1
|
Robinson A, McDonald JP, Caldas VEA, Patel M, Wood EA, Punter CM, Ghodke H, Cox MM, Woodgate R, Goodman MF, van Oijen AM. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 2015; 11:e1005482. [PMID: 26317348 PMCID: PMC4552617 DOI: 10.1371/journal.pgen.1005482] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/03/2015] [Indexed: 01/04/2023] Open
Abstract
Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. Escherichia coli, and many other bacteria, respond to high levels of DNA damage with an inducible system called the SOS response. In this response, bacteria first try to restart replication using non-mutagenic DNA repair strategies. If that fails, replication can be restored using DNA polymerases that simply replicate over DNA lesions, a desperation strategy that results in mutations. DNA polymerase V (pol V) is responsible for most mutagenesis that accompanies the SOS response. Because of the risk inherent to elevated mutation levels, pol V activation is tightly constrained. This report introduces a new layer of regulation on pol V activation, with a novel spatial component. After synthesis, the UmuC subunit of pol V is sequestered transiently at the membrane. Release into the cytosol and final activation depends on the activity of RecA protein and the autocatalytic cleavage of UmuD to generate the UmuD' subunit of pol V. The resulting delay in activation represents an additional molecular mechanism that limits the amount of time that this sometimes necessary but potentially detrimental enzyme spends on the DNA.
Collapse
Affiliation(s)
- Andrew Robinson
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victor E. A. Caldas
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Meghna Patel
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christiaan M. Punter
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Harshad Ghodke
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Antoine M. van Oijen
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLoS Genet 2013; 9:e1003878. [PMID: 24244177 PMCID: PMC3820734 DOI: 10.1371/journal.pgen.1003878] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 12/02/2022] Open
Abstract
Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th–5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER. Most DNA polymerases differentiate between ribo- and deoxyribonucleotides quite effectively, thereby deterring insertion of nucleotides with the “wrong” sugar into chromosomes. Nevertheless, a significant number of ribonucleotides still get stably incorporated into genomic DNA. E.coli pol V is among the most inaccurate DNA polymerases in terms of both sugar selectivity and base substitution fidelity. The umuC_Y11A steric gate variant of pol V is even less discriminating when selecting sugar of the incoming nucleotide while keeping a similar capacity to form non-Watson-Crick base pairs. In the present study, we describe mechanisms employed by E. coli to excise rNMPs from DNA and to concomitantly reduce the extent of spontaneous mutagenesis induced by umuC_Y11A. The first line of defense comes from Ribonuclease HII, which initiates the ribonucleotide excision repair pathway. In the absence of RNase HII, alternate repair pathways help remove the misincorporated ribonucleotides. Here, we present the first direct evidence that nucleotide excision repair (NER) has the capacity to recognize both correctly and incorrectly paired rNMPs embedded in DNA. The combined actions of RNase HII and NER thereby reduce the mutagenic potential of ribonucleotides errantly incorporated into prokaryotic genomes.
Collapse
|
3
|
Gr^|^uacute;z P, Nohmi T. Expression and Activity of Human DNA Polymerase ^|^eta; in Escherichia coli. Genes Environ 2013. [DOI: 10.3123/jemsge.35.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
4
|
Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet 2011; 7:e1002244. [PMID: 21912525 PMCID: PMC3164682 DOI: 10.1371/journal.pgen.1002244] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 12/29/2022] Open
Abstract
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root. In eubacteria, genome integrity is in large part orchestrated by RecA, which directly participates in recombination, induction of DNA damage response through LexA repressor cleavage and error-prone DNA synthesis. Yet, most of the interaction sites necessary for these vital processes are largely unknown. By comparing divergences among RecA sequences and computing putative functional regions, we discovered four functional sites of RecA. Targeted point-mutations were then tested for both recombination and DNA damage induction and reveal distinct RecA functions at each one of these sites. In particular, one new set of mutants is deficient in promoting LexA cleavage and yet maintains the ability to induce the DNA damage response. These results reveal specific amino acid determinants of the RecA–LexA interaction and suggest that LexA binds RecAi and RecAi+6 at a composite site on the RecA filament, which could explain the role of the active filament during LexA cleavage.
Collapse
Affiliation(s)
- Anbu K Adikesavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | |
Collapse
|
5
|
Belov OV, Krasavin EA, Parkhomenko AY. Mathematical model of induced mutagenesis in bacteria Escherichia coli under ultraviolet irradiation. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910040287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Model of SOS-induced mutagenesis in bacteria Escherichia coli under ultraviolet irradiation. J Theor Biol 2009; 261:388-95. [DOI: 10.1016/j.jtbi.2009.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/06/2009] [Accepted: 08/17/2009] [Indexed: 11/23/2022]
|
7
|
Genetic analysis of repair and damage tolerance mechanisms for DNA-protein cross-links in Escherichia coli. J Bacteriol 2009; 191:5657-68. [PMID: 19617358 DOI: 10.1128/jb.00417-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. We have recently shown that nucleotide excision repair (NER) and RecBCD-dependent homologous recombination (HR) collaboratively alleviate the lethal effect of DPCs in Escherichia coli. In this study, to gain further insight into the damage-processing mechanism for DPCs, we assessed the sensitivities of a panel of repair-deficient E. coli mutants to DPC-inducing agents, including formaldehyde (FA) and 5-azacytidine (azaC). We show here that the damage tolerance mechanism involving HR and subsequent replication restart (RR) provides the most effective means of cell survival against DPCs. Translesion synthesis does not serve as an alternative damage tolerance mechanism for DPCs in cell survival. Elimination of DPCs from the genome relies primarily on NER, which provides a second and moderately effective means of cell survival against DPCs. Interestingly, Cho rather than UvrC seems to be an effective nuclease for the NER of DPCs. Together with the genes responsible for HR, RR, and NER, the mutation of genes involved in several aspects of DNA repair and transactions, such as recQ, xth nfo, dksA, and topA, rendered cells slightly but significantly sensitive to FA but not azaC, possibly reflecting the complexity of DPCs or cryptic lesions induced by FA. UvrD may have an additional role outside NER, since the uvrD mutation conferred a slight azaC sensitivity on cells. Finally, DNA glycosylases mitigate azaC toxicity, independently of the repair of DPCs, presumably by removing 5-azacytosine or its degradation product from the chromosome.
Collapse
|
8
|
Ni M, Yang L, Liu XL, Qi O. Fluence-response dynamics of the UV-induced SOS response in Escherichia coli. Curr Microbiol 2008; 57:521-6. [PMID: 18781362 DOI: 10.1007/s00284-008-9235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/26/2022]
Abstract
Bacteria in nature often suffer sudden stresses, such as ultraviolet (UV) irradiation, nutrient deprivation, and chemotoxins that would cause DNA damage and DNA replication failure, which in turn trigger SOS response. According to the strength and duration of the stress, the SOS system not only repairs DNA damage but also induces mutagenesis, so as to adapt to the changing environment. The key proteins in charge of mutagenesis are UmuD and UmuD'. In this paper, we quantitatively measure the growth rate and cellular levels of proteins UmuD and UmuD' in Escherichia coli after various fluences of UV irradiation. To compare with the experimental observations, an ordinary differential equation model is built to describe the SOS response. Considering the fact that the DNA lesions affect cellular protein production and replication origination, the simulation results fit well with the experimental data. Our results show how the fluence of UV irradiation determines the dynamics of the inducing signal and the mutation frequency of the cell.
Collapse
Affiliation(s)
- Ming Ni
- Center for Theoretical Biology, School of Physics, Peking University, Beijing 100871, People's Republic of China.
| | | | | | | |
Collapse
|
9
|
Bröms JE, Edqvist PJ, Forsberg A, Francis MS. Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion. FEMS Microbiol Lett 2007; 256:57-66. [PMID: 16487320 DOI: 10.1111/j.1574-6968.2005.00099.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The type III secretion system (T3SS) is a specialized apparatus evolved by Gram-negative bacteria to deliver effector proteins into host cells, thus facilitating the establishment of an infection. Effector translocation across the target cell plasma membrane is believed to occur via pores formed by at least two secreted translocator proteins, the functions of which are dependent upon customized class II T3SS chaperones. Recently, three internal tetratricopeptide repeats (TPRs) were identified in this class of chaperones. Here, defined mutagenesis of the class II chaperone PcrH of Pseudomonas aeruginosa revealed these TPRs to be essential for chaperone activity towards the translocator proteins PopB and PopD and subsequently for the translocation of exoenzymes into host cells.
Collapse
|
10
|
Ni M, Wang SY, Li JK, Ouyang Q. Simulating the temporal modulation of inducible DNA damage response in Escherichia coli. Biophys J 2007; 93:62-73. [PMID: 17434938 PMCID: PMC1914449 DOI: 10.1529/biophysj.106.090712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living organisms make great efforts to maintain their genetic information integrity. However, DNA is vulnerable to many chemical or physical agents. To rescue the cell timely and effectively, the DNA damage response system must be well controlled. Recently, single cell experiments showing that after DNA damage, expression of the key DNA damage response regulatory protein oscillates with time. This phenomenon is observed both in eukaryotic and bacterial cells. We establish a model to simulate the DNA damage response (SOS response) in bacterial cell Escherichia coli. The simulation results are compared to the experimental data. Our simulation results suggest that the modulation observed in the experiment is due to the fluctuation of inducing signal, which is coupled with DNA replication. The inducing signal increases when replication is blocked by DNA damage and decreases when replication resumes.
Collapse
Affiliation(s)
- Ming Ni
- Center for Theoretical Biology and Department of Physics, Peking University, Beijing, China
| | | | | | | |
Collapse
|
11
|
Fujii S, Isogawa A, Fuchs RP. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 2006; 25:5754-63. [PMID: 17139245 PMCID: PMC1698908 DOI: 10.1038/sj.emboj.7601474] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/26/2006] [Indexed: 11/08/2022] Open
Abstract
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli.
Collapse
Affiliation(s)
- Shingo Fujii
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Asako Isogawa
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Robert P Fuchs
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
- Genome Instability and Carcinogenesis, CRNS, FRE 2931, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, 13402, France. Tel.: +33 4 9116 4271; Fax: +33 4 9116 4168; E-mail:
| |
Collapse
|
12
|
Yamada M, Nunoshiba T, Shimizu M, Gruz P, Kamiya H, Harashima H, Nohmi T. Involvement of Y-family DNA polymerases in mutagenesis caused by oxidized nucleotides in Escherichia coli. J Bacteriol 2006; 188:4992-5. [PMID: 16788208 PMCID: PMC1482991 DOI: 10.1128/jb.00281-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.
Collapse
Affiliation(s)
- Masami Yamada
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Tago YI, Imai M, Ihara M, Atofuji H, Nagata Y, Yamamoto K. Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors. J Mol Biol 2005; 351:299-308. [PMID: 16005896 DOI: 10.1016/j.jmb.2005.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.
Collapse
Affiliation(s)
- Yu-ichiro Tago
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Stumpf JD, Foster PL. Polyphosphate kinase regulates error-prone replication by DNA polymerase IV in Escherichia coli. Mol Microbiol 2005; 57:751-61. [PMID: 16045619 PMCID: PMC1314974 DOI: 10.1111/j.1365-2958.2005.04724.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ppk gene encodes polyphosphate kinase (Ppk), an enzyme that catalyses the polymerization of inorganic phosphate into long chains of polyphosphate (polyP). An insertion mutation in ppk causes a decrease in adaptive mutation in Escherichia coli strain FC40. Adaptive mutation in FC40 mostly results from error-prone DNA polymerase IV (Pol IV), encoded by dinB; most of the antimutagenic phenotype of the ppk mutant disappears in a dinB mutant strain. In addition, the ppk mutant causes a decrease in growth-dependent mutations produced by overexpressing Pol IV. However, the amount of Pol IV protein is unchanged in the ppk mutant strain, indicating that the activity or fidelity of Pol IV is altered. Adaptive mutation is inhibited both by the absence of Ppk, which results in low amounts of polyP, and by overproduction of Ppk, which results in high amounts of polyP, suggesting that an optimal level of polyP is necessary. Taken together, these results suggest a novel mechanism involving polyP that directly or indirectly regulates DNA polymerase activity or fidelity.
Collapse
Affiliation(s)
- Jeffrey D. Stumpf
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | - Patricia L. Foster
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Shen X, Woodgate R, Goodman MF. Escherichia coli DNA polymerase V subunit exchange: a post-SOS mechanism to curtail error-prone DNA synthesis. J Biol Chem 2003; 278:52546-50. [PMID: 14573598 DOI: 10.1074/jbc.m310127200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase V consisting of a heterotrimer composed of one molecule of UmuC and two molecules of UmuD' (UmuD'2C) is responsible for SOS damage-induced mutagenesis in Escherichia coli. Here we show that although the UmuD'2C complex remains intact through multiple chromatographic steps, excess UmuD, the precursor to UmuD', displaces UmuD' from UmuD'2C by forming a UmuDD' heterodimer, while UmuC concomitantly aggregates as an insoluble precipitate. Although soluble UmuD'2C is readily detected when the two genes are co-transcribed and translated in vitro, soluble UmuD2C or UmuDD'C are not detected. The subunit exchange between UmuD'2C and UmuD offers a biological means to inactivate error-prone polymerase V following translesion synthesis, thus preventing mutations from occurring on undamaged DNA.
Collapse
Affiliation(s)
- Xuan Shen
- Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | |
Collapse
|
16
|
Goodman MF, Woodgate R. The biochemical basis and in vivo regulation of SOS-induced mutagenesis promoted by Escherichia coli DNA polymerase V (UmuD'2C). COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:31-40. [PMID: 12760018 DOI: 10.1101/sqb.2000.65.31] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M F Goodman
- University of Southern California, Hedco Molecular Biology Laboratory, Department of Biological Sciences and Chemistry, Los Angeles, California 90089-1340, USA
| | | |
Collapse
|
17
|
Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Seifert HS. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 2003; 278:2278-85. [PMID: 12427742 DOI: 10.1074/jbc.m210496200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
18
|
Borden A, O'Grady PI, Vandewiele D, Fernández de Henestrosa AR, Lawrence CW, Woodgate R. Escherichia coli DNA polymerase III can replicate efficiently past a T-T cis-syn cyclobutane dimer if DNA polymerase V and the 3' to 5' exonuclease proofreading function encoded by dnaQ are inactivated. J Bacteriol 2002; 184:2674-81. [PMID: 11976296 PMCID: PMC135032 DOI: 10.1128/jb.184.10.2674-2681.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although very little replication past a T-T cis-syn cyclobutane dimer normally takes place in Escherichia coli in the absence of DNA polymerase V (Pol V), we previously observed as much as half of the wild-type bypass frequency in Pol V-deficient (DeltaumuDC) strains if the 3' to 5' exonuclease proofreading activity of the Pol III epsilon subunit was also disabled by mutD5. This observation might be explained in at least two ways. In the absence of Pol V, wild-type Pol III might bind preferentially to the blocked primer terminus but be incapable of bypass, whereas the proofreading-deficient enzyme might dissociate more readily, providing access to bypass polymerases. Alternatively, even though wild-type Pol III is generally regarded as being incapable of lesion bypass, proofreading-impaired Pol III might itself perform this function. We have investigated this issue by examining dimer bypass frequencies in DeltaumuDC mutD5 strains that were also deficient for Pol I, Pol II, and Pol IV, both singly and in all combinations. Dimer bypass frequencies were not decreased in any of these strains and indeed in some were increased to levels approaching those found in strains containing Pol V. Efficient dimer bypass was, however, entirely dependent on the proofreading deficiency imparted by mutD5, indicating the surprising conclusion that bypass was probably performed by the mutD5 Pol III enzyme itself. This mutant polymerase does not replicate past the much more distorted T-T (6-4) photoadduct, however, suggesting that it may only replicate past lesions, like the T-T dimer, that form base pairs normally.
Collapse
Affiliation(s)
- Angela Borden
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Recently, the Escherichia coli umuD and umuC genes have been shown to encode E. coli's fifth DNA polymerase, pol V (consisting of a heterotrimer of UmuD'(2)C). The main function of pol V appears to be the bypass of DNA lesions that would otherwise block replication by pols I-IV. This process is error-prone and leads to a striking increase in mutations at sites of DNA damage. While the enzymatic properties of pol V are now only beginning to be fully appreciated, a great deal is known about how E. coli regulates the intracellular levels of the Umu proteins so that the lesion-bypassing activity of pol V is available to help cells survive the deleterious consequences of DNA damage, yet keeps any unwarranted activity on undamaged templates to a minimum. Our review summarizes the multiple restrictions imposed upon pol V, so as to limit its activity in vivo and, in particular, highlights the pivotal role that the N-terminal tail of UmuD plays in regulating SOS mutagenesis.
Collapse
Affiliation(s)
- Martín Gonzalez
- Department of Biology, University of Colorado-Denver, Denver, CO, USA
| | | |
Collapse
|
20
|
Vandewiele D, Fernández de Henestrosa AR, Timms AR, Bridges BA, Woodgate R. Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified alpha-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutat Res 2002; 499:85-95. [PMID: 11804607 DOI: 10.1016/s0027-5107(01)00268-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the 1970s, several thermosensitive alleles of dnaE (encoding the alpha-catalytic subunit of pol III) were isolated. Genetic characterization of these dnaE mutants revealed that some are mutator alleles at permissive temperature. We have determined the nucleotide changes of five such temperature sensitive mutator alleles (dnaE9, dnaE74, dnaE486, dnaE511, and dnaE1026) and find that most are single missense mutations. The exception is dnaE1026 which is a compound allele consisting of multiple missense mutations. When the previously characterized mutator alleles were moved into a lexA51(Def) recA730 strain, dnaE486, dnaE1026 and dnaE74 conferred a modest approximately two-six-fold increase in spontaneous mutagenesis when grown at the permissive temperature of 28 degrees C, while dnaE9 and dnaE511 actually resulted in a slight decrease in spontaneous mutagenesis. In isogenic DeltaumuDC derivatives, the level of spontaneous mutagenesis dropped significantly, although in each case, the overall mutator effect conferred by the dnaE allele was relatively larger, with all five dnaE alleles conferring an increased spontaneous mutation rate approximately 5-22-fold over the isogenic dnaE+ DeltaumuDC strain. Interestingly, the temperature sensitivity conferred by each allele varied considerably in the lexA51(Def) recA730 background and in many cases, this phenotype was dependent upon the presence of functional pol V (UmuD'2C). Our data suggest that pol V can compete effectively with the impaired alpha-subunit for a 3' primer terminus and as a result, a large proportion of the phenotypic effects observed with strains carrying missense temperature sensitive mutations in dnaE can, in fact, be attributed to the actions of pol V rather than pol III.
Collapse
Affiliation(s)
- Dominique Vandewiele
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | |
Collapse
|
21
|
Kim GJ, Cheon YH, Park MS, Park HS, Kim HS. Generation of protein lineages with new sequence spaces by functional salvage screen. PROTEIN ENGINEERING 2001; 14:647-54. [PMID: 11707610 DOI: 10.1093/protein/14.9.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is first constructed by genetically disrupting a predetermined region(s) of the protein and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from Escherichia coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E.coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional properties. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.
Collapse
Affiliation(s)
- G J Kim
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Paldal-gu, Suwon, 442-749, Korea
| | | | | | | | | |
Collapse
|
22
|
Sutton MD, Walker GC. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci U S A 2001; 98:8342-9. [PMID: 11459973 PMCID: PMC37441 DOI: 10.1073/pnas.111036998] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
23
|
Abstract
It is quite remarkable how our understanding of translesion DNA synthesis (TLS) has changed so dramatically in the past 2 years. Until very recently, little was known about the molecular mechanisms of TLS in higher eukaryotes and what we did know, was largely based upon Escherichia coli and Saccharomyces cerevisiae model systems. The paradigm, proposed by Bryn Bridges and I [Mutat. Res. 150 (1985) 133] in 1985, was that error-prone TLS occurred in two steps; namely a misinsertion event opposite a lesion, followed by extension of the mispair so as to facilitate complete bypass of the lesion. The initial concept was that at least for E. coli, the misinsertion event was performed by the cell's main replicase, DNA polymerase III holoenzyme, and that elongation was achieved through the actions of specialized polymerase accessory proteins, such as UmuD and UmuC. Some 15 years later, we now know that this view is likely to be incorrect in that both misinsertion and bypass are performed by the Umu proteins (now called pol V). As pol V is normally a distributive enzyme, pol III may only be required to "fix" the misincorporation as a mutation by completing chromosome duplication. However, while the role of the E. coli proteins involved in TLS have changed, the initial concept of misincorporation followed by extension/bypass remains valid. Indeed, recent evidence suggests that it can equally be applied to TLS in eukaryotic cells where there are many more DNA polymerases to choose from. The aim of this review is, therefore, to provide a historical perspective to the "two-step" model for UV-mutagenesis, how it has recently evolved, and in particular, to highlight the seminal contributions made to it by Bryn Bridges.
Collapse
Affiliation(s)
- R Woodgate
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, MD 20892-2725, USA.
| |
Collapse
|
24
|
Bhamre S, Gadea BB, Koyama CA, White SJ, Fowler RG. An aerobic recA-, umuC-dependent pathway of spontaneous base-pair substitution mutagenesis in Escherichia coli. Mutat Res 2001; 473:229-47. [PMID: 11166040 DOI: 10.1016/s0027-5107(00)00155-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimutator alleles indentify genes whose normal products are involved in spontaneous mutagenesis pathways. Mutant alleles of the recA and umuC genes of Escherichia coli, whose wild-type alleles are components of the inducible SOS response, were shown to cause a decrease in the level of spontaneous mutagenesis. Using a series of chromosomal mutant trp alleles, which detect point mutations, as a reversion assay, it was shown that the reduction in mutagenesis is limited to base-pair substitutions. Within the limited number of sites than could be examined, transversions at AT sites were the favored substitutions. Frameshift mutagenesis was slightly enhanced by a mutant recA allele and unchanged by a mutant umuC allele. The wild-type recA and umuC genes are involved in the same mutagenic base-pair substitution pathway, designated "SOS-dependent spontaneous mutagenesis" (SDSM), since a recAumuC strain showed the same degree and specificity of antimutator activity as either single mutant strain. The SDSM pathway is active only in the presence of oxygen, since wild-type, recA, and umuC strains all show the same levels of reduced spontaneous mutagenesis anaerobically. The SDSM pathway can function in starving/stationary cells and may, or may not, be operative in actively dividing cultures. We suggest that, in wild-type cells, SDSM results from basal levels of SOS activity during DNA synthesis. Mutations may result from synthesis past cryptic DNA lesions (targeted mutagenesis) and/or from mispairings during synthesis with a normal DNA template (untargeted mutagenesis). Since it occurs in chromosomal genes of wild-type cells, SDSM may be biologically significant for isolates of natural enteric bacterial populations where extended starvation is often a common mode of existence.
Collapse
Affiliation(s)
- S Bhamre
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | | | | | | |
Collapse
|
25
|
Gonzalez M, Rasulova F, Maurizi MR, Woodgate R. Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability. EMBO J 2000; 19:5251-8. [PMID: 11013227 PMCID: PMC302103 DOI: 10.1093/emboj/19.19.5251] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Escherichia coli UmuD' protein is a subunit of the recently described error-prone DNA polymerase, pol V. UmuD' is initially synthesized as an unstable and mutagenically inactive pro-protein, UmuD. Upon processing, UmuD' assumes a relatively stable conformation and becomes mutagenically active. While UmuD and UmuD' by themselves exist in vivo as homodimers, when together they preferentially interact to form heterodimers. Quite strikingly, it is in this context that UmuD' becomes susceptible to ClpXP-mediated proteolysis. Here we report a novel targeting mechanism designed for degrading the mutagenically active UmuD' subunit of the UmuD/D' heterodimer complex, while leaving the UmuD protein intact. Surprisingly, a signal that is essential and sufficient for targeting UmuD' for degradation was found to reside on UmuD not UmuD'. UmuD was also shown to be capable of channeling an excess of UmuD' to ClpXP for degradation, thereby providing a mechanism whereby cells can limit error-prone DNA replication.
Collapse
Affiliation(s)
- M Gonzalez
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | |
Collapse
|
26
|
Kim GJ, Cheon YH, Kim HS. Directed evolution of a novelN-carbamylase/D-hydantoinase fusion enzyme for functional expression with enhanced stability. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000420)68:2<211::aid-bit10>3.0.co;2-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Frank EG, Cheng N, Do CC, Cerritelli ME, Bruck I, Goodman MF, Egelman EH, Woodgate R, Steven AC. Visualization of two binding sites for the Escherichia coli UmuD'(2)C complex (DNA pol V) on RecA-ssDNA filaments. J Mol Biol 2000; 297:585-97. [PMID: 10731413 DOI: 10.1006/jmbi.2000.3591] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heterotrimeric UmuD'(2)C complex of Escherichia coli has recently been shown to possess intrinsic DNA polymerase activity (DNA pol V) that facilitates error-prone translesion DNA synthesis (SOS mutagenesis). When overexpressed in vivo, UmuD'(2)C also inhibits homologous recombination. In both activities, UmuD'(2)C interacts with RecA nucleoprotein filaments. To examine the biochemical and structural basis of these reactions, we have analyzed the ability of the UmuD'(2)C complex to bind to RecA-ssDNA filaments in vitro. As estimated by a gel retardation assay, binding saturates at a stoichiometry of approximately one complex per two RecA monomers. Visualized by cryo-electron microscopy under these conditions, UmuD'(2)C is seen to bind uniformly along the filaments, such that the complexes are completely submerged in the deep helical groove. This mode of binding would impede access to DNA in a RecA filament, thus explaining the ability of UmuD'(2)C to inhibit homologous recombination. At sub-saturating binding, the distribution of UmuD'(2)C complexes along RecA-ssDNA filaments was characterized by immuno-gold labelling with anti-UmuC antibodies. These data revealed preferential binding at filament ends (most likely, at one end). End-specific binding is consistent with genetic models whereby such binding positions the UmuD'(2)C complex (pol V) appropriately for its role in SOS mutagenesis.
Collapse
Affiliation(s)
- E G Frank
- Section on DNA Replication Repair, National Institute of Child Health and Human Development, Bethesda, MD, 20892-2725, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 727] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
29
|
McLenigan MP, Kulaeva OI, Ennis DG, Levine AS, Woodgate R. The bacteriophage P1 HumD protein is a functional homolog of the prokaryotic UmuD'-like proteins and facilitates SOS mutagenesis in Escherichia coli. J Bacteriol 1999; 181:7005-13. [PMID: 10559166 PMCID: PMC94175 DOI: 10.1128/jb.181.22.7005-7013.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD'. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD' protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD'-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD' functions in vivo as well as examined HumD's physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive DeltaumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD', HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD'-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.
Collapse
Affiliation(s)
- M P McLenigan
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2725, USA
| | | | | | | | | |
Collapse
|
30
|
Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF. UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A 1999; 96:8919-24. [PMID: 10430871 PMCID: PMC17708 DOI: 10.1073/pnas.96.16.8919] [Citation(s) in RCA: 423] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The damage-inducible UmuD' and UmuC proteins are required for most SOS mutagenesis in Escherichia coli. Our recent assay to reconstitute this process in vitro, using a native UmuD'(2)C complex, revealed that the highly purified preparation contained DNA polymerase activity. Here we eliminate the possibility that this activity is caused by a contaminating DNA polymerase and show that it is intrinsic to UmuD'(2)C. E. coli dinB has recently been shown to have DNA polymerase activity (pol IV). We suggest that UmuD'(2)C, the fifth DNA polymerase discovered in E. coli, be designated as E. coli pol V. In the presence of RecA, beta sliding clamp, gamma clamp loading complex, and E. coli single-stranded binding protein (SSB), pol V's polymerase activity is highly "error prone" at both damaged and undamaged DNA template sites, catalyzing efficient bypass of abasic lesions that would otherwise severely inhibit replication by pol III holoenzyme complex (HE). Pol V bypasses a site-directed abasic lesion with an efficiency about 100- to 150-fold higher than pol III HE. In accordance with the "A-rule," dAMP is preferentially incorporated opposite the lesion. A pol V mutant, UmuD'(2)C104 (D101N), has no measurable lesion bypass activity. A kinetic analysis shows that addition of increasing amounts of pol III to a fixed level of pol V inhibits lesion bypass, demonstrating that both enzymes compete for free 3'-OH template-primer ends. We show, however, that despite competition for primer-3'-ends, pol V and pol III HE can nevertheless interact synergistically to stimulate synthesis downstream from a template lesion.
Collapse
Affiliation(s)
- M Tang
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | | | | | |
Collapse
|
31
|
Vandewiele D, Borden A, O'Grady PI, Woodgate R, Lawrence CW. Efficient translesion replication in the absence of Escherichia coli Umu proteins and 3'-5' exonuclease proofreading function. Proc Natl Acad Sci U S A 1998; 95:15519-24. [PMID: 9861001 PMCID: PMC28075 DOI: 10.1073/pnas.95.26.15519] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion replication (TR) past a cyclobutane pyrimidine dimer in Escherichia coli normally requires the UmuD'2C complex, RecA protein, and DNA polymerase III holoenzyme (pol III). However, we find that efficient TR can occur in the absence of the Umu proteins if the 3'-5' exonuclease proofreading activity of the pol III epsilon-subunit also is disabled. TR was measured in isogenic uvrA6 DeltaumuDC strains carrying the dominant negative dnaQ allele, mutD5, or DeltadnaQ spq-2 mutations by transfecting them with single-stranded M13-based vectors containing a specifically located cis-syn T-T dimer. As expected, little TR was observed in the DeltaumuDC dnaQ+ strain. Surprisingly, 26% TR occurred in UV-irradiated DeltaumuDC mutD5 cells, one-half the frequency found in a uvrA6 umuDC+mutD5 strain. lexA3 (Ind-) derivatives of the strains showed that this TR was contingent on two inducible functions, one LexA-dependent, responsible for approximately 70% of the TR, and another LexA-independent, responsible for the remaining approximately 30%. Curiously, the DeltaumuDC DeltadnaQ spq-2 strain exhibited only the LexA-independent level of TR. The cause of this result appears to be the spq-2 allele, a dnaE mutation required for viability in DeltadnaQ strains, since introduction of spq-2 into the DeltaumuDC mutD5 strain also reduces the frequency of TR to the LexA-independent level. The molecular mechanism responsible for the LexA-independent TR is unknown but may be related to the UVM phenomenon [Palejwala, V. A., Wang, G. E., Murphy, H. S. & Humayun, M. Z. (1995) J. Bacteriol. 177, 6041-6048]. LexA-dependent TR does not result from the induction of pol II, since TR in the DeltaumuDC mutD5 strain is unchanged by introduction of a DeltapolB mutation.
Collapse
Affiliation(s)
- D Vandewiele
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | |
Collapse
|
32
|
Gonzalez M, Frank EG, Levine AS, Woodgate R. Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysis. Genes Dev 1998; 12:3889-99. [PMID: 9869642 PMCID: PMC317269 DOI: 10.1101/gad.12.24.3889] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most SOS mutagenesis in Escherichia coli is dependent on the UmuD and UmuC proteins. Perhaps as a consequence, the activity of these proteins is exquisitely regulated. The intracellular level of UmuD and UmuC is normally quite low but increases dramatically in lon- strains, suggesting that both proteins are substrates of the Lon protease. We report here that the highly purified UmuD protein is specifically degraded in vitro by Lon in an ATP-dependent manner. To identify the regions of UmuD necessary for Lon-mediated proteolysis, we performed 'alanine-stretch' mutagenesis on umuD and followed the stability of the mutant protein in vivo. Such an approach allowed us to localize the site(s) within UmuD responsible for Lon-mediated proteolysis. The primary signal is located between residues 15 and 18 (FPLF), with an auxiliary site between residues 26 and 29 (FPSP), of the amino terminus of UmuD. Transfer of the amino terminus of UmuD (residues 1-40) to an otherwise stable protein imparts Lon-mediated proteolysis, thereby indicating that the amino terminus of UmuD is sufficient for Lon recognition and the ensuing degradation of the protein.
Collapse
Affiliation(s)
- M Gonzalez
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2725 USA
| | | | | | | |
Collapse
|
33
|
McLenigan M, Peat TS, Frank EG, McDonald JP, Gonzalez M, Levine AS, Hendrickson WA, Woodgate R. Novel Escherichia coli umuD' mutants: structure-function insights into SOS mutagenesis. J Bacteriol 1998; 180:4658-66. [PMID: 9721309 PMCID: PMC107481 DOI: 10.1128/jb.180.17.4658-4666.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD', the function of UmuD' has yet to be determined. In an attempt to elucidate the role of UmuD' in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD' plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD' mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD', three were nonsense mutations that resulted in a truncated UmuD' protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD'. All 17 umuD' mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD'.
Collapse
Affiliation(s)
- M McLenigan
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li S, Waters R. Escherichia coli strains lacking protein HU are UV sensitive due to a role for HU in homologous recombination. J Bacteriol 1998; 180:3750-6. [PMID: 9683467 PMCID: PMC107354 DOI: 10.1128/jb.180.15.3750-3756.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
hupA and hupB encode the alpha and beta subunits of the Escherichia coli histone-like protein HU. Here we show that E. coli hup mutants are sensitive to UV in the rec+ sbc+, recBC sbcA, recBC sbcBC, umuDC, recF, and recD backgrounds. However, hupAB mutations do not enhance the UV sensitivity of resolvase-deficient recG ruvA strains. hupAB uvrA and hupAB recG strains are supersensitive to UV. hup mutations enhance the UV sensitivity of ruvA strains to a much lesser extent but enhance that of rus-1 ruvA strains to the same extent as for rus+ ruv+ strains. Our results suggest that HU plays a role in recombinational DNA repair that is not specifically limited to double-strand break repair or daughter strand gap repair; the lack of HU affects the RecG RusA and RuvABC pathways for Holliday junction processing equally if the two pathways are equally active in recombinational repair; the function of HU is not in the substrate processing step or in the RecFOR-directed synapsis action during recombinational repair. Furthermore, the UV sensitivity of hup mutants cannot be suppressed by overexpression of wild-type or mutant gyrB, which confers novobiocin resistance, or by different concentrations of a gyrase inhibitor that can increase or decrease the supercoiling of chromosomal DNA.
Collapse
Affiliation(s)
- S Li
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, United Kingdom
| | | |
Collapse
|
35
|
Sommer S, Boudsocq F, Devoret R, Bailone A. Specific RecA amino acid changes affect RecA-UmuD'C interaction. Mol Microbiol 1998; 28:281-91. [PMID: 9622353 DOI: 10.1046/j.1365-2958.1998.00803.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The UmuD'C mutagenesis complex accumulates slowly and parsimoniously after a 12 Jm(-2) UV flash to attain after 45 min a low cell concentration between 15 and 60 complexes. Meanwhile, RecA monomers go up to 72,000 monomers. By contrast, when the UmuD'C complex is constitutively produced at a high concentration, it inhibits recombinational repair and then markedly reduces bacterial survival from DNA damage. We have isolated novel recA mutations that enable RecA to resist UmuD'C recombination inhibition. The mutations, named recA [UmuR], are located on the RecA three-dimensional structure at three sites: (i) the RecA monomer tail domain (four amino acid changes); (ii) the RecA monomer head domain (one amino acid change, which appears to interface with the amino acids in the tail domain); and (iii) in the core of a RecA monomer (one amino acid change). RecA [UmuR] proteins make recombination more efficient in the presence of UmuD'C while SOS mutagenesis is inhibited. The UmuR amino acid changes are located at a head-tail joint between RecA monomers and some are free to possibly interact with UmuD'C at the tip of a RecA polymer. These two RecA structures may constitute possible sites to which the UmuD'C complex might bind, hampering homologous recombination and favouring SOS mutagenesis.
Collapse
Affiliation(s)
- S Sommer
- Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
36
|
Liu YH, Cheng AJ, Wang TC. Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli. J Bacteriol 1998; 180:1766-70. [PMID: 9537373 PMCID: PMC107088 DOI: 10.1128/jb.180.7.1766-1770.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recF, recO, and recR genes were originally identified as those affecting the RecF pathway of recombination in Escherichia coli cells. Several lines of evidence suggest that the recF, recO, and recR genes function at the same step of recombination and postreplication repair. In this work, we report that null mutations in recF, recO, or recR greatly reduce UV-radiation mutagenesis (UVM) in an assay for reversion from a Trp- (trpE65) to a Trp+ phenotypes. Introduction of the defective lexA51 mutation [lexA51(Def)] and/or UmuD' into recF, recO, and recR mutants failed to restore normal UVM in the mutants. On the other hand, the presence of recA2020, a suppressor mutation for recF, recO, and recR mutations, restored normal UVM in recF, recO, and recR mutants. These results indicate an involvement of the recF, recO, and recR genes and their products in UVM, possibly by affecting the third role of RecA in UVM.
Collapse
Affiliation(s)
- Y H Liu
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
37
|
Kim SR, Maenhaut-Michel G, Yamada M, Yamamoto Y, Matsui K, Sofuni T, Nohmi T, Ohmori H. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci U S A 1997; 94:13792-7. [PMID: 9391106 PMCID: PMC28386 DOI: 10.1073/pnas.94.25.13792] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated lambda phage infecting UV-preirradiated bacterial cells (termed lambdaUTM for lambda untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for lambdaUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F'lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P.
Collapse
Affiliation(s)
- S R Kim
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo 158, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Peat TS, Frank EG, McDonald JP, Levine AS, Woodgate R, Hendrickson WA. The UmuD' protein filament and its potential role in damage induced mutagenesis. Structure 1996; 4:1401-12. [PMID: 8994967 DOI: 10.1016/s0969-2126(96)00148-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Damage induced 'SOS mutagenesis' may occur transiently as part of the global SOS response to DNA damage in bacteria. A key participant in this process is the UmuD protein, which is produced in an inactive from but converted to the active form, UmuD', by a RecA-mediated self-cleavage reaction. UmuD', together with UmuC and activated RecA (RecA*), enables the DNA polymerase III holoenzyme to replicate across chemical and UV induced lesions. The efficiency of this reaction depends on several intricate protein-protein interactions. RESULTS Recent X-ray crystallographic analysis shows that in addition to forming molecular dimers, the N- and C-terminal tails of UmuD' extend from a globular beta structure to associate and produce crystallized filaments. We have investigated this phenomenon and find that these filaments appear to relate to biological activity. Higher order oligomers are found in solution with UmuD', but not with UmuD nor with a mutant of UmuD' lacking the extended N terminus. Deletion of the N terminus of UmuD' does not affect its ability to form molecular dimers but does severely compromise its ability to interact with a RecA-DNA filament and to participate in mutagenesis. Mutations in the C terminus of UmuD' result in both gain and loss of function for mutagenesis. CONCLUSIONS The activation of UmuD to UmuD' appears to cause a large conformational change in the protein which allows it to form oligomers in solution at physiologically relevant concentrations. Properties of these oligomers are consistent with the filament structures seen in crystals of UmuD'.
Collapse
Affiliation(s)
- T S Peat
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Proteolysis in Escherichia coli serves to rid the cell of abnormal and misfolded proteins and to limit the time and amounts of availability of critical regulatory proteins. Most intracellular proteolysis is initiated by energy-dependent proteases, including Lon, ClpXP, and HflB; HflB is the only essential E. coli protease. The ATPase domains of these proteases mediate substrate recognition. Recognition elements in target are not well defined, but are probably not specific amino acid sequences. Naturally unstable protein substrates include the regulatory sigma factors for heat shock and stationary phase gene expression, sigma 32 and RpoS. Other cellular proteins serve as environmental sensors that modulate the availability of the unstable proteins to the proteases, resulting in rapid changes in sigma factor levels and therefore in gene transcription. Many of the specific proteases found in E. coli are well-conserved in both prokaryotes and eukaryotes, and serve critical functions in developmental systems.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
40
|
Frank EG, Ennis DG, Gonzalez M, Levine AS, Woodgate R. Regulation of SOS mutagenesis by proteolysis. Proc Natl Acad Sci U S A 1996; 93:10291-6. [PMID: 8816793 PMCID: PMC38377 DOI: 10.1073/pnas.93.19.10291] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DNA damage-inducible mutagenesis in Escherichia coli is largely dependent upon the activity of the UmuD (UmuD') and UmuC proteins. The intracellular level of these proteins is tightly regulated at both the transcriptional and the posttranslational levels. Such regulation presumably allows cells to deal with DNA damage via error-free repair pathways before being committed to error-prone pathways. We have recently discovered that as part of this elaborate regulation, both the UmuD and the UmuC proteins are rapidly degraded in vivo. We report here that the enzyme responsible for their degradation is the ATP-dependent serine protease, Lon. In contrast, UmuD' (the posttranslational product and mutagenically active form of UmuD) is degraded at a much reduced rate by Lon, but is instead rapidly degraded by another ATP-dependent protease, ClpXP. Interestingly, UmuD' is rapidly degraded by ClpXP only when it is in a heterodimeric complex with UmuD. Formation of UmuD/UmuD' heterodimers in preference to UmuD' homodimers therefore targets UmuD' protein for proteolysis. Such a mechanism allows cells to reduce the intracellular levels of the mutagenically active Umu proteins and thereby return to a resting state once error-prone DNA repair has occurred. The apparent half-life of the heterodimeric UmuD/D' complex is greatly increased in the clpX::Kan and clpP::Kan strains and these strains are correspondingly rendered virtually UV non-mutable. We believe that these phenotypes are consistent with the suggestion that while the UmuD/D' heterodimer is mutagenically inactive, it still retains the ability to interact with UmuC, and thereby precludes the formation of the mutagenically active UmuD'2C complex.
Collapse
Affiliation(s)
- E G Frank
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | |
Collapse
|