesis (or alternative pyrimidine biosynthesis) allows strains, under some growth conditions, to synthesize thiamine in the absence of the first step in the purine biosynthetic pathway. Mutations have been isolated in a number of loci that prevent this synthesis and thus result in an Apb(-) phenotype. Here we identify a new class of mutations that prevent PurF-independent thiamine synthesis and show that they are defective in the nuo genes, which encode the major, energy-generating NADH dehydrogenase of the cell. Data presented here indicated that a nuo mutant has reduced flux through the oxidative pentose phosphate pathway that may contribute to, but is not sufficient to cause, the observed thiamine requirement. We suggest that reduction of the oxidative pentose phosphate pathway capacity in a nuo mutant is an attempt to restore the ratio between reduced and oxidized pyridine nucleotide pools.
Collapse
Affiliation(s)
- K Claas
- Department of Bacteriology, University of Wisconsin-Madison, Madison 53711, USA
| | | | | |
Collapse
|
16
|
Cunning C, Elliott T. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J Bacteriol 1999; 181:4853-62. [PMID: 10438755 PMCID: PMC93972 DOI: 10.1128/jb.181.16.4853-4862.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor of enteric bacteria is either required for or augments the expression of a number of genes that are induced during nutrient limitation, growth into stationary phase, or in response to stresses, including high osmolarity. RpoS is regulated at multiple levels, including posttranscriptional control of its synthesis, protein turnover, and mechanisms that affect its activity directly. Here, the control of RpoS stability was investigated in Salmonella typhimurium by the isolation of a number of mutants specifically defective in RpoS turnover. These included 20 mutants defective in mviA, the ortholog of Escherichia coli rssB/sprE, and 13 mutants defective in either clpP or clpX which encode the protease active on RpoS. An hns mutant was also defective in RpoS turnover, thus confirming that S. typhimurium and E. coli have identical genetic requirements for this process. Some current models predict the existence of a kinase to phosphorylate the response regulator MviA, but no mutants affecting a kinase were recovered. An mviA mutant carrying the D58N substitution altering the predicted phosphorylation site is substantially defective, suggesting that phosphorylation of MviA on D58 is important for its function. No evidence was obtained to support models in which acetyl phosphate or the PTS system contributes to MviA phosphorylation. However, we did find a significant (fivefold) elevation of RpoS during exponential growth on acetate as the carbon and energy source. This behavior is due to growth rate-dependent regulation which increases RpoS synthesis at slower growth rates. Growth rate regulation operates at the level of RpoS synthesis and is mainly posttranscriptional but, surprisingly, is independent of hfq function.
Collapse
Affiliation(s)
- C Cunning
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
17
|
Wang L, Elliott M, Elliott T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 1999; 181:1211-9. [PMID: 9973348 PMCID: PMC93499 DOI: 10.1128/jb.181.4.1211-1219.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many bacteria, including the enteric species Salmonella typhimurium and Escherichia coli, heme is synthesized starting from glutamate by a pathway in which the first committed step is catalyzed by the hemA gene product, glutamyl-tRNA reductase (HemA). We have demonstrated previously that when heme limitation is imposed on cultures of S. typhimurium, HemA enzyme activity is increased 10- to 25-fold. Western (immunoblot) analysis with monoclonal antibodies reactive with HemA revealed that heme limitation results in a corresponding increase in the abundance of the enzyme. Similar regulation was also observed for E. coli. The near absence of regulation of hemA-lac operon fusions suggested a posttranscriptional control. We report here the results of pulse-labeling and immunoprecipitation studies of this regulation. The principal mechanism that contributes to elevated HemA abundance is protein stabilization. The half-life of HemA protein is approximately 20 min in unrestricted cells but increases to >300 min in heme-limited cells. Similar regulation was observed for a HemA-LacZ hybrid protein containing almost all of the HemA protein (416 residues). Sodium azide prevents HemA turnover in vivo, suggesting a role for energy-dependent proteolysis. This was confirmed by the finding that HemA turnover is completely blocked in a lon clpP double mutant of E. coli. Each single mutant shows only a small effect. The ClpA chaperone, but not ClpX, is required for ClpP-dependent HemA turnover. A hybrid HemA-LacZ protein containing just 18 amino acids from HemA is also stabilized in the lon clpP double mutant, but this shorter fusion protein is not correctly regulated by heme limitation. We suggest that the 18 N-terminal amino acids of HemA may constitute a degradation tag, whose function is conditional and modified by the remainder of the protein in a heme-dependent way. Several models are discussed to explain why the turnover of HemA is promoted by Lon-ClpAP proteolysis only when sufficient heme is available.
Collapse
Affiliation(s)
- L Wang
- West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
18
|
Friedrich T. The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:134-46. [PMID: 9593861 DOI: 10.1016/s0005-2728(98)00024-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T Friedrich
- Institut für Biochemie, Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Abstract
Respiratory chain complex I is a complicated enzyme of mitochondria, that couples electron transfer from NADH to ubiquinone to the proton translocation across the inner membrane of the organelle. The fungus Neurospora crassa has been used as one of the main model organisms to study this enzyme. Complex I is composed of multiple polypeptide subunits of dual genetic origin and contains several prosthetic groups involved in its activity. Most subunits have been cloned and those binding redox centres have been identified. Yet, the functional role of certain complex I proteins remains unknown. Insight into the possible origin and the mechanisms of complex I assembly has been gained. Several mutant strains of N. crassa, in which specific subunits of complex I were disrupted, have been isolated and characterised. This review concerns many aspects of the structure, function and biogenesis of complex I that are being elucidated.
Collapse
Affiliation(s)
- A Videira
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
20
|
Falk-Krzesinski HJ, Wolfe AJ. Genetic analysis of the nuo locus, which encodes the proton-translocating NADH dehydrogenase in Escherichia coli. J Bacteriol 1998; 180:1174-84. [PMID: 9495756 PMCID: PMC107005 DOI: 10.1128/jb.180.5.1174-1184.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1997] [Accepted: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
Complex I (EC 1.6.99.3) of the bacterium Escherichia coli is considered to be the minimal form of the type I NADH dehydrogenase, the first enzyme complex in the respiratory chain. Because of its small size and relative simplicity, the E. coli enzyme has become a model used to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex. To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus, which encodes the 14 Nuo subunits comprising E. coli complex I. Here we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.
Collapse
Affiliation(s)
- H J Falk-Krzesinski
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | |
Collapse
|
21
|
Webb E, Febres F, Downs DM. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium. J Bacteriol 1996; 178:2533-8. [PMID: 8626319 PMCID: PMC177976 DOI: 10.1128/jb.178.9.2533-2538.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Salmonella typhimurium, thiamine is a required nutrient that is synthesized de novo. Labeling studies have demonstrated probable precursors for both the 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate moiety and the 4-methyl-5-(beta-hydroxyethyl) thiazole monophosphate moiety. The isolation of thiamine auxotrophs with mutations in at least five different genetic loci is reported. The majority (22 of 25) of the mutants required only the thiazole moiety of thiamine to satisfy their growth requirement. Most (14 of 25) of the mutants were affected in the thi cluster at min 90 on the S. typhimurium genetic map. Data provided herein indicate that this cluster encodes an operon whose transcription is regulated by thiamine and suggest that thiamine pyrophosphate, or a molecule derived form it, is the effector molecule. Mutants with altered regulation of this operon were isolated, and we propose that they are defective in thiamine phosphate kinase, the product of the thiL gene.
Collapse
Affiliation(s)
- E Webb
- Department of Bacteriology, University of Wisconsin--Madison 53706, USA
| | | | | |
Collapse
|
22
|
Archer CD, Jin J, Elliott T. Stabilization of a HemA-LacZ hybrid protein against proteolysis during carbon starvation in atp mutants of Salmonella typhimurium. J Bacteriol 1996; 178:2462-4. [PMID: 8636058 PMCID: PMC177965 DOI: 10.1128/jb.178.8.2462-2464.1996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transposon insertions that stabilize the beta-galactosidase activity of a HemA-LacZ hybrid protein following carbon starvation were mapped to the atp operon of Salmonella typhimurium. This effect is similar to that seen with nuo mutants defective in the energy-conserving type I NADH dehydrogenase. Insertions in several other genes, including such highly pleiotropic mutants as rpoS, polA, and hfq, were isolated with the same phenotypic screen, but they do not affect the beta-galactosidase activity of HemA-LacZ. All of these mutants act indirectly to alter the colony color of many different fusion strains on indicator plates.
Collapse
Affiliation(s)
- C D Archer
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown 26506, USA
| | | | | |
Collapse
|