1
|
Rehman A, Wang X, Ahmad S, Shahid F, Aslam S, Ashfaq UA, Alrumaihi F, Qasim M, Hashem A, Al-Hazzani AA, Abd_Allah EF. In Silico Core Proteomics and Molecular Docking Approaches for the Identification of Novel Inhibitors against Streptococcus pyogenes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11355. [PMID: 34769873 PMCID: PMC8582943 DOI: 10.3390/ijerph182111355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Streptococcus pyogenes is a significant pathogen that causes skin and upper respiratory tract infections and non-suppurative complications, such as acute rheumatic fever and post-strep glomerulonephritis. Multidrug resistance has emerged in S. pyogenes strains, making them more dangerous and pathogenic. Hence, it is necessary to identify and develop therapeutic methods that would present novel approaches to S. pyogenes infections. In the current study, a subtractive proteomics approach was employed to core proteomes of four strains of S. pyogenes using several bioinformatic software tools and servers. The core proteome consists of 1324 proteins, and 302 essential proteins were predicted from them. These essential proteins were analyzed using BLASTp against human proteome, and the number of potential targets was reduced to 145. Based on subcellular localization prediction, 46 proteins with cytoplasmic localization were chosen for metabolic pathway analysis. Only two cytoplasmic proteins, i.e., chromosomal replication initiator protein DnaA and two-component response regulator (TCR), were discovered to have the potential to be novel drug target candidates. Three-dimensional (3D) structure prediction of target proteins was carried out via the Swiss Model server. Molecular docking approach was employed to screen the library of 1000 phytochemicals against the interacting residues of the target proteins through the MOE software. Further, the docking studies were validated by running molecular dynamics simulation and highly popular binding free energy approaches of MM-GBSA and MM-PBSA. The findings revealed a promising candidate as a novel target against S. pyogenes infections.
Collapse
Affiliation(s)
- Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (F.S.); (M.Q.)
| | - Xiukang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (F.S.); (M.Q.)
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (F.S.); (M.Q.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (F.S.); (M.Q.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (F.S.); (M.Q.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.H.); (A.A.A.-H.)
| | - Amal A. Al-Hazzani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.H.); (A.A.A.-H.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
2
|
Streptococcus pyogenes TrxSR Two-Component System Regulates Biofilm Production in Acidic Environments. Infect Immun 2021; 89:e0036021. [PMID: 34424754 DOI: 10.1128/iai.00360-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacteria form biofilms for their protection against environmental stress and produce virulence factors within the biofilm. Biofilm formation in acidified environments is regulated by a two-component system, as shown by studies on isogenic mutants of the sensor protein of the two-component regulatory system in Streptococcus pyogenes. In this study, we found that the LiaS histidine kinase sensor mediates biofilm production and pilus expression in an acidified environment through glucose fermentation. The liaS isogenic mutant produced biofilms in a culture acidified by hydrochloric acid but not glucose, suggesting that the acidified environment is sensed by another protein. In addition, the trxS isogenic mutant could not produce biofilms or activate the mga promoter in an acidified environment. Mass spectrometry analysis showed that TrxS regulates M protein, consistent with the transcriptional regulation of emm, which encodes M protein. Our results demonstrate that biofilm production during environmental acidification is directly under the control of TrxS.
Collapse
|
3
|
Tatsuno I, Isaka M, Matsumoto M, Hasegawa T. Prevalence of emm1 Streptococcus pyogenes having a novel type of genomic composition. Microbiol Immunol 2019; 63:413-426. [PMID: 31403217 DOI: 10.1111/1348-0421.12739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
Streptococcus pyogenes is a causative agent of streptococcal toxic shock syndrome (STSS). The complete genome sequence of a S. pyogenes strain 10-85 isolated from a STSS patient was recently announced. In this study, the genome sequence was dissected and it was found that the genomic region around 200 kbp (region A) and the genomic region around 1600 kbp (region B) were replaced by each other in strain 10-85, when compared with those in reference strains SF370 and A20. In order to address whether this replacement is unique to 10-85, we further analyzed 163 emm1-type strains. The results indicated that none of the strains isolated before 1990 had the replacement. In contrast, most of the strains isolated at least after 2000 appeared to have the 10-85-type replacement.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masakado Matsumoto
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, Nagoya, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Abdel-Shafi S, Al-Mohammadi AR, Hamdi S, Moustafa AH, Enan G. Biological Characterization and Inhibition of Streptococcus pyogenes ZUH1 Causing Chronic Cystitis by Crocus sativus Methanol Extract , Bee Honey Alone or in Combination with Antibiotics: An In Vitro Study. Molecules 2019; 24:E2903. [PMID: 31405067 PMCID: PMC6721159 DOI: 10.3390/molecules24162903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (S. pyogenes) ZUH1 was isolated and characterized using morphological, cultural and biochemical methods. The results showed that the marker genes (namely spyCEP, ssa, sic, sdaB and speG) indicating group A streptococci (GAS) were detected in the S. pyogenes genome. The results showed that the S. pyogenes strain was inhibited by Crocus sativus methanol extract (CSME), bee honey (BH) and catfish glycoprotein (CFG). The inhibitory activity of these natural agents were compared with standard antibiotics such as Ceftazidime (30 μg/mL), Cefoperazone (75 μg/mL), Cefoxitin (30 μg/mL) and Imipenem (10 μg/mL). There was a synergistic effect between certain antibiotics and CSME. GC-MS and IR analysis of CSME showed different cyclic ketones, aldehydes, esters, alcohols and acids. The main compounds were tetradecanoic acid, safranal and isophorone. Transmission electron microscopy (TEM) images of S. pyogenes cells treated with CSME showed signs of an irregular wrinkled outer surface, fragmentation, adhesion and aggregation of damaged bacterial cells or cellular debris. The marker genes (spyCEP, ssa, sic, sdaB and speG) could be used as a rapid diagnostic tool for GAS. CSME, BH and CFG showed distinctive anti-streptococcal activity either alone or in combinations with antibiotics; their action on S. pyogenes cells was studied by TEM. There was a synergistic effect between antibiotics and Crocus sativus, bee honey, and glycoprotein against S. pyogenes ZUH1. The action of natural agents on the pathogenic cells was shown using TEM.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | | | - Sara Hamdi
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed H Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Singh S, Singh DB, Singh A, Gautam B, Ram G, Dwivedi S, Ramteke PW. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis. Interdiscip Sci 2016; 8:388-394. [PMID: 26750924 DOI: 10.1007/s12539-015-0139-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022]
Abstract
Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.
Collapse
Affiliation(s)
- Satendra Singh
- Department of Computational Biology and Bioinformatics, SHIATS, Allahabad, 211007, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India.
| | | | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, SHIATS, Allahabad, 211007, India
| | - Gurudayal Ram
- Department of Molecular and Cellular Engineering, SHIATS, Allahabad, 211007, India
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India
| | - Pramod W Ramteke
- Department of Biological Sciences, SHIATS, Allahabad, 211007, India
| |
Collapse
|
6
|
Tatsuno I, Isaka M, Okada R, Zhang Y, Hasegawa T. Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes. BMC Res Notes 2014; 7:189. [PMID: 24673808 PMCID: PMC3986815 DOI: 10.1186/1756-0500-7-189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The production of virulence proteins depends on environmental factors, and two-component regulatory systems are involved in sensing these factors. We previously established knockout strains in all suspected two-component regulatory sensor proteins of the emm1 clinical strain of S. pyogenes and examined their relevance to acid stimuli in a natural atmosphere. In the present study, their relevance to acid stimuli was re-examined in an atmosphere containing 5% CO2. RESULTS The spy1236 (which is identical to ciaHpy) sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1236 (CiaHpy) two-component sensor protein is involved in acid response of S. pyogenes. CiaH is also conserved in Streptococcus pneumoniae, and it has been reported that deletion of the gene for its cognate response regulator (ciaRpn) made the pneumococcal strains more sensitive to oxidative stress. In this report, we show that the spy1236 knockout mutant of S. pyogenes is more sensitive to oxidative stress than the parental strain. CONCLUSIONS These results suggest that the two-component sensor protein CiaH is involved in stress responses in S. pyogenes.
Collapse
Affiliation(s)
| | | | | | | | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
7
|
Loh JMS, Adenwalla N, Wiles S, Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 2013; 4:419-28. [PMID: 23652836 PMCID: PMC3714134 DOI: 10.4161/viru.24930] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Group A streptococcus is a strict human pathogen that can cause a wide range of diseases, such as tonsillitis, impetigo, necrotizing fasciitis, toxic shock, and acute rheumatic fever. Modeling human diseases in animals is complicated, and rapid, simple, and cost-effective in vivo models of GAS infection are clearly lacking. Recently, the use of non-mammalian models to model human disease is starting to re-attract attention. Galleria mellonella larvae, also known as wax worms, have been investigated for modeling a number of bacterial pathogens, and have been shown to be a useful model to study pathogenesis of the M3 serotype of GAS. In this study we provide further evidence of the validity of the wax worm model by testing different GAS M-types, as well as investigating the effect of bacterial growth phase and incubation temperature on GAS virulence in this model. In contrast to previous studies, we show that the M-protein, among others, is an important virulence factor that can be effectively modeled in the wax worm. We also highlight the need for a more in-depth investigation of the effects of experimental design and wax worm supply before we can properly vindicate the wax worm model for studying GAS pathogenesis.
Collapse
Affiliation(s)
- Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland, NZ
| | | | | | | |
Collapse
|
8
|
Tatsuno I, Okada R, Zhang Y, Isaka M, Hasegawa T. Partial loss of CovS function in Streptococcus pyogenes causes severe invasive disease. BMC Res Notes 2013; 6:126. [PMID: 23537349 PMCID: PMC3637574 DOI: 10.1186/1756-0500-6-126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CovRS (or CsrRS) is a two-component regulatory system that regulates the production of multiple virulence factors in Streptococcus pyogenes. covS mutations are often found in isolates recovered from mice that have been experimentally infected with S. pyogenes and covS mutations enhance bacterial virulence in an invasive infection mouse model. In addition, covS mutations were detected more frequently in a panel of clinical isolates from severe invasive streptococcal infections than those from non-severe infections. Thus, covS mutations may be associated with the onset of severe invasive infections. RESULTS Known covS mutations were divided into two groups: (i) frameshift mutations that caused a deletion of functional regions and (ii) point mutations that caused single (or double) amino acid(s) substitutions. Frameshift mutations are frequent in mouse-passaged isolates, whereas point mutations are frequent in clinical isolates. The functions of CovS proteins with a single amino acid substitution in clinical isolates were estimated based on the streptococcal pyrogenic exotoxin B (SpeB) production and NAD+-glycohydrolase (NADase) activity, which are known to be regulated by the CovRS system. Point mutations partially, but not completely, impaired the function of the covS alleles. We also investigated some of the benefits that a partial loss of function in covS alleles with point mutations might confer on clinical isolates. We found that covS knockout mutants (ΔcovS strains) had an impaired growth ability in a normal atmosphere in Todd Hewitt broth compared with parental isolates having wild-type or point-mutated covS. CONCLUSIONS The loss of CovS proteins in S. pyogenes may confer greater virulence, but bacteria may also lose the ability to respond to certain external signals recognized by CovS. Therefore, point mutations that retain the function of CovS and confer hypervirulence may have natural selective advantages.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
9
|
Bober M, Mörgelin M, Olin AI, von Pawel-Rammingen U, Collin M. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen. PLoS One 2011; 6:e20345. [PMID: 21655249 PMCID: PMC3105044 DOI: 10.1371/journal.pone.0020345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/29/2011] [Indexed: 11/28/2022] Open
Abstract
Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20–30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.
Collapse
Affiliation(s)
- Marta Bober
- Division of Infection Medicine, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
10
|
Tatsuno I, Isaka M, Minami M, Hasegawa T. NADase as a target molecule of in vivo suppression of the toxicity in the invasive M-1 group A Streptococcal isolates. BMC Microbiol 2010; 10:144. [PMID: 20470439 PMCID: PMC2887803 DOI: 10.1186/1471-2180-10-144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 05/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NAD-glycohydrolase (NADase) secreted by M-1 group A streptococcal (GAS) isolates are suspected as one of the virulence factors to cause severe invasive disease including streptococcal toxic shock-like syndrome (STSS). M-1 GAS strains were divided into three groups based on NADase activity: high activity, low activity and no activity in our previous report. RESULTS The representative high activity isolates taken from STSS patients showed higher virulence compared with isolates from the low activity group, when used to infect mice. The knockout mutant of the nga gene, which encodes NADase also showed reduced virulence in a mouse infection study. The cloned nga gene was able to significantly complement the lost virulence. In addition, the solution containing purified recombinant IFS, which is an inhibitor of NADase, partially rescued mice infected with S. pyogenes. CONCLUSIONS These results indicate that NADase is important for the virulence of S. pyogenes in vivo and is the potential target to suppress the virulence.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
11
|
TrxR, a new CovR-repressed response regulator that activates the Mga virulence regulon in group A Streptococcus. Infect Immun 2008; 76:4659-68. [PMID: 18678666 DOI: 10.1128/iai.00597-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coordinate regulation of virulence factors by the group A streptococcus (GAS) Streptococcus pyogenes is important in this pathogen's ability to cause disease. To further elucidate the regulatory network in this human pathogen, the CovR-repressed two-component system (TCS) trxSR was chosen for further analysis based on its homology to a virulence-related TCS in Streptococcus pneumoniae. In a murine skin infection model, an insertion mutation in the response regulator gene, trxR, led to a significant reduction in lesion size, lesion severity, and lethality. Curing the trxR mutation restored virulence comparable to the wild-type strain. The trxSR operon was defined in vivo, and CovR was found to directly repress its promoter in vitro. DNA microarray analysis established that TrxR activates transcription of Mga-regulated virulence genes, which may explain the virulence attenuation of the trxR mutant. This regulation appears to occur by activation of the mga promoter, Pmga, as demonstrated by analysis of a luciferase reporter fusion. Complementation of the trxR mutant with trxR on a plasmid restored expression of Mga regulon genes and restored virulence in the mouse model to wild-type levels. TrxR is the first TCS shown to regulate Mga expression. Because it is CovR repressed, TrxR defines a new pathway by which CovR can influence Mga to affect pathogenesis in the GAS.
Collapse
|
12
|
Tatsuno I, Sawai J, Okamoto A, Matsumoto M, Minami M, Isaka M, Ohta M, Hasegawa T. Characterization of the NAD-glycohydrolase in streptococcal strains. MICROBIOLOGY-SGM 2008; 153:4253-4260. [PMID: 18048938 DOI: 10.1099/mic.0.2007/009555-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The NADase (Nga) of group A streptococci (GAS) has been implicated in the pathogenesis of diseases such as streptococcal toxic shock-like syndrome (STSS) and necrotizing fasciitis. In this study we found that the proportion of NADase-positive strains among clinical isolates in Japan has increased over time. The GAS strains studied could be divided into three groups: strains lacking NADase activity, strains with low NADase activity, and strains with high NADase activity. The older strains, isolated before 1989, belonged to the 'no activity' group. Analysis using GST-Nga recombinants revealed that nga alleles of representative older strains encode inactive Nga. Mutational analysis of the GST-Nga recombinants suggested that residue 330 could be associated with reduced activity, based upon deduced amino acid sequences. We also investigated NADase activity of streptococcal strains other than GAS. All group G streptococcal isolates from STSS patients possessed nga genes encoding active enzymes.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | - Jun Sawai
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya 466-8550, Japan
| | - Akira Okamoto
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya 466-8550, Japan
| | - Masakado Matsumoto
- Department of Microbiology, Aichi Prefectural Institute of Public Health, Nagare 7-6, Tsuji-machi, Kita-ku, Nagoya 462-8576, Japan
| | - Masaaki Minami
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | - Michio Ohta
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya 466-8550, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
13
|
Ribardo DA, McIver KS. Defining the Mga regulon: comparative transcriptome analysis reveals both direct and indirect regulation by Mga in the group A streptococcus. Mol Microbiol 2006; 62:491-508. [PMID: 16965517 DOI: 10.1111/j.1365-2958.2006.05381.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The regulator Mga in the group A streptococcus (GAS) is known to directly activate several virulence genes important for colonization and immune evasion. Transcriptome analysis comparing two mga-1 serotypes (M1 SF370, M6 JRS4) and one mga-2 serotype (M4 GA40634) against their isogenic mga-inactivated strains uncovered a broader Mga regulon profile containing both activated and repressed genes with predicted functions primarily related to sugar metabolism. This was reflected in the altered abilities of M1 and M4 Mga mutants to grow in chemically defined media with a single sugar source compared with their wild-type counterparts. Although the M1 and M4 Mga profiles were similar, the M6 JRS4 was clearly distinct, even from other M6 strains. Real-time RT-PCR and Northern blots confirmed that established core Mga regulon genes directly activated by Mga (emm, scpA, sof, fba) exhibited the highest activation levels across all strains tested. Spy2036 encoding a cytosolic hypothetical protein was highly activated in all three serotypes and was called gene regulated by Mga (grm). Mga bound directly to Pgrm, which overlaps the Mga-regulated Psof in OF+ strains, suggesting that grm is part of the core Mga regulon and Mga is able to activate divergently transcribed genes from a single site. Furthermore, Mga activated speB when detectable in the wild-type strain, although direct binding of Mga to PspeB could not be demonstrated. Thus, Mga is able to both directly and indirectly regulate genes shown to be important for virulence and the metabolic homeostasis of GAS.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center Dallas, TX 75390-9048, USA
| | | |
Collapse
|
14
|
Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 2006; 72:1459-66. [PMID: 16461700 PMCID: PMC1392966 DOI: 10.1128/aem.72.2.1459-1466.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salivaricin A (SalA), the first Streptococcus salivarius lantibiotic to be characterized, appears to be inhibitory to most Streptococcus pyogenes strains. A variant of the SalA structural gene (salA1) is present in more than 90% of S. pyogenes strains, but only strains of M serotype 4 and T pattern 4 produce the biologically active peptide. The present study identifies four additional variants (salA2 to salA5) of the SalA structural gene and demonstrates that each of the corresponding inhibitory peptides (SalA2 to SalA5) is produced in vitro. These variants appear to be similar to SalA and SalA1 in their inhibitory activity against Micrococcus luteus and in their ability to act as inducers of SalA production. It had previously been shown that S. pyogenes strain SF370 had a deletion (of approximately 2.5 kb) in the salM and salT genes of the salA1 locus. In the present study, several additional characteristic deletions within the salA1 loci were identified. S. pyogenes strains of the same M serotype all share the same salA1 locus structure. Since S. salivarius is a predominant member of the normal oral flora of healthy humans, strains producing anti-S. pyogenes lantibiotics, such as SalA, may have excellent potential for use as oral probiotics. In the present study, we have used a highly specific SalA induction system to directly detect the presence of SalA in the saliva of humans who either naturally harbor populations of SalA-producing S. salivarius or who have been colonized with the SalA2-producing probiotic S. salivarius K12.
Collapse
|
15
|
Almengor AC, Walters MS, McIver KS. Mga is sufficient to activate transcription in vitro of sof-sfbX and other Mga-regulated virulence genes in the group A Streptococcus. J Bacteriol 2006; 188:2038-47. [PMID: 16513733 PMCID: PMC1428152 DOI: 10.1128/jb.188.6.2038-2047.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The group A streptococcus (GAS), or Streptococcus pyogenes, is a strict human pathogen of medical significance, causing infections ranging from pharyngitis (strep throat) to necrotizing fasciitis (flesh-eating disease). Several virulence genes that encode factors important for colonization, internalization, and immune evasion are under the control of the multiple gene regulator of the GAS, or Mga. Mga functions as a DNA-binding protein that interacts with sites both proximal (Pemm and PscpA) and distal (PsclA) to the start of transcription for the genes that it regulates. The genes encoding serum opacity factor, sof, and a novel fibronectin-binding protein, sfbX, are cotranscribed and represent two uncharacterized Mga-regulated virulence genes in the GAS. Analysis of the promoter region of sof-sfbX identified a putative Mga-binding site 278 bp upstream of the regulated start of transcription as determined by primer extension. Electrophoretic mobility shift assays demonstrated that Mga is able to bind specifically to the single distal site in a fashion similar to the previously characterized PsclA. In order to better understand the events that take place at this and other Mga-regulated promoters, an in vitro transcription assay was established. Using this assay, we showed that Mga is sufficient to activate transcription in vitro for Mga-regulated promoters containing both proximal (Pemm) and distal (PsclA and Psof-sfbX) binding sites. These results indicate that additional factors are not required for Mga-specific activation at diverse promoters in vitro, although they do not rule out the potential influence of other components on the Mga virulence regulon in vivo.
Collapse
Affiliation(s)
- Audry C Almengor
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | | | |
Collapse
|
16
|
Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J Bacteriol 2005; 187:3311-8. [PMID: 15866915 PMCID: PMC1112019 DOI: 10.1128/jb.187.10.3311-3318.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recrudescence of severe invasive group A streptococcal (GAS) diseases has been associated with relatively few strains, including the M1T1 subclone that has shown an unprecedented global spread and prevalence and high virulence in susceptible hosts. To understand its unusual epidemiology, we aimed to identify unique genomic features that differentiate it from the fully sequenced M1 SF370 strain. We constructed DNA microarrays from an M1T1 shotgun library and, using differential hybridization, we found that both M1 strains are 95% identical and that the 5% unique M1T1 clone sequences more closely resemble sequences found in the M3 strain, which is also associated with severe disease. Careful analysis of these unique sequences revealed three unique prophages that we named M1T1.X, M1T1.Y, and M1T1.Z. While M1T1.Y is similar to phage 370.3 of the M1-SF370 strain, M1T1.X and M1T1.Z are novel and encode the toxins SpeA2 and Sda1, respectively. The genomes of these prophages are highly mosaic, with different segments being related to distinct streptococcal phages, suggesting that GAS phages continue to exchange genetic material. Bioinformatic and phylogenetic analyses revealed a highly conserved open reading frame (ORF) adjacent to the toxins in 18 of the 21 toxin-carrying GAS prophages. We named this ORF paratox, determined its allelic distribution among different phages, and found linkage disequilibrium between particular paratox alleles and specific toxin genes, suggesting that they may move as a single cassette. Based on the conservation of paratox and other genes flanking the toxins, we propose a recombination-based model for toxin dissemination among prophages. We also provide evidence that a minor population of the M1T1 clonal isolates have exchanged their virulence module on phage M1T1.Y, replacing it with a different module identical to that found on a related M3 phage. Taken together, the data demonstrate that mosaicism of the GAS prophages has contributed to the emergence and diversification of the M1T1 subclone.
Collapse
Affiliation(s)
- Ramy K Aziz
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis 38163, USA
| | | | | | | | | | | |
Collapse
|
17
|
Mangold M, Siller M, Roppenser B, Vlaminckx BJM, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 2005; 53:1515-27. [PMID: 15387826 DOI: 10.1111/j.1365-2958.2004.04222.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The capacity of pathogens to cause disease depends strictly on the regulated expression of their virulence factors. In this study, we demonstrate that the untranslated mRNA of the recently described streptococcal pleiotropic effect locus (pel), which incidentally contains sagA, the structural gene for streptolysin S, is an effector of virulence factor expression in group A beta-haemolytic streptococci (GAS). Our data suggest that the regulation by pel RNA occurs at both transcriptional (e.g. emm, sic, nga) and post-transcriptional (e.g. SpeB) levels. We could exclude the possibility that the pel phenotype was linked to a polar effect on downstream genes (sagB-I). Remarkably, the RNA effector is regulated in a growth phase-dependent fashion and we provide evidence that pel RNA expression is induced by conditioned media.
Collapse
Affiliation(s)
- Monika Mangold
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Microbiology and Genetics, University of Vienna, Dr Bohrgasse 9/4, Vienna A-1030, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Almengor AC, McIver KS. Transcriptional activation of sclA by Mga requires a distal binding site in Streptococcus pyogenes. J Bacteriol 2004; 186:7847-57. [PMID: 15547255 PMCID: PMC529090 DOI: 10.1128/jb.186.23.7847-7857.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (the group A streptococcus [GAS]) is a medically significant pathogen of humans, causing a range of diseases from pharyngitis to necrotizing fasciitis. Several important GAS virulence genes are under the control of a pleiotropic regulator called Mga, or the multiple gene regulator of GAS, including the gene encoding the streptococcal collagen-like protein, or sclA. Analysis of the genome sequence upstream of sclA revealed two potential Mga-binding sites with homology to the published Mga-binding element, which were called PsclA-I (distal) and PsclA-II (proximal) based on their location relative to a predicted start of transcription. Primer extension was used to confirm that the Mga-dependent transcriptional start site for sclA was located adjacent to the proximal PsclA-II binding site. By using overlapping PsclA promoter probes and purified Mga-His fusion protein, it was shown by electrophoretic mobility shift assays that, unlike other Mga-regulated promoters, Mga binds only to a distal DNA-binding site (PsclA-I). Binding of Mga to PsclA-I could be competed with cold probes corresponding to known Mga-regulated promoters (Pemm, PscpA, and Pmga) but not with a nonspecific probe or the proximal PsclA-II fragment. With the use of a plasmid-based green fluorescent protein transcriptional reporter system, the full-length PsclA was not sufficient to reproduce normal Mga-regulated activation. However, studies using a single-copy gusA transcriptional reporter system integrated at the native sclA chromosomal locus clearly demonstrated that the distal PsclA-I binding site is required for Mga regulation. Therefore, PsclA represents a new class of Mga-regulated promoters that requires a single distal binding site for activation.
Collapse
Affiliation(s)
- Audry C Almengor
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
19
|
Lafontaine ER, Wall D, Vanlerberg SL, Donabedian H, Sledjeski DD. Moraxella catarrhalis coaggregates with Streptococcus pyogenes and modulates interactions of S. pyogenes with human epithelial cells. Infect Immun 2004; 72:6689-93. [PMID: 15501804 PMCID: PMC523028 DOI: 10.1128/iai.72.11.6689-6693.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogens Streptococcus pyogenes and Moraxella catarrhalis colonize overlapping regions of the human nasopharynx. We have found that M. catarrhalis can dramatically increase S. pyogenes adherence to human epithelial cells and that species-specific coaggregation of these bacteria correlates with this enhanced adherence.
Collapse
Affiliation(s)
- Eric R Lafontaine
- Department of Medical Microbiology and Immunology, Medical College of Ohio, Toledo 43614-5806, USA
| | | | | | | | | |
Collapse
|
20
|
Ribardo DA, McIver KS. amrA encodes a putative membrane protein necessary for maximal exponential phase expression of the Mga virulence regulon in Streptococcus pyogenes. Mol Microbiol 2004; 50:673-85. [PMID: 14617188 DOI: 10.1046/j.1365-2958.2003.03726.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional regulator Mga activates a regulon of virulence genes important for colonization and immune evasion in GAS. Using transposon mutagenesis of a serotype M6 group A streptococcus (GAS) reporter strain KSM148, we have identified an open reading frame (ORF) designated amrA that is required for maximal activation of the Mga regulon during exponential phase. A deletion in amrA, but not in the downstream transcriptionally linked ORF Spy0798, was able to reproduce the phenotype seen in the transposon mutants. Northern analysis for mga and emm transcripts, as well as Western analysis of Mga, confirmed a reduction in mga expression leading to a decrease in transcription of the Mga-regulated emm in the amrA deletion and transposon mutants. Furthermore, both the amrA deletion mutant and an original transposon mutant could be complemented using amrA expressed from a nisin-inducible expression system. As amrA is strongly conserved across the sequenced streptococcal M types, and inactivation of amrA in an M3 serotype also resulted in reduction of emm transcripts, the role of amrA does not appear to be serotype specific. Although the specific function of AmrA is unknown, its putative membrane localization and homology to transporters involved in cell wall synthesis suggest a link between growth and virulence gene expression in GAS.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
21
|
Ribardo DA, Lambert TJ, McIver KS. Role of Streptococcus pyogenes two-component response regulators in the temporal control of Mga and the Mga-regulated virulence gene emm. Infect Immun 2004; 72:3668-73. [PMID: 15155682 PMCID: PMC415683 DOI: 10.1128/iai.72.6.3668-3673.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the role of Streptococcus pyogenes two-component response regulators (SptR) in expression of Mga and the Mga-regulated gene emm. Both serotype M6 and serotype M1 mutants in 12 of the 13 identified sptR genes exhibited levels of emm transcripts and Mga protein comparable to those of the wild type during exponential and stationary phases of growth. Thus, temporal control of these virulence genes does not require Spt response regulators.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | |
Collapse
|
22
|
Hashikawa S, Iinuma Y, Furushita M, Ohkura T, Nada T, Torii K, Hasegawa T, Ohta M. Characterization of group C and G streptococcal strains that cause streptococcal toxic shock syndrome. J Clin Microbiol 2004; 42:186-92. [PMID: 14715751 PMCID: PMC321656 DOI: 10.1128/jcm.42.1.186-192.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twelve strains (the largest number ever reported) of group C and G(1) streptococci (GCS and GGS, respectively) that caused streptococcal toxic shock syndrome (STSS) were collected and characterized. Eleven strains were identified as Streptococcus dysgalactiae subsp. equisimilis, and one strain was identified as Streptococcus equi subsp. zooepidemicus. We found that it was the first reported case of STSS caused by S. equi subsp. zooepidemicus. Cluster analysis according to the 16S rRNA gene (rDNA) sequences revealed that the S. dysgalactiae strains belonged to clusters I and II, both of which were closely related. The emm types and the restriction patterns of chromosomal DNA measured by pulsed-field gel electrophoresis were highly variable in these strains except BL2719 and N1434. The 16S rDNA sequences and other characteristics of these two strains were indistinguishable, suggesting the clonal dissemination of this particular S. dysgalactiae strain in Japan. As the involvement of superantigens in the pathogenesis of group A streptococcus-related STSS has been suggested, we tried to detect known streptococcal superantigens in GCS and GGS strains. However, only the spegg gene was detected in seven S. dysgalactiae strains, with none of the other superantigen genes being detected in any of the strains. However, the sagA gene was detected in all of the strains except Tokyo1291. In the present study no apparent factor(s) responsible for the pathogenesis of STSS was identified, although close genetic relationships of GCS and GGS strains involved in this disease were suggested.
Collapse
Affiliation(s)
- Shinnosuke Hashikawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y, Okahashi N, Kawabata S, Yamazaki K, Shiba T, Yasunaga T, Hayashi H, Hattori M, Hamada S. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 2003; 13:1042-55. [PMID: 12799345 PMCID: PMC403657 DOI: 10.1101/gr.1096703] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Group Astreptococcus (GAS) is a gram-positive bacterial pathogen that causes various suppurative infections and nonsuppurative sequelae. Since the late 1980s, streptococcal toxic-shock like syndrome (STSS) and severe invasive GAS infections have been reported globally. Here we sequenced the genome of serotype M3 strain SSI-1, isolated from an STSS patient in Japan, and compared it with those of other GAS strains. The SSI-1 genome is composed of 1,884,275 bp, and 1.7 Mb of the sequence is highly conserved relative to strain SF370 (serotype M1) and MGAS8232 (serotype M18), and almost completely conserved relative to strain MGAS315 (serotype M3). However, a large genomic rearrangement has been shown to occur across the replication axis between the homologous rrn-comX1 regions and between two prophage-coding regions across the replication axis. Atotal of 1 Mb of chromosomal DNA is inverted across the replication axis. Interestingly, the recombinations between the prophage regions are within the phage genes, and the genes encoding superantigens and mitogenic factors are interchanged between two prophages. This genomic rearrangement occurs in 65% of clinical isolates (64/94) collected after 1990, whereas it is found in only 25% of clinical isolates (7/28) collected before 1985. These observations indicate that streptococcal phages represent important plasticity regions in the GAS chromosome where recombination between homologous phage genes can occur and result not only in new phage derivatives, but also in large chromosomal rearrangements.
Collapse
Affiliation(s)
- Ichiro Nakagawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Savic DJ, Ferretti JJ. Novel genomic rearrangement that affects expression of the Streptococcus pyogenes streptolysin O (slo) gene. J Bacteriol 2003; 185:1857-69. [PMID: 12618450 PMCID: PMC150118 DOI: 10.1128/jb.185.6.1857-1869.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A RecA-independent chromosomal rearrangement in the upstream region of the streptolysin O (slo) gene of Streptococcus pyogenes which affects slo expression was identified. PCR analysis was used to demonstrate that this kind of rearrangement was found in several strains of different lineages. Chromosomal loci involved in the recombination were found to be 746 kb apart on the 1.85-Mb-long chromosome. The primary structure of the splicing region, the reproducibility of the rearrangement, and the fact that reconstructed recombinant molecules fused to erm and lacZ reporter genes affected their expression indicate that this event is not accidental but may play a role in the expression of the slo gene. In addition, the product of the recombining DNAs, including the splicing site, does not follow any example of a known recombination mechanism. The implications of this rearrangement for slo expression are discussed.
Collapse
Affiliation(s)
- Dragutin J Savic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
25
|
Schlegel L, Grimont F, Grimont PAD, Bouvet A. Identification of major Streptococcal species by rrn-amplified ribosomal DNA restriction analysis. J Clin Microbiol 2003; 41:657-66. [PMID: 12574263 PMCID: PMC149671 DOI: 10.1128/jcm.41.2.657-666.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amplified ribosomal DNA restriction analysis (rrn-ARDRA) is based on PCR amplification and restriction of a fragment of rRNA genes including 16S and 23S genes and the intergenic spacer. rrn-ARDRA was evaluated for the identification of species within the genus Streptococcus: A total of 148 type and reference strains of pyogenic, oral, and group D streptococci were examined in order to construct a database for identification of streptococci. The amplified product was a single band approximately 4500 bp long. This amplicon was digested separately with three (HhaI, MboII, and Sau3A) restriction endonucleases. Respectively, 27, 26, and 28 major patterns were observed after HhaI, MboII, and Sau3A restrictions. Streptococcal strains belonging to different species had different patterns or different combination of patterns. An identification system based upon a combination of the three restriction patterns in a single database was then proposed. rrn-ARDRA was successfully applied to 11 clinical isolates whose identification to the species level was difficult to obtain by phenotypic analysis. Using a database of well-characterized strains, rrn-ARDRA is a powerful method for the identification of streptococcal isolates.
Collapse
Affiliation(s)
- Laurent Schlegel
- Centre National de Référence des Streptocoques, Service de Microbiologie, Hôtel Dieu, AP-HP Université Paris VI, Paris, France
| | | | | | | |
Collapse
|
26
|
von Pawel-Rammingen U, Johansson BP, Björck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 2002; 21:1607-15. [PMID: 11927545 PMCID: PMC125946 DOI: 10.1093/emboj/21.7.1607] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent work from several laboratories has demonstrated that proteolytic mechanisms significantly contribute to the molecular interplay between Streptococcus pyogenes, an important human pathogen, and its host. Here we describe the identification, purification and characterization of a novel extracellular cysteine proteinase produced by S.pyogenes. This enzyme, designated IdeS for Immunoglobulin G-degrading enzyme of S.pyogenes, is distinct from the well-characterized streptococcal cysteine proteinase, SpeB, and cleaves human IgG in the hinge region with a high degree of specificity. Thus, other human proteins, including immunoglobulins M, A, D and E, are not degraded by IdeS. The enzyme efficiently cleaves IgG antibodies bound to streptococcal surface structures, thereby inhibiting the killing of S.pyogenes by phagocytic cells. This and additional observations on the distribution and expression of the ideS gene indicate that IdeS represents a novel and significant bacterial virulence determinant, and a potential therapeutic target.
Collapse
Affiliation(s)
- Ulrich von Pawel-Rammingen
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, BMC, B14, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
27
|
Upton M, Tagg JR, Wescombe P, Jenkinson HF. Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 2001; 183:3931-8. [PMID: 11395456 PMCID: PMC95275 DOI: 10.1128/jb.183.13.3931-3938.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius 20P3 produces a 22-amino-acid residue lantibiotic, designated salivaricin A (SalA), that inhibits the growth of a range of streptococci, including all strains of Streptococcus pyogenes. Lantibiotic production is associated with the sal genetic locus comprising salA, the lantibiotic structural gene; salBCTX genes encoding peptide modification and export machinery proteins; and salYKR genes encoding a putative immunity protein and two-component sensor-regulator system. Insertional inactivation of salB in S. salivarius 20P3 resulted in abrogation of SalA peptide production, of immunity to SalA, and of salA transcription. Addition of exogenous SalA peptide to salB mutant cultures induced dose-dependent expression of salA mRNA (0.2 kb), demonstrating that SalA production was normally autoregulated. Inactivation of salR encoding the response regulator of the SalKR two-component system led to reduced production of, and immunity to, SalA. The sal genetic locus was also present in S. pyogenes SF370 (M type 1), but because of a deletion across the salBCT genes, the corresponding lantibiotic peptide, designated SalA1, was not produced. However, in S. pyogenes T11 (M type 4) the sal locus gene complement was apparently complete, and active SalA1 peptide was synthesized. Exogenously added SalA1 peptide from S. pyogenes T11 induced salA1 transcription in S. pyogenes SF370 and in an isogenic S. pyogenes T11 salB mutant and salA transcription in S. salivarius 20P3 salB. Thus, SalA and SalA1 are examples of streptococcal lantibiotics whose production is autoregulated. These peptides act as intra- and interspecies signaling molecules, modulating lantibiotic production and possibly influencing streptococcal population ecology in the oral cavity.
Collapse
Affiliation(s)
- M Upton
- Department of Oral and Dental Science, University of Bristol Dental School, Bristol, BS1 2LY, United Kingdom
| | | | | | | |
Collapse
|
28
|
Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 2001; 98:4658-63. [PMID: 11296296 PMCID: PMC31890 DOI: 10.1073/pnas.071559398] [Citation(s) in RCA: 661] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 1,852,442-bp sequence of an M1 strain of Streptococcus pyogenes, a Gram-positive pathogen, has been determined and contains 1,752 predicted protein-encoding genes. Approximately one-third of these genes have no identifiable function, with the remainder falling into previously characterized categories of known microbial function. Consistent with the observation that S. pyogenes is responsible for a wider variety of human disease than any other bacterial species, more than 40 putative virulence-associated genes have been identified. Additional genes have been identified that encode proteins likely associated with microbial "molecular mimicry" of host characteristics and involved in rheumatic fever or acute glomerulonephritis. The complete or partial sequence of four different bacteriophage genomes is also present, with each containing genes for one or more previously undiscovered superantigen-like proteins. These prophage-associated genes encode at least six potential virulence factors, emphasizing the importance of bacteriophages in horizontal gene transfer and a possible mechanism for generating new strains with increased pathogenic potential.
Collapse
Affiliation(s)
- J J Ferretti
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Allgaier A, Goethe R, Wisselink HJ, Smith HE, Valentin-Weigand P. Relatedness of Streptococcus suis isolates of various serotypes and clinical backgrounds as evaluated by macrorestriction analysis and expression of potential virulence traits. J Clin Microbiol 2001; 39:445-53. [PMID: 11158088 PMCID: PMC87757 DOI: 10.1128/jcm.39.2.445-453.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the genetic diversity of Streptococcus suis isolates of different serotypes by macrorestriction analysis and elucidated possible relationships between the genetic background, expression of potential virulence traits, and source of isolation. Virulence traits included expression of serotype-specific polysaccharides, muramidase-released protein (MRP), extracellular protein factor (EF), hemolysin activity, and adherence to epithelial cells. Macrorestriction analysis of streptococcal DNA digested with restriction enzymes SmaI and ApaI allowed differentiation of single isolates that could be assigned to four major clusters, named A1, A2, B1, and B2. Comparison of the genotypic and phenotypic features of the isolates with their source of isolation showed that (i) the S. suis population examined, which originated mainly from German pigs, exhibited a genetic diversity and phenotypic patterns comparable to those found for isolates from other European countries; (ii) certain phenotypic features, such as the presence of capsular antigens of serotypes 2, 1, and 9, expression of MRP and EF, and hemolysin activity (and in particular, combinations of these features), were strongly associated with the clinical background of meningitis and septicemia; and (iii) isolates from pigs with meningitis and septicemia showed a significantly higher degree of genetic homogeneity compared to that for isolates from pigs with pneumonia and healthy pigs. Since the former isolates are considered highly virulent, this supports the theory of a clonal relationship among highly virulent strains.
Collapse
Affiliation(s)
- A Allgaier
- Institut fuer Mikrobiologie und Tierseuchen, Tieraerztliche Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
30
|
Sriskandan S, Unnikrishnan M, Krausz T, Cohen J. Mitogenic factor (MF) is the major DNase of serotype M89 Streptococcus pyogenes. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2785-2792. [PMID: 11065357 DOI: 10.1099/00221287-146-11-2785] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To investigate the role of mitogenic factor (MF) in streptococcal pathogenesis, the structural gene (mf) encoding this protein was disrupted in a clinical isolate of Streptococcus pyogenes H293, to yield the isogenic mutant H363. Growth in enriched broth and on blood agar was unaffected by disruption of mf. Cell-free broth supernatants from H293 and H363 demonstrated identical promitogenic activities when co-incubated with human peripheral blood mononuclear cells, even when diluted 100000-fold, showing that MF is not a major streptococcal mitogen compared with other secreted superantigens. Disruption of mf resulted in complete loss of DNase B production and detectable DNase activity in H363 compared with the parent strain, confirming that the single gene mf, which is present in all group A streptococcal M serotypes studied, encodes DNase B. Despite loss of DNase activity, the virulence of S. pyogenes in a mouse model of necrotizing fasciitis and myositis was unaffected.
Collapse
Affiliation(s)
- Shiranee Sriskandan
- Department of Infectious Diseases, Imperial College School of Medicine, London W12 0NN, UK1
| | - Meera Unnikrishnan
- Department of Infectious Diseases, Imperial College School of Medicine, London W12 0NN, UK1
| | - Thomas Krausz
- Department of Infectious Diseases, Imperial College School of Medicine, London W12 0NN, UK1
| | - Jonathan Cohen
- Department of Infectious Diseases, Imperial College School of Medicine, London W12 0NN, UK1
| |
Collapse
|
31
|
Natarajan A, Everard M, Manias D, Srienc F, Dunny G. A sensitive method to detect initiation of growth in Streptococcus gordonii using ribosomal RNA operon-reporter gene fusions. J Microbiol Methods 2000; 39:133-43. [PMID: 10576703 DOI: 10.1016/s0167-7012(99)00105-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A system for studying the early growth response of Streptococcus gordonii to environmental stimuli has been developed. A reporter gene, encoding alpha-amylase, has been integrated into an rRNA operon to monitor changes in cellular physiology associated with the initiation of growth. Two such strains with single integrants have been characterized during the transition from lag phase to exponential growth. Synthesis of the reporter is correlated to growth initiation in both strains, and the reporter enzyme is detectable with sufficient sensitivity. Comparison of the expression profiles of the two rrn operons containing the reporter gene suggests that they are differentially expressed over the course of growth.
Collapse
Affiliation(s)
- A Natarajan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
32
|
Li Z, Sledjeski DD, Kreikemeyer B, Podbielski A, Boyle MD. Identification of pel, a Streptococcus pyogenes locus that affects both surface and secreted proteins. J Bacteriol 1999; 181:6019-27. [PMID: 10498714 PMCID: PMC103629 DOI: 10.1128/jb.181.19.6019-6027.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A Tn917 insertion mutant of an M49 serotype, opacity factor-positive Streptococcus pyogenes, was isolated. It had the following phenotypes: decreased beta-hemolysis mediated by streptolysin S, reduction in the activity of a secreted cysteine protease and streptokinase, and an altered immunoglobulin and fibrinogen-binding phenotype. The site of insertion of Tn917 into the chromosome and the surrounding sequence, the pel region (pleiotropic effect locus), was determined. Phage A25 transduction confirmed that the pleiotropic changes in phenotype could be cotransduced with Tn917. The pel region was cloned and sequenced, and the transposon was found to be inserted upstream of a single open reading frame which led to a failure to transcribe a 500-base mRNA. The loss of this transcript decreased the transcription of emm and speB genes and reduced the secretion of streptokinase. Enhanced Pel expression from a nisin-inducible plasmid resulted in increased message levels for emm in a wild-type organism. Characterization of the pel mutant provides evidence for the coordinated regulation of secreted and surface proteins and suggests the existence of a new global regulatory factor in S. pyogenes.
Collapse
Affiliation(s)
- Z Li
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
33
|
Rasmussen M, Müller HP, Björck L. Protein GRAB of streptococcus pyogenes regulates proteolysis at the bacterial surface by binding alpha2-macroglobulin. J Biol Chem 1999; 274:15336-44. [PMID: 10336419 DOI: 10.1074/jbc.274.22.15336] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the molecular interplay between pathogenic microorganisms and their host, proteolytic mechanisms are believed to play a crucial role. Here we find that the important human pathogen Streptococcus pyogenes (group A Streptococcus) expresses a surface protein with high affinity (Ka = 2.0 x 10(8) M-1) for alpha2-macroglobulin (alpha2M), the dominating proteinase inhibitor of human plasma. The immunoglobulin-binding protein G of group C and G streptococci also contains an alpha2M-binding domain and a gene encoding protein GRAB (protein G-related alpha2M-binding protein) was identified in the S. pyogenes Genome Sequencing data base. The grab gene is present in most S. pyogenes strains and is well conserved. Protein GRAB has typical features of a surface-attached protein of Gram-positive bacteria. It also contains a region homologous to parts of the alpha2M-binding domain of protein G and a variable number of a unique 28-amino acid-long repeat. Using Escherichia coli-produced protein GRAB and synthetic GRAB peptides, the alpha2M-binding region was mapped to the NH2-terminal part of protein GRAB, which is the region with homology to protein G. An isogenic S. pyogenes mutant lacking surface-associated protein GRAB showed no alpha2M binding activity and was attenuated in virulence when injected intraperitoneally in mice. Finally, alpha2M bound to the bacterial surface via protein GRAB was found to entrap and inhibit the activity of both S. pyogenes and host proteinases, thereby protecting important virulence determinants from proteolytic degradation. This regulation of proteolytic activity at the bacterial surface should affect the host-microbe relation during S. pyogenes infections.
Collapse
Affiliation(s)
- M Rasmussen
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, S-221 00 Lund, Sweden
| | | | | |
Collapse
|
34
|
Abstract
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| |
Collapse
|
35
|
Hoe N, Nakashima K, Grigsby D, Pan X, Dou SJ, Naidich S, Garcia M, Kahn E, Bergmire-Sweat D, Musser JM. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 1999; 5:254-63. [PMID: 10221878 PMCID: PMC2640708 DOI: 10.3201/eid0502.990210] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Serotype M1 group A Streptococcus, the most common cause of invasive disease in many case series, generally have resisted extensive molecular subtyping by standard techniques (e.g., multilocus enzyme electrophoresis, pulsed-field gel electrophoresis). We used automated sequencing of the sic gene encoding streptococcal inhibitor of complement and of a region of the chromosome with direct repeat sequences to unambiguously differentiate 30 M1 isolates recovered from 28 patients in Texas with invasive disease episodes temporally clustered and thought to represent an outbreak. Sequencing of the emm gene was less useful for M1 strain differentiation, and restriction fragment length polymorphism analysis with IS1548 or IS1562 as Southern hybridization probes did not provide epidemiologically useful subtyping information. Sequence polymorphism in the direct repeat region of the chromosome and IS1548 profiling data support the hypothesis that M1 organisms have two main evolutionary lineages marked by the presence or absence of the speA2 allele encoding streptococcal pyrogenic exotoxin A2.
Collapse
Affiliation(s)
- N Hoe
- Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375-83. [PMID: 9829949 PMCID: PMC107725 DOI: 10.1128/jb.180.23.6375-6383.1998] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 09/25/1998] [Indexed: 11/20/2022] Open
Abstract
A two-component signal transduction system encoded by the yycF and yycG genes is part of an operon containing three genes, yycH, yycI, and yycJ, with no known function and a gene, yycK, coding for an HtrA-like protease. This operon was transcribed during growth, and its transcription shut down as the cells approached stationary phase. This decreased transcription was not Spo0A dependent. The HtrA protease gene was separately controlled during sporulation from a sigmaG promoter. Studies using insertional inactivation plasmids revealed that neither yycF nor yycG could be inactivated, whereas the other genes were inactivated without loss of viability. A temperature-sensitive YycF response regulator mutant was isolated and shown to have an H215P mutation in a putative DNA-binding domain which is closely related to the OmpR family of response regulators. At the nonpermissive temperature, cultures of the mutant strain stopped growth within 30 min, and this was followed by a decrease in optical density. Microscopically, many of the cells appeared to retain their structure while being empty of their contents. The essential processes regulated by this two-component system remain unknown. A search of the genome databases revealed YycF, YycG, and YycJ homologues encoded by three linked genes in Streptococcus pyogenes. The high level of identity of these proteins (71% for YycF) suggests that this system may play a similar role in gram-positive pathogens.
Collapse
Affiliation(s)
- C Fabret
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
37
|
Dmitriev A, Suvorov A, Totolian A. Physical and genetic chromosomal maps of Streptococcus agalactiae, serotypes II and III; rRNA operon organization. FEMS Microbiol Lett 1998; 167:33-9. [PMID: 9785449 DOI: 10.1111/j.1574-6968.1998.tb13204.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A detailed analysis of two Streptococcus agalactiae (group B streptococcus, GBS) strains was performed by pulsed field gel electrophoresis (PFGE). Digestion of the chromosomal DNA with SmaI and SgrAI endonucleases, followed by separation and analysis of fragments by PFGE was carried out. Physical chromosomal maps of serotype II/(alpha + beta) and III/alpha strains of S. agalactiae were constructed. The GBS genome size was estimated to be 2200 kb. Sixteen GBS genes were used as probes and were located on the restriction maps of both strains by DNA-DNA hybridization. Six copies of ribosomal operons were found in the genome of the analyzed strains. Significant differences in the restriction patterns of chromosomal DNA and DNA-DNA hybridization between the two analyzed strains were detected so that DNA restriction patterns may be used to trace outbreaks of disease. The overall GBS chromosomal organization as determined is fairly conserved.
Collapse
Affiliation(s)
- A Dmitriev
- Institute of Experimental Medicine, Academy of the Medical Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
38
|
Levin JC, Wessels MR. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol Microbiol 1998; 30:209-19. [PMID: 9786197 DOI: 10.1046/j.1365-2958.1998.01057.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hyaluronic acid capsule of group A Streptococcus (GAS) is an important virulence factor, but little is known about mechanisms that regulate capsule expression. Transposon Tn916 mutagenesis of the poorly encapsulated M-type 3 GAS strain DLS003 produced a transconjugant that exhibited a mucoid colony morphology, reflecting increased hyaluronic acid capsule production. Analysis of chromosomal DNA sequence immediately downstream of the transposon insertion identified two open reading frames, designated csrR and csrS, which exhibited sequence similarity to bacterial two-component regulatory systems. We constructed an in-frame deletion mutation within csrR, which encodes the putative response component. Replacement of the native csrR gene in the DLS003 chromosome with the mutant allele resulted in a sixfold increase in capsule production and a corresponding increase in transcription of the has operon, which contains the essential genes for hyaluronic acid synthesis. Increased capsule production by the csrR mutant strain was associated with enhanced resistance to complement-mediated opsonophagocytic killing in vitro and with a 500-fold increase in virulence in mice. These results establish CsrR as a negative regulator of hyaluronic acid capsule synthesis and suggest that it is part of a two-component regulatory system that influences capsule expression and virulence.
Collapse
Affiliation(s)
- J C Levin
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
39
|
Cleary PP, McLandsborough L, Ikeda L, Cue D, Krawczak J, Lam H. High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Mol Microbiol 1998; 28:157-67. [PMID: 9593304 DOI: 10.1046/j.1365-2958.1998.00786.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A clonal variant of serotype M1 group A streptococcus, strain 90-131, disseminated to several continents, where it was associated with severe systemic infections and toxic shock. Although this strain harbours the speA gene and is efficiently internalized by human epithelial cells, clinical isolates often fail to express the erythrogenic toxin under laboratory growth conditions. Cultures of strain 90-131 were observed to phase vary between small, dry, compact and larger, more mucoid colonies. The former were shown to be poorly internalized by epithelial cells. Analysis of RNA by Northern hybridization demonstrated that the emml, hasA and speA genes were weakly transcribed in cultures derived from the small colonies and highly transcribed in those derived from the large colonies. An insertion mutation in mga (the multigene activator) downregulated the invasion of epithelial cells and the transcription of emm1 and hasA, but had little impact on the transcription of speA. These are the first data to suggest the existence of a common regulatory circuit linking intracellular invasion, M protein, hyaluronic acid capsule and erythrogenic toxin expression by group A streptococcus. Moreover, the genetic instability of toxin expression exhibited by this serotype may impact on laboratory studies that attempt to associate toxin production with toxic shock.
Collapse
Affiliation(s)
- P P Cleary
- Department of Microbiology, University of Minnesota, Minneapolis 55126, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Malke H, Ferretti JJ, Podbielski A, Suvorov A, Trieu-Cuot P. Summary of the round table discussion on genome structure and regulation of gene expression in streptococci and enterococci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 418:1051-6. [PMID: 9331832 DOI: 10.1007/978-1-4899-1825-3_248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Ferretti JJ, Roe BA, Clifton SW, Lin SP, Wang X, Zhan M, Reece A, Suvorov AN, McShan WM. The Streptococcus pyogenes genome sequencing project. A progress report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 418:961-3. [PMID: 9331810 DOI: 10.1007/978-1-4899-1825-3_226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J J Ferretti
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Suvorov AN, Ferretti JJ. Chromosomal analysis of group A streptococci by pulsed field gel electrophoresis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 418:979-81. [PMID: 9331814 DOI: 10.1007/978-1-4899-1825-3_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A N Suvorov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | |
Collapse
|
43
|
Fogg GC, Caparon MG. Constitutive expression of fibronectin binding in Streptococcus pyogenes as a result of anaerobic activation of rofA. J Bacteriol 1997; 179:6172-80. [PMID: 9324268 PMCID: PMC179524 DOI: 10.1128/jb.179.19.6172-6180.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein F is a fibronectin-binding surface protein of Streptococcus pyogenes (group A streptococcus) that mediates adherence to host cells. A gene product encoded by rofA activates transcription of the gene that encodes protein F (prtF) and was identified in a strain of S. pyogenes that expressed high levels of protein F under all conditions tested. Insertional inactivation of rofA in this strain results in a phenotype similar to that of other strains where high-level transcription of prtF occurs only in response to increased oxygen tension. In this study, we have compared the regulation of prtF and rofA in O2-regulated and constitutive strains in order to gain further insight into the function of rofA. Comparison of the prtF and rofA transcripts by S1 nuclease and primer extension assays indicated that the same promoters for each transcript are used in both O2-regulated and constitutive strains. However, analyses of rofA-lacZ reporter alleles revealed that a key difference between strains involves regulation of rofA itself. In O2-regulated strains, expression of rofA was elevated following culture under conditions of reduced O2 tension. However, a much more robust activation of rofA expression was observed when constitutive strains were grown under similar conditions. Exchange of reporter and rofA alleles between strains demonstrated that host genetic background, and not the sequence of the respective rofA allele or regulatory region, dictates the expression phenotype. Activation of rofA required RofA, and RofA was shown to bind specifically to DNA containing the promoters for rofA and prtF. Finally, overexpression of either allele of rofA caused constitutive expression of prtF regardless of host background. These data suggest a model where anaerobic expression of prtF in constitutive hosts is controlled at the level of transcription of rofA and implicate additional factors in this regulatory pathway.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Amino Acid Sequence
- Anaerobiosis
- Bacterial Proteins
- Base Sequence
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Fibronectins/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors
- Molecular Sequence Data
- Oxygen/physiology
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- G C Fogg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | |
Collapse
|