1
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
3
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Improving effect of phytase treatment on the functional properties and in vitro digestibility of protein isolate from Cinnamomum camphora seed kernel. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Scoma A, Garrido-Amador P, Nielsen SD, Røy H, Kjeldsen KU. The Polyextremophilic Bacterium Clostridium paradoxum Attains Piezophilic Traits by Modulating Its Energy Metabolism and Cell Membrane Composition. Appl Environ Microbiol 2019; 85:e00802-19. [PMID: 31126939 PMCID: PMC6643245 DOI: 10.1128/aem.00802-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
In polyextremophiles, i.e., microorganisms growing preferentially under multiple extremes, synergistic effects may allow growth when application of the same extremes alone would not. High hydrostatic pressure (HP) is rarely considered in studies of polyextremophiles, and its role in potentially enhancing tolerance to other extremes remains unclear. Here, we investigated the HP-temperature response in Clostridium paradoxum, a haloalkaliphilic moderately thermophilic endospore-forming bacterium, in the range of 50 to 70°C and 0.1 to 30 MPa. At ambient pressure, growth limits were extended from the previously reported 63°C to 70°C, defining C. paradoxum as an actual thermophile. Concomitant application of high HP and temperature compared to standard conditions (i.e., ambient pressure and 50°C) remarkably enhanced growth, with an optimum growth rate observed at 22 MPa and 60°C. HP distinctively defined C. paradoxum physiology, as at 22 MPa biomass, production increased by 75% and the release of fermentation products per cell decreased by >50% compared to ambient pressure. This metabolic modulation was apparently linked to an energy-preserving mechanism triggered by HP, involving a shift toward pyruvate as the preferred energy and carbon source. High HPs decreased cell damage, as determined by Syto9 and propidium iodide staining, despite no organic solute being accumulated intracellularly. A distinct reduction in carbon chain length of phospholipid fatty acids (PLFAs) and an increase in the amount of branched-chain PLFAs occurred at high HP. Our results describe a multifaceted, cause-and-effect relationship between HP and cell metabolism, stressing the importance of applying HP to define the boundaries for life under polyextreme conditions.IMPORTANCE Hydrostatic pressure (HP) is a fundamental parameter influencing biochemical reactions and cell physiology; however, it is less frequently applied than other factors, such as pH, temperature, and salinity, when studying polyextremophilic microorganisms. In particular, how HP affects microbial tolerance to other and multiple extremes remains unclear. Here, we show that under polyextreme conditions of high pH and temperature, Clostridium paradoxum demonstrates a moderately piezophilic nature as cultures grow to highest cell densities and most efficiently at a specific combination of temperature and HP. Our results highlight the importance of considering HP when exploring microbial physiology under extreme conditions and thus have implications for defining the limits for microbial life in nature and for optimizing industrial bioprocesses occurring under multiple extremes.
Collapse
Affiliation(s)
- Alberto Scoma
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| | - Paloma Garrido-Amador
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| | | | - Hans Røy
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Department of Bioscience, Section of Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol 2018; 18:177. [PMID: 30400856 PMCID: PMC6219164 DOI: 10.1186/s12866-018-1320-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The ambient temperature of all habitats is a key physical property that shapes the biology of microbes inhabiting them. The optimal growth temperature (OGT) of a microbe, is therefore a key piece of data needed to understand evolutionary adaptations manifested in their genome sequence. Unfortunately there is no growth temperature database or easily downloadable dataset encompassing the majority of cultured microorganisms. We are thus limited in interpreting genomic data to identify temperature adaptations in microbes. Results In this work I significantly contribute to closing this gap by mining data from major culture collection centres to obtain growth temperature data for a nonredundant set of 21,498 microbes. The dataset (10.5281/zenodo.1175608) contains mainly bacteria and archaea and spans psychrophiles, mesophiles, thermophiles and hyperthermophiles. Using this data a full 43% of all protein entries in the UniProt database can be annotated with the growth temperature of the species from which they originate. I validate the dataset by showing a Pearson correlation of up to 0.89 between growth temperature and mean enzyme optima, a physiological property directly influenced by the growth temperature. Using the temperature dataset I correlate the genomic occurance of enzyme functional annotations with growth temperature. I identify 319 enzyme functions that either increase or decrease in occurrence with temperature. Eight metabolic pathways were statistically enriched for these enzyme functions. Furthermore, I establish a correlation between 33 domains of unknown function (DUFs) with growth temperature in microbes, four of which (DUF438, DUF1524, DUF1957 and DUF3458_C) were significant in both archaea and bacteria. Conclusions The growth temperature dataset enables large-scale correlation analysis with enzyme function- and domain-level annotations. Growth-temperature dependent changes in their occurrence highlight potential evolutionary adaptations. A few of the identified changes are previously known, such as the preference for menaquinone biosynthesis through the futalosine pathway in bacteria growing at high temperatures. Others represent important starting points for future studies, such as DUFs where their occurrence change with temperature. The growth temperature dataset should become a valuable community resource and will find additional, important, uses in correlating genomic, transcriptomic, proteomic, metabolomic, phenotypic or taxonomic properties with temperature in future studies. Electronic supplementary material The online version of this article (10.1186/s12866-018-1320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin K M Engqvist
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
8
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
9
|
Beblo-Vranesevic K, Galinski EA, Rachel R, Huber H, Rettberg P. Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms. Arch Microbiol 2016; 199:17-28. [PMID: 27443666 DOI: 10.1007/s00203-016-1269-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022]
Abstract
This study examined the influence of prior salt adaptation on the survival rate of (hyper)-thermophilic bacteria and archaea after desiccation and UV or ionizing irradiation treatment. Survival rates after desiccation of Hydrogenothermus marinus and Archaeoglobus fulgidus increased considerably when the cells were cultivated at higher salt concentrations before drying. By doubling the concentration of NaCl, a 30 times higher survival rate of H. marinus after desiccation was observed. Under salt stress, the compatible solute diglycerol phosphate in A. fulgidus and glucosylglycerate in H. marinus accumulated in the cytoplasm. Several different compatible solutes were added as protectants to A. fulgidus and H. marinus before desiccation treatment. Some of these had similar effects as intracellularly produced compatible solutes. The survival rates of H. marinus and A. fulgidus after exposure to UV-C (254 nm) or ionizing X-ray/gamma radiation were irrespective of the salt-induced synthesis or the addition of compatible solutes.
Collapse
Affiliation(s)
- Kristina Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Division, German Aerospace Center (DLR e.V.), Linder Höhe, 51147, Cologne, Germany.
| | - Erwin A Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Reinhard Rachel
- Faculty of Biology and Preclinical Medicine, Center for Electron Microscopy, University Regensburg, Regensburg, Germany
| | - Harald Huber
- Faculty of Biology and Preclinical Medicine, Institute for Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Petra Rettberg
- Institute of Aerospace Medicine, Radiation Biology Division, German Aerospace Center (DLR e.V.), Linder Höhe, 51147, Cologne, Germany
| |
Collapse
|
10
|
Cario A, Jebbar M, Thiel A, Kervarec N, Oger PM. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus. Sci Rep 2016; 6:29483. [PMID: 27378270 PMCID: PMC4932500 DOI: 10.1038/srep29483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response.
Collapse
Affiliation(s)
- Anaïs Cario
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France
| | - Axel Thiel
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France
| | - Nelly Kervarec
- Univ Brest, PLATE-FORME TECHNOLOGIQUE RMN-RPE-SM, UFR Sciences et Techniques, Avenue Le Gorgeu, Brest, France
| | - Phil M Oger
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France.,Univ Lyon, INSA de Lyon, CNRS UMR 5240, Lyon, France
| |
Collapse
|
11
|
Cario A, Mizgier A, Thiel A, Jebbar M, Oger PM. Restoration of the di-myo-inositol-phosphate pathway in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Biochimie 2015; 118:286-93. [DOI: 10.1016/j.biochi.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022]
|
12
|
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015; 19:721-40. [DOI: 10.1007/s00792-015-0760-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
|
13
|
Lamosa P, Lourenço EC, d'Avó F, Nobre A, Bandeiras TM, da Costa MS, Ventura MR, Santos H. A unique glyceryl diglycoside identified in the thermophilic, radiation-resistant bacterium Rubrobacter xylanophilus. Extremophiles 2015; 19:373-82. [PMID: 25555708 DOI: 10.1007/s00792-014-0723-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
The solute pool of the actinobacterium Rubrobacter xylanophilus has been investigated as a function of the growth temperature and concentration of NaCl in the medium (Empadinhas et al. Extremophiles 11: 667-673, 2007). Changing the carbon source from glucose to maltose in a minimal growth medium led to the accumulation of an unknown organic compound whose structure was investigated by NMR and confirmed by chemical synthesis in the present study as: (2R)-2-(1-O-α-D-mannopyranosyl)-3-(1-O-α-D-glucopyranosyl)-D-glycerate (MGlyG). In addition to this newly identified diglycoside, the solute pool of R. xylanophilus included trehalose, mannosylglycerate, di-myo-inositol phosphate and di-N-acetyl-glucosamine phosphate. The structure of MGlyG was established by NMR and confirmed by chemical synthesis. The availability of g-amounts of the synthetic material allowed us to perform stabilization tests on three model enzymes (malate dehydrogenase, staphylococcal nuclease, and lysozyme), and compare the efficacy of MGlyG with other natural glyceryl glycosides, such as α-D-mannosyl-D-glycerate, α-D-glucosyl-D-glycerate and α-D-glucosyl-(1 → 6)-α-D-glucosyl-(1 → 2)-D-glycerate.
Collapse
Affiliation(s)
- Pedro Lamosa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, Apartado 127, 2780-157, Oeiras, Portugal,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang H, Chen Y, Hua Y, Kong X, Zhang C. Effects of phytase-assisted processing method on physicochemical and functional properties of soy protein isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10989-97. [PMID: 25333697 DOI: 10.1021/jf503952s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytate is an important antinutritional factor in food products. In this study, a phytase-assisted processing method was used to produce low-phytate soybean protein isolate (SPI) samples, and their physicochemical and functional properties were examined. Hydrolysis condition at low temperature (room temperature) and pH 5.0 was better than that recommended by manufacturer (pH 5.0, 55 °C) at keeping the properties of SPI, so the former condition was selected to prepare SPI samples with phytate contents of 19.86-0.11 mg/g by prolonging hydrolysis time (0 (traditional method), 5, 10, 20, 40, and 60 min). Ash content (R(2) = 0.940), solubility (R(2) = 0.983), ζ-potential value (R(2) = 0.793), denaturation temperatures (β-conglycinin, R(2) = 0.941; glycinin, R(2) = 0.977), emulsifying activity index (R(2) = 0.983), foaming capacity (R(2) = 0.955), and trypsin inhibitor activity (R(2) = 0.821) of SPI were positively correlated with phytate content, whereas protein content (R(2) = 0.876), protein recovery (R(2) = 0.781), emulsifying stability index (R(2) = 0.953), foaming stability (R(2) = 0.919), gel hardness (R(2) = 0.893), and in vitro digestibility (R(2) = 0.969) were negatively correlated with phytate content. Simulated gastrointestinal digestion and subsequent dialysis showed that percentages of dialyzable Zn and Ca were increased with decreasing phytate content, whereas the amounts of dialyzable Zn and Ca revealed different behaviors: the former was increased and the latter was decreased. Circular dichroism spectra showed that secondary structure of SPI was changed by phytase. Compared with traditional processing method, the phytase-assisted processing method could produce SPI with lower phytate and higher protein contents, which had better in vitro digestibility and could be used to prepare gels with higher hardness by partially losing some other functional properties.
Collapse
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Kurnasov OV, Luk HJD, Roberts MF, Stec B. Structure of the inositol-1-phosphate cytidylyltransferase from Thermotoga maritima. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1808-17. [DOI: 10.1107/s0907444913015278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/02/2013] [Indexed: 11/10/2022]
|
16
|
Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1–6)glucosyl-α(1–2)glucosylglycerate in Persephonella marina. Extremophiles 2012. [DOI: 10.1007/s00792-012-0500-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Warnecke T. Loss of the DnaK-DnaJ-GrpE Chaperone System among the Aquificales. Mol Biol Evol 2012; 29:3485-95. [DOI: 10.1093/molbev/mss152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Neelon K, Roberts MF, Stec B. Crystal structure of a trapped catalytic intermediate suggests that forced atomic proximity drives the catalysis of mIPS. Biophys J 2012; 101:2816-24. [PMID: 22261071 DOI: 10.1016/j.bpj.2011.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 12/11/2022] Open
Abstract
1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment.
Collapse
Affiliation(s)
- Kelly Neelon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Gonçalves LG, Borges N, Serra F, Fernandes PL, Dopazo H, Santos H. Evolution of the biosynthesis of di-myo-inositol phosphate, a marker of adaptation to hot marine environments. Environ Microbiol 2011; 14:691-701. [PMID: 22026421 DOI: 10.1111/j.1462-2920.2011.02621.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of di-myo-inositol phosphate (DIP), a common compatible solute in hyperthermophiles, involves the consecutive actions of inositol-1-phosphate cytidylyltransferase (IPCT) and di-myo-inositol phosphate phosphate synthase (DIPPS). In most cases, both activities are present in a single gene product, but separate genes are also found in a few organisms. Genes for IPCT and DIPPS were found in the genomes of 33 organisms, all with thermophilic/hyperthermophilic lifestyles. Phylogeny of IPCT/DIPPS revealed an incongruent topology with 16S RNA phylogeny, thus suggesting horizontal gene transfer. The phylogenetic tree of the DIPPS domain was rooted by using phosphatidylinositol phosphate synthase sequences as out-group. The root locates at the separation of genomes with fused and split genes. We propose that the gene encoding DIPPS was recruited from the biosynthesis of phosphatidylinositol. The last DIP-synthesizing ancestor harboured separated genes for IPCT and DIPPS and this architecture was maintained in a crenarchaeal lineage, and transferred by horizontal gene transfer to hyperthermophilic marine Thermotoga species. It is plausible that the driving force for the assembly of those two genes in the early ancestor is related to the acquired advantage of DIP producers to cope with high temperature. This work corroborates the view that Archaea were the first hyperthermophilic organisms.
Collapse
Affiliation(s)
- Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, Apartado 127, 2780-157 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
20
|
Yang FL, Yang YL, Wu SH. Structure and function of glycolipids in thermophilic bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:367-80. [PMID: 21618118 DOI: 10.1007/978-1-4419-7877-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | |
Collapse
|
21
|
Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H. Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 2010; 63:896-902. [PMID: 16535556 PMCID: PMC1389121 DOI: 10.1128/aem.63.3.896-902.1997] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the accumulation of organic solutes under optimum growth conditions in 12 species of thermophilic and hyperthermophilic Archaea belonging to the Crenarchaeota and Euryarchaeota. Pyrobaculum aerophilum, Thermoproteus tenax, Thermoplasma acidophilum, and members of the order Sulfolobales accumulated trehalose. Pyrococcus furiosus accumulated di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate and (beta)-mannosylglycerate, Methanothermus fervidus accumulated cyclic-2,3-bisphosphoglycerate and (beta)-mannosylglycerate, while the only solute detected in Pyrodictium occultum was di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate. Methanopyrus kandleri accumulated large concentrations of cyclic-2,3-bisphosphoglycerate. On the other hand, Archaeoglobus fulgidus accumulated three phosphorylated solutes; prominent among them was a compound identified as di-glycerol-phosphate. This solute increased in concentration as the salinity of the medium and the growth temperature were raised, suggesting that this compound serves as a general stress solute. Di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate accumulated at supraoptimal temperature only. The relationship between the accumulation of unusual solutes and high temperatures is also discussed.
Collapse
|
22
|
Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis. J Bacteriol 2010; 192:1624-33. [PMID: 20061481 DOI: 10.1128/jb.01424-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis.
Collapse
|
23
|
Thermococcus kodakarensis mutants deficient in di-myo-inositol phosphate use aspartate to cope with heat stress. J Bacteriol 2010; 192:191-7. [PMID: 19880594 DOI: 10.1128/jb.01115-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the marine microorganisms which are adapted to grow at temperatures above 80 degrees C accumulate di-myo-inositol phosphate (DIP) in response to heat stress. This led to the hypothesis that the solute plays a role in thermoprotection, but there is a lack of definitive experimental evidence. Mutant strains of Thermococcus kodakarensis (formerly Thermococcus kodakaraensis), manipulated in their ability to synthesize DIP, were constructed and used to investigate the involvement of DIP in thermoadaptation of this archaeon. The solute pool of the parental strain comprised DIP, aspartate, and alpha-glutamate. Under heat stress the level of DIP increased 20-fold compared to optimal conditions, whereas the pool of aspartate increased 4.3-fold in response to osmotic stress. Deleting the gene encoding the key enzyme in DIP synthesis, CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, abolished DIP synthesis. Conversely, overexpression of the same gene resulted in a mutant with restored ability to synthesize DIP. Despite the absence of DIP in the deletion mutant, this strain exhibited growth parameters similar to those of the parental strain, both at optimal (85 degrees C) and supraoptimal (93.7 degrees C) temperatures for growth. Analysis of the respective solute pools showed that DIP was replaced by aspartate. We conclude that DIP is part of the strategy used by T. kodakarensis to cope with heat stress, and aspartate can be used as an alternative solute of similar efficacy. This is the first study using mutants to demonstrate the involvement of compatible solutes in the thermoadaptation of (hyper)thermophilic organisms.
Collapse
|
24
|
A unique beta-1,2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J Bacteriol 2009; 191:6105-15. [PMID: 19648237 DOI: 10.1128/jb.00598-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to di-myo-inositol-1,3'-phosphate (DIP), a compatible solute widespread in hyperthermophiles, the organic solute pool of Thermotoga maritima comprises 2-(O-beta-D-mannosyl)-di-myo-inositol-1,3'-phosphate (MDIP) and 2-(O-beta-D-mannosyl-1,2-O-beta-D-mannosyl)-di-myo-inositol-1,3'-phosphate (MMDIP), two newly identified beta-1,2-mannosides. In cells grown under heat stress, MDIP was the major solute, accounting for 43% of the total pool; MMDIP and DIP accumulated to similar levels, each corresponding to 11.5% of the total pool. The synthesis of MDIP involved the transfer of the mannosyl group from GDP-mannose to DIP in a single-step reaction catalyzed by MDIP synthase. This enzyme used MDIP as an acceptor of a second mannose residue, yielding the di-mannosylated compound. Minor amounts of the tri-mannosylated form were also detected. With a genomic approach, putative genes for MDIP synthase were identified in the genome of T. maritima, and the assignment was confirmed by functional expression in Escherichia coli. Genes with significant sequence identity were found only in the genomes of Thermotoga spp., Aquifex aeolicus, and Archaeoglobus profundus. MDIP synthase of T. maritima had maximal activity at 95 degrees C and apparent K(m) values of 16 mM and 0.7 mM for DIP and GDP-mannose, respectively. The stereochemistry of MDIP was characterized by isotopic labeling and nuclear magnetic resonance (NMR): DIP selectively labeled with carbon 13 at position C1 of the l-inositol moiety was synthesized and used as a substrate for MDIP synthase. This beta-1,2-mannosyltransferase is unrelated to known glycosyltransferases, and within the domain Bacteria, it is restricted to members of the two deepest lineages, i.e., the Thermotogales and the Aquificales. To our knowledge, this is the first beta-1,2-mannosyltransferase characterized thus far.
Collapse
|
25
|
Abstract
In order to survive extremes of pH, temperature, salinity and pressure, organisms have been found to develop unique defences against their environment, leading to the biosynthesis of novel molecules ranging from simple osmolytes and lipids to complex secondary metabolites. This review highlights novel molecules isolated from microorganisms that either tolerate or favour extreme growth conditions.
Collapse
Affiliation(s)
- Zoe E Wilson
- Department of Chemistry, University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand
| | | |
Collapse
|
26
|
Greaves RB, Warwicker J. Stability and solubility of proteins from extremophiles. Biochem Biophys Res Commun 2009; 380:581-5. [PMID: 19285004 DOI: 10.1016/j.bbrc.2009.01.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/22/2009] [Indexed: 11/27/2022]
Abstract
Charges are important for hyperthermophile protein structure and function. However, the number of charges and their predicted contributions to folded state stability are not correlated, implying that more charge does not imply greater stability. The charge properties that distinguish hyperthermophile proteins also differentiate psychrophile proteins from mesophile proteins, but in the opposite direction and to a smaller extent. We conclude that charge number relates to solubility, whereas protein stability is determined by charge location. Most other structural properties are poorly separated over the ambient temperature range, apart from the burial of certain amino acids. Of particular interest are large non-polar sidechains that tend to increased exposure in proteins evolved to function at higher temperatures. Looking at tryptophan in more detail, this increase is often located close to the termini of secondary structure elements, and is discussed in terms of a novel potential role in protein thermostabilisation.
Collapse
Affiliation(s)
- Richard B Greaves
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
27
|
A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 2008; 190:355-69. [PMID: 18483808 DOI: 10.1007/s00203-008-0377-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/11/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
In the genome of the hyperthermophilic archaeon Thermoproteus tenax a gene (treS/P) encoding a protein with similarity to annotated trehalose phosphorylase (TreP), trehalose synthase (TreS) and more recently characterized trehalose glycosyltransferring synthase (TreT) was identified. The treS/P gene as well as an upstream located ORF of unknown function (orfY) were cloned, heterologously expressed in E. coli and purified. The enzymatic characterization of the putative TreS/P revealed TreT activity. However, contrary to the previously characterized reversible TreT from Thermococcus litoralis and Pyrococcus horikoshii, the T. tenax enzyme is unidirectional and catalyzes only the formation of trehalose from UDP (ADP)-glucose and glucose. The T. tenax enzyme differs from the reversible TreT of T. litoralis by its preference for UDP-glucose as co-substrate. Phylogenetic and comparative gene context analyses reveal a conserved organization of the unidirectional TreT and OrfY gene cluster that is present in many Archaea and a few Bacteria. In contrast, the reversible TreT pathway seems to be restricted to only a few archaeal (e.g. Thermococcales) and bacterial (Thermotogales) members. Here we present a new pathway exclusively involved in trehalose synthesis--the unidirectional TreT pathway--and discuss its physiological role as well as its phylogenetic distribution.
Collapse
|
28
|
Gonçalves LG, Lamosa P, Huber R, Santos H. Di-myo-inositol phosphate and novel UDP-sugars accumulate in the extreme hyperthermophile Pyrolobus fumarii. Extremophiles 2008; 12:383-9. [PMID: 18286223 DOI: 10.1007/s00792-008-0143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 01/17/2008] [Indexed: 11/30/2022]
Abstract
The archaeon Pyrolobus fumarii, one of the most extreme members of hyperthermophiles known thus far, is able to grow at temperatures up to 113 degrees C. Over a decade after the description of this organism our knowledge about the structures and strategies underlying its remarkable thermal resistance remains incipient. The accumulation of a restricted number of charged organic solutes is a common response to heat stress in hyperthermophilic organisms and accordingly their role in thermoprotection has been often postulated. In this work, the organic solute pool of P. fumarii was characterized using 1H, 13C, and 31P NMR. Di-myo-inositol phosphate was the major solute (0.21 micromol/mg protein), reinforcing the correlation between the occurrence of this solute and hyperthermophily; in addition, UDP-sugars (total concentration 0.11 micromol/mg protein) were present. The structures of the two major UDP-sugars were identified as UDP-alpha-GlcNAc3NAc and UDP-alpha-GlcNAc3NAc-(4<--1)-beta-GlcpNAc3NAc. Interestingly, the latter compound appears to be derived from the first one by addition of a 2,3-N-acetylglucoronic acid unit, suggesting that these UDP-sugars are intermediates of an N-linked glycosylation pathway. To our knowledge the UDP-disaccharide has not been reported elsewhere. The physiological roles of these organic solutes are discussed.
Collapse
Affiliation(s)
- Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, Apartado 127, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
29
|
Rodrigues MV, Borges N, Henriques M, Lamosa P, Ventura R, Fernandes C, Empadinhas N, Maycock C, da Costa MS, Santos H. Bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, the key enzyme for di-myo-inositol-phosphate synthesis in several (hyper)thermophiles. J Bacteriol 2007; 189:5405-12. [PMID: 17526717 PMCID: PMC1951816 DOI: 10.1128/jb.00465-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathway for the synthesis of di-myo-inositol-phosphate (DIP) was recently elucidated on the basis of the detection of the relevant activities in cell extracts of Archaeoglobus fulgidus and structural characterization of products by nuclear magnetic resonance (NMR) (N. Borges, L. G. Gonçalves, M. V. Rodrigues, F. Siopa, R. Ventura, C. Maycock, P. Lamosa, and H. Santos, J. Bacteriol. 188:8128-8135, 2006). Here, a genomic approach was used to identify the genes involved in the synthesis of DIP. Cloning and expression in Escherichia coli of the putative genes for CTP:l-myo-inositol-1-phosphate cytidylyltransferase and DIPP (di-myo-inositol-1,3'-phosphate-1'-phosphate, a phosphorylated form of DIP) synthase from several (hyper)thermophiles (A. fulgidus, Pyrococcus furiosus, Thermococcus kodakaraensis, Aquifex aeolicus, and Rubrobacter xylanophilus) confirmed the presence of those activities in the gene products. The DIPP synthase activity was part of a bifunctional enzyme that catalyzed the condensation of CTP and l-myo-inositol-1-phosphate into CDP-l-myo-inositol, as well as the synthesis of DIPP from CDP-l-myo-inositol and l-myo-inositol-1-phosphate. The cytidylyltransferase was absolutely specific for CTP and l-myo-inositol-1-P; the DIPP synthase domain used only l-myo-inositol-1-phosphate as an alcohol acceptor, but CDP-glycerol, as well as CDP-l-myo-inositol and CDP-d-myo-inositol, were recognized as alcohol donors. Genome analysis showed homologous genes in all organisms known to accumulate DIP and for which genome sequences were available. In most cases, the two activities (l-myo-inositol-1-P cytidylyltransferase and DIPP synthase) were fused in a single gene product, but separate genes were predicted in Aeropyrum pernix, Thermotoga maritima, and Hyperthermus butylicus. Additionally, using l-myo-inositol-1-phosphate labeled on C-1 with carbon 13, the stereochemical configuration of all the metabolites involved in DIP synthesis was established by NMR analysis. The two inositol moieties in DIP had different stereochemical configurations, in contradiction of previous reports. The use of the designation di-myo-inositol-1,3'-phosphate is recommended to facilitate tracing individual carbon atoms through metabolic pathways.
Collapse
Affiliation(s)
- Marta V Rodrigues
- Biology Division, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, Apartado 127, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jorge CD, Lamosa P, Santos H. Alpha-D-mannopyranosyl-(1-->2)-alpha-D-glucopyranosyl-(1-->2)-glycerate in the thermophilic bacterium Petrotoga miotherma--structure, cellular content and function. FEBS J 2007; 274:3120-7. [PMID: 17521333 DOI: 10.1111/j.1742-4658.2007.05844.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intracellular accumulation of low molecular mass organic compounds in response to stressful conditions was investigated in the thermophilic bacterium Petrotoga miotherma, a member of the order Thermotogales. This led to the discovery of a new solute, whose structure was established as alpha-D-mannopyranosyl-(1-->2)-alpha-D-glucopyranosyl-(1-->2)-glycerate (MGG) by MMR spectroscopy and MS. Under optimum growth conditions (3% NaCl; 55 degrees C), MGG was the major solute [up to 0.6 micromol.(mg protein)(-1)]; alpha-glutamate and proline were also present but in minor amounts [below 0.08 micromol.(mg protein)(-1)]. The level of MGG increased notably with the salinity of the growth medium up to the optimum NaCl concentration. At higher NaCl concentrations, however, the level of MGG decreased, whereas the levels of proline and alpha-glutamate increased about five-fold and 10-fold, respectively. MGG plays a role during low-level osmotic adaptation of Petrotoga miotherma, whereas alpha-glutamate and, to a lesser extent, proline are used for osmoprotection under salt stress. MGG is not part of the cell strategy for coping with heat or oxidative stress. Nevertheless, MGG was an efficient protector of pig heart malate dehydrogenase against heat inactivation and freeze-drying, although mannosylglycerate was better. This is the first report on the occurrence of MGG in living systems.
Collapse
Affiliation(s)
- Carla D Jorge
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
31
|
Rodionov DA, Kurnasov OV, Stec B, Wang Y, Roberts MF, Osterman AL. Genomic identification and in vitro reconstitution of a complete biosynthetic pathway for the osmolyte di-myo-inositol-phosphate. Proc Natl Acad Sci U S A 2007; 104:4279-84. [PMID: 17360515 PMCID: PMC1838593 DOI: 10.1073/pnas.0609279104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Indexed: 11/18/2022] Open
Abstract
Di-myo-inositol 1,1'-phosphate (DIP) is a major osmoprotecting metabolite in a number of hyperthermophilic species of archaea and bacteria. Although the DIP biosynthesis pathway was previously proposed, genes encoding only two of the four required enzymes, inositol-1-phosphate synthase and inositol monophosphatase, were identified. In this study we used a comparative genomic analysis to predict two additional genes of this pathway (termed dipA and dipB) that remained missing. In Thermotoga maritima both candidate genes (in an originally misannotated locus TM1418) form an operon with the inositol-1-phosphate synthase encoding gene (TM1419). A predicted inositol-mono-phosphate cytidylyltransferase activity was directly confirmed for the purified product of T. maritima gene dipA cloned and expressed in Escherichia coli. The entire DIP pathway was reconstituted in E. coli by cloning of the TM1418-TM1419 operon in pBAD expression vector and confirmed to function in the crude lysate. (31)P NMR and MS analysis revealed that DIP synthesis proceeds via a phosphorylated DIP intermediate, P-DIP, which is generated by the dipB-encoded enzyme, now termed P-DIP synthase. This previously unknown intermediate is apparently converted to the final product, DIP, by an inositol monophosphatase-like phosphatase. These findings allowed us to revise the previously proposed DIP pathway. The genomic survey confirmed its presence in the species known to use DIP for osmoprotection. Among several newly identified species with a postulated DIP pathway, Aeropyrum pernix was directly proven to produce this osmolyte.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- *Burnham Institute for Medical Research, La Jolla, CA 92037
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia; and
| | | | - Boguslaw Stec
- *Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Yan Wang
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467; and
| | - Mary F. Roberts
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467; and
| | - Andrei L. Osterman
- *Burnham Institute for Medical Research, La Jolla, CA 92037
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527
| |
Collapse
|
32
|
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
33
|
Costa J, Empadinhas N, da Costa MS. Glucosylglycerate biosynthesis in the deepest lineage of the Bacteria: characterization of the thermophilic proteins GpgS and GpgP from Persephonella marina. J Bacteriol 2006; 189:1648-54. [PMID: 17189358 PMCID: PMC1855766 DOI: 10.1128/jb.00841-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathway for the synthesis of glucosylglycerate (GG) in the thermophilic bacterium Persephonella marina is proposed based on the activities of recombinant glucosyl-3-phosphoglycerate (GPG) synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP). The sequences of gpgS and gpgP from the cold-adapted bacterium Methanococcoides burtonii were used to identify the homologues in the genome of P. marina, which were separately cloned and overexpressed as His-tagged proteins in Escherichia coli. The recombinant GpgS protein of P. marina, unlike the homologue from M. burtonii, which was specific for GDP-glucose, catalyzed the synthesis of GPG from UDP-glucose, GDP-glucose, ADP-glucose, and TDP-glucose (in order of decreasing efficiency) and from d-3-phosphoglycerate, with maximal activity at 90 degrees C. The recombinant GpgP protein, like the M. burtonii homologue, dephosphorylated GPG and mannosyl-3-phosphoglycerate (MPG) to GG and mannosylglycerate, respectively, yet at high temperatures the hydrolysis of GPG was more efficient than that of MPG. Gel filtration indicates that GpgS is a dimeric protein, while GpgP is monomeric. This is the first characterization of genes and enzymes for the synthesis of GG in a thermophile.
Collapse
Affiliation(s)
- Joana Costa
- Departamento de Bioquímica, Universidade de Coimbra, 3001-401 Coimbra, Portugal
| | | | | |
Collapse
|
34
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
35
|
Lamosa P, Gonçalves LG, Rodrigues MV, Martins LO, Raven NDH, Santos H. Occurrence of 1-glyceryl-1-myo-inosityl phosphate in hyperthermophiles. Appl Environ Microbiol 2006; 72:6169-73. [PMID: 16957243 PMCID: PMC1563613 DOI: 10.1128/aem.00852-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accumulation of compatible solutes was studied in the hyperthermophilic bacterium Aquifex pyrophilus as a function of the temperature and the NaCl concentration of the growth medium. Nuclear magnetic resonance analysis of cell extracts revealed the presence of alpha- and beta-glutamate, di-mannosyl-di-myo-inositol phosphate, di-myo-inositol phosphate, and an additional compound here identified as 1-glyceryl-1-myo-inosityl phosphate. All solutes accumulated by A. pyrophilus are negatively charged at physiological pH. The intracellular levels of di-myo-inositol phosphate increased in response to supraoptimal growth temperature, while alpha- and beta-glutamate accumulated in response to osmotic stress, especially at growth temperatures below the optimum. The newly discovered compound, 1-glyceryl-1-myo-inosityl phosphate, appears to play a double role in osmo- and thermoprotection, since its intracellular pool increased primarily in response to a combination of osmotic and heat stresses. This work also uncovered the nature of the unknown compound, previously detected in Archaeoglobus fulgidus (L. O. Martins et al., Appl. Environ. Microbiol. 63:896-902, 1997). The curious structural relationship between diglycerol phosphate (found only in Archaeoglobus species), di-myo-inositol phosphate (a canonical solute of hyperthermophiles), and the newly identified solute is highlighted. This is the first report on the occurrence of 1-glyceryl-1-myo-inosityl phosphate in living systems.
Collapse
Affiliation(s)
- Pedro Lamosa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2780-156 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
36
|
Lentzen G, Schwarz T. Extremolytes: Natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 2006; 72:623-34. [PMID: 16957893 DOI: 10.1007/s00253-006-0553-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 11/24/2022]
Abstract
Extremophilic microorganisms have adopted a variety of ingenious strategies for survival under high or low temperature, extreme pressure, and drastic salt concentrations. A novel application area for extremophiles is the use of "extremolytes," organic osmolytes from extremophilic microorganisms, to protect biological macromolecules and cells from damage by external stresses. In extremophiles, these low molecular weight compounds are accumulated in response to increased extracellular salt concentrations, but also as a response to other environmental changes, e.g., increased temperature. Extremolytes minimize the denaturation of biopolymers that usually occurs under conditions of water stress and are compatible with the intracellular machinery at high (>1 M) concentrations. The ectoines, as the first extremolytes that are produced in a large scale, have already found application as cell protectants in skin care and as protein-free stabilizers of proteins and cells in life sciences. In addition to ectoines, a range of extremolytes with heterogenous chemical structures like the polyol phosphates di-myoinositol-1,1'-phosphate, cyclic 2,3-diphosphoglycerate, and alpha-diglycerol phosphate and the mannose derivatives mannosylglycerate (firoin) and mannosylglyceramide (firoin-A) were characterized and were shown to have protective properties toward proteins and cells. A range of new applications, all based on the adaptation to stress conditions conferred by extremolytes, is in development.
Collapse
Affiliation(s)
- Georg Lentzen
- bitop AG, Stockumer Strasse 28, 58453 Witten, Germany.
| | | |
Collapse
|
37
|
Yang YL, Yang FL, Jao SC, Chen MY, Tsay SS, Zou W, Wu SH. Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J Lipid Res 2006; 47:1823-32. [PMID: 16675854 DOI: 10.1194/jlr.m600034-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structures of two major phosphoglycolipids from the thermophilic bacteria Thermus oshimai NTU-063, Thermus thermophilus NTU-077, Meiothermus ruber NTU-124, and Meiothermus taiwanensis NTU-220 were determined using spectroscopic and chemical analyses to be 2'-O-(1,2-diacyl-sn-glycero-3-phospho) -3'-O-(alpha-N-acetyl-glucosaminyl)-N-glyceroyl alkylamine [PGL1 (1)] and the novel structure 2'-O-(2-acylalkyldio-1-O-phospho)-3'-O-(alpha-N-acetylglucosaminyl)-N-glyceroyl alkylamine [PGL2 (2)]. PGL2 (2) is the first phosphoglycolipid identified with a 2-acylalkyldio-1-O-phosphate moiety. The fatty acids of the phosphoglycolipids are mainly iso-C(15:0), -C(16:0), and -C(17:0) and anteiso-C(15:0) and -C(17:0). The ratios of PGL2 (2) to PGL1 (1) are significantly altered when grown at different temperatures for three strains, T. thermophilus NTU-077, M. ruber NTU-124, and M. taiwanensis NTU-220, but not for T. oshimai NTU-063. Accordingly, the ratios of iso- to anteiso-branched fatty acids increase when grown at the higher temperature.
Collapse
Affiliation(s)
- Yu-Liang Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Nanavati DM, Thirangoon K, Noll KM. Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 2006; 72:1336-45. [PMID: 16461685 PMCID: PMC1392961 DOI: 10.1128/aem.72.2.1336-1345.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic bacterium Thermotoga maritima has shared many genes with archaea through horizontal gene transfer. Several of these encode putative oligopeptide ATP binding cassette (ABC) transporters. We sought to test the hypothesis that these transporters actually transport sugars by measuring the substrate affinities of their encoded substrate-binding proteins (SBPs). This information will increase our understanding of the selective pressures that allowed this organism to retain these archaeal homologs. By measuring changes in intrinsic fluorescence of these SBPs in response to exposure to various sugars, we found that five of the eight proteins examined bind to sugars. We could not identify the ligands of the SBPs TM0460, TM1150, and TM1199. The ligands for the archaeal SBPs are TM0031 (BglE), the beta-glucosides cellobiose and laminaribiose; TM0071 (XloE), xylobiose and xylotriose; TM0300 (GloE), large glucose oligosaccharides represented by xyloglucans; TM1223 (ManE), beta-1,4-mannobiose; and TM1226 (ManD), beta-1,4-mannobiose, beta-1,4-mannotriose, beta-1,4-mannotetraose, beta-1,4-galactosyl mannobiose, and cellobiose. For comparison, seven bacterial putative sugar-binding proteins were examined and ligands for three (TM0595, TM0810, and TM1855) were not identified. The ligands for these bacterial SBPs are TM0114 (XylE), xylose; TM0418 (InoE), myo-inositol; TM0432 (AguE), alpha-1,4-digalactouronic acid; and TM0958 (RbsB), ribose. We found that T. maritima does not grow on several complex polypeptide mixtures as sole sources of carbon and nitrogen, so it is unlikely that these archaeal ABC transporters are used primarily for oligopeptide transport. Since these SBPs bind oligosaccharides with micromolar to nanomolar affinities, we propose that they are used primarily for oligosaccharide transport.
Collapse
Affiliation(s)
- Dhaval M Nanavati
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
39
|
Neves C, da Costa MS, Santos H. Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order thermococcales. Appl Environ Microbiol 2006; 71:8091-8. [PMID: 16332790 PMCID: PMC1317470 DOI: 10.1128/aem.71.12.8091-8098.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of salinity and growth temperature on the accumulation of intracellular organic solutes was examined in the hyperthermophilic archaeon Palaeococcus ferrophilus. The genus Palaeococcus represents a deep-branching lineage of the order Thermococcales, which diverged before Thermococcus and Pyrococcus. Palaeococcus ferrophilus accumulated mannosylglycerate, glutamate, and aspartate as major compatible solutes. Unlike members of the genera Pyrococcus and Thermococcus, Palaeococcus ferrophilus did not accumulate di-myo-inositol phosphate, a canonical solute of hyperthermophiles. The level of mannosylglycerate increased in response to both heat and salt stress; glutamate increased at supraoptimal growth temperatures, whereas aspartate increased at supraoptimal salt concentration. Proline, alanine, and trehalose were also found in lesser amounts, but their levels did not respond significantly to any of the stresses imposed. Additionally, the genes involved in the synthesis of mannosylglycerate in Palaeococcus ferrophilus and Thermococcus litoralis were identified. In both organisms the synthesis proceeds via the two-step pathway comprising mannosyl-3-phosphoglycerate synthase (MPGS) (EC 2.4.1.217) and mannosyl-3-phosphoglycerate phosphatase (MPGP) (EC 3.1.3.70). The mpgS and mpgP genes of Palaeococcus ferrophilus were expressed in Escherichia coli and the proteins were characterized. MPGS had maximal activity at 90 degrees C and pH near 7.0, and was strictly dependent on Mg2+. MPGP had optimal activity at 90 degrees C and pH 6.0 and was barely dependent on Mg2+. The half-life values for inactivation of MPGS and MPGP at 83 degrees C were 18 and 25 min, respectively. A comparative discussion of the osmo- and thermoadaptation strategies in these three genera of the Thermococcales is presented.
Collapse
Affiliation(s)
- Clélia Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, Apartado 127, 2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
40
|
Santos H, Lamosa P, Borges N. 8 Characterization and Quantification of Compatible Solutes in (Hyper)thermophilic Microorganisms. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70011-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. SALINE SYSTEMS 2005; 1:5. [PMID: 16176595 PMCID: PMC1224877 DOI: 10.1186/1746-1448-1-5] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Microorganisms that adapt to moderate and high salt environments use a variety of solutes, organic and inorganic, to counter external osmotic pressure. The organic solutes can be zwitterionic, noncharged, or anionic (along with an inorganic cation such as K(+)). The range of solutes, their diverse biosynthetic pathways, and physical properties of the solutes that effect molecular stability are reviewed.
Collapse
Affiliation(s)
- Mary F Roberts
- Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02465, USA.
| |
Collapse
|
42
|
Khachane AN, Timmis KN, dos Santos VAPM. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 2005; 33:4016-22. [PMID: 16030352 PMCID: PMC1179731 DOI: 10.1093/nar/gki714] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report here the finding of a highly significant inverse correlation of the uracil content of 16S rRNA and the optimum growth temperature (Topt) of cultured thermophilic and psychrophilic prokaryotes. This correlation was significantly different from the weaker correlations between the contents of other nucleotides and Topt. Analysis of the 16S rRNA secondary structure regions revealed a fall in the A:U base-pair content in step with the increase in Topt that was much steeper than that of mismatched base-pairs, which are thermodynamically less stable. These findings indicate that the 16S rRNA sequences of thermophiles and psychrophiles are under a strong thermo-adaptive pressure, and that structure–function constraints play a crucial role in determining their 16S rRNA nucleotide composition. The derived relationship between uracil content and Topt was used to develop an algorithm to predict the Topt values of uncultured prokaryotes lacking cultured close relatives and belonging to the phyla predominantly containing thermophiles. This algorithm may be useful in guiding the design of cultivation conditions for hitherto uncultured microbes.
Collapse
Affiliation(s)
| | | | - Vítor A. P. Martins dos Santos
- To whom correspondence should be addressed at Division of Microbiology, GBF—German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany. Tel: +49(0) 531 6181 422; Fax: +49(0) 531 6181 411;
| |
Collapse
|
43
|
Sato T, Imanaka H, Rashid N, Fukui T, Atomi H, Imanaka T. Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J Bacteriol 2004; 186:5799-807. [PMID: 15317785 PMCID: PMC516828 DOI: 10.1128/jb.186.17.5799-5807.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) is one of the key enzymes in gluconeogenesis. Although FBPase activity has been detected in several hyperthermophiles, no orthologs corresponding to the classical FBPases from bacteria and eukaryotes have been identified in their genomes. An inositol monophosphatase (IMPase) from Methanococcus jannaschii which displayed both FBPase and IMPase activities and a structurally novel FBPase (FbpTk) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 have been proposed as the "missing" FBPase. For this study, using T. kodakaraensis, we took a genetic approach to elucidate which candidate is the major gluconeogenic enzyme in vivo. The IMPase/FBPase ortholog in T. kodakaraensis, ImpTk, was confirmed to possess high FBPase activity along with IMPase activity, as in the case of other orthologs. We therefore constructed Deltafbp and Deltaimp strains by applying a gene disruption system recently developed for T. kodakaraensis and investigated their phenotypes. The Deltafbp strain could not grow under gluconeogenic conditions while glycolytic growth was unimpaired, and the disruption resulted in the complete abolishment of intracellular FBPase activity. Evidently, fbpTk is an indispensable gene for gluconeogenesis and is responsible for almost all intracellular FBPase activity. In contrast, the endogenous impTk gene could not complement the defect of the fbp deletion, and its disruption did not lead to any detectable phenotypic changes under the conditions examined. These facts indicated that impTk is irrelevant to gluconeogenesis, despite the high FBPase activity of its protein product, probably due to insufficient transcription. Our results provide strong evidence that the true FBPase for gluconeogenesis in T. kodakaraensis is the FbpTk ortholog, not the IMPase/FBPase ortholog.
Collapse
Affiliation(s)
- Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Bae E, Phillips GN. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 2004; 279:28202-8. [PMID: 15100224 DOI: 10.1074/jbc.m401865200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of adenylate kinases from the psychrophile Bacillus globisporus and the mesophile Bacillus subtilis have been solved and compared with that from the thermophile Bacillus stearothermophilus. This is the first example we know of where a trio of protein structures has been solved that have the same number of amino acids and a high level of identity (66-74%) and yet come from organisms with different operating temperatures. The enzymes were characterized for their own thermal denaturation and inactivation, and they exhibited the same temperature preferences as their source organisms. The structures of the three highly homologous, dynamic proteins with different temperature-activity profiles provide an opportunity to explore a molecular mechanism of cold and heat adaptation. Their analysis suggests that the maintenance of the balance between stability and flexibility is crucial for proteins to function at their environmental temperatures, and it is achieved by the modification of intramolecular interactions in the process of temperature adaptation.
Collapse
Affiliation(s)
- Euiyoung Bae
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
45
|
Bertini I, Cowan JA, Del Bianco C, Luchinat C, Mansy SS. Thermotoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone. J Mol Biol 2003; 331:907-24. [PMID: 12909018 DOI: 10.1016/s0022-2836(03)00768-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Members of the IscU family of proteins are among the most conserved of all protein groups, extending across all three kingdoms of life. IscU serves as a scaffold for the assembly of intermediate iron-sulfur cluster centers and further mediates delivery to apo protein targets. Several proteins that mediate delivery of single metal ions to apo targets (termed metallochaperones) have recently been characterized structurally. Each displays a ferredoxin-like betaalphabetabetaalphabeta motif as a structural core. Assembly and delivery of a polynuclear iron-sulfur cluster is, however, a more complex pathway and presumably would demand a distinctive protein mediator. Here, we demonstrate Thermotoga maritima IscU (Tm IscU) to display unique structural and motional characteristics that distinguish it from other members of this class of proteins. In particular, IscU adopts a mobile, physiologically relevant, molten globule-like state that is vastly different from the previously identified ferredoxin-like fold that has thus far been characterized for other metallochaperones. The secondary structural content of Tm IscU is consistent with previous circular dichroism measurements on apo and holo protein, consisting of six alpha-helices and three beta-strands, the latter forming an anti-parallel beta-sheet. Extensive dynamics studies are consistent with a protein that has reasonably well defined secondary structural elements, but with a tertiary structure that is fluxional among widely different conformational arrangements. Analogous conformational flexibility does not exist in other structurally characterized metallochaperones; however, such a dynamic molecule may account for the lack of long-range NOEs, and allow both for the flexibility that is necessary for the multiple roles of Fe-S cluster assembly, and recognition and delivery of that cluster to a target protein. Additionally, the fluxionality of IscU is unique in that the protein appears to be more compact (based on 1H/2H exchange, R1, R2, and NOE data) but yet more fluid (lack of long-range NOEs) than typical molten globule proteins.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi, 6-50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
46
|
Empadinhas N, Albuquerque L, Henne A, Santos H, da Costa MS. The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate. Appl Environ Microbiol 2003; 69:3272-9. [PMID: 12788726 PMCID: PMC161470 DOI: 10.1128/aem.69.6.3272-3279.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthetic pathway for the synthesis of the compatible solute alpha-mannosylglycerate (MG) in the thermophilic bacterium Thermus thermophilus HB27 was identified based on the activities of recombinant mannosyl-3-phosphoglycerate synthase (MPGS) (EC 2.4.1.217) and mannosyl-3-phosphoglycerate phosphatase (MPGP) (EC 3.1.3.70). The sequences of homologous genes from the archaeon Pyrococcus horikoshii were used to identify MPGS and MPGP genes in T. thermophilus HB27 genome. Both genes were separately cloned and overexpressed in Escherichia coli, yielding 3 to 4 mg of pure recombinant protein per liter of culture. The molecular masses were 43.6 and 28.1 kDa for MPGS and MPGP, respectively. The recombinant MPGS catalyzed the synthesis of alpha-mannosyl-3-phosphoglycerate (MPG) from GDP-mannose and D-3-phosphoglycerate, while the recombinant MPGP catalyzed the dephosphorylation of MPG to MG. The recombinant MPGS had optimal activity at 80 to 90 degrees C and a pH optimum near 7.0; MPGP had maximal activity between 90 and 95 degrees C and at pH 6.0. The activities of both enzymes were strictly dependent on divalent cations; Mn(2+) was most effective for MPGS, while Mn(2+), Co(2+), Mg(2+), and to a lesser extent Ni(2+) activated MPGP. The organization of MG biosynthetic genes in T. thermophilus HB27 is different from the P. horikoshii operon-like structure, since the genes involved in the conversion of fructose-6-phosphate to GDP-mannose are not found immediately downstream of the contiguous MPGS and MPGP genes. The biosynthesis of MG in the thermophilic bacterium T. thermophilus HB27, proceeding through a phosphorylated intermediate, is similar to the system found in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Nuno Empadinhas
- Departamento de Bioquímica, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
47
|
Gonçalves LG, Huber R, da Costa MS, Santos H. A variant of the hyperthermophile Archaeoglobus fulgidus adapted to grow at high salinity. FEMS Microbiol Lett 2003; 218:239-44. [PMID: 12586398 DOI: 10.1111/j.1574-6968.2003.tb11523.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A variant of Archaeoglobus fulgidus VC-16 was isolated from cultures obtained after a stepwise transfer from media containing 1.8-6.3% NaCl by a plating-independent, selected-cell cultivation technique, using a laser microscope. This variant, A. fulgidus VC-16S, had a higher growth rate throughout the salt range of the parental strain, but was also able to grow in media containing NaCl up to 6.3%, whereas the parental strain could not grow above 4.5% NaCl. Diglycerol phosphate (DGP), only encountered in the Archaeoglobales, was the major solute accumulated under supra-optimal salinities, whereas at supra-optimal growth temperatures di-myo-inositol phosphate was the predominant solute. The accumulation of compatible solutes during growth of variant VC-16S was lower than in the parental strain within 1.8-4.5% NaCl, but the levels of compatible solutes, including DGP, increased sharply in the variant at higher salinities (5.5 and 6.0%). This variant represents, at this time, one of the most halophilic hyperthermophiles known, and its ability to grow at high salinity appears to be due to the massive accumulation of DGP.
Collapse
Affiliation(s)
- Luís G Gonçalves
- Instituto de Tecnologia Qui;mica e Biológica, Universidade Nova de Lisboa, Apartado 127, 2780-156, Oeiras, Portugal
| | | | | | | |
Collapse
|
48
|
Abstract
The accumulation of organic solutes is a prerequisite for osmotic adjustment of all microorganisms. Thermophilic and hyperthermophilic organisms generally accumulate very unusual compatible solutes namely, di-myo-inositol-phosphate, di-mannosyl-di-myo-inositol-phosphate, di-glycerol-phosphate, mannosylglycerate and mannosylglyceramide, which have not been identified in bacteria or archaea that grow at low and moderate temperatures. There is also a growing awareness that some of these compatible solutes may have a role in the protection of cell components against thermal denaturation. Mannosylglycerate and di-glycerol-phosphate have been shown to protect enzymes and proteins from thermal denaturation in vitro as well, or better, than compatible solutes from mesophiles. The pathways leading to the synthesis of some of these compatible solutes from thermophiles and hyperthermophiles have been elucidated. However, large numbers of questions remain unanswered. Fundamental and applied interest in compatible -solutes and osmotic adjustment in these organisms, drives research that, will, in the near future, allow us to understand the role of compatible solutes in osmotic protection and thermoprotection of some of the most fascinating organisms known on Earth.
Collapse
Affiliation(s)
- Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
49
|
Abstract
Thermophilic microbial inhabitants of active seafloor and continental hot springs populate the deepest branches of the universal phylogenetic tree, making hydrothermal ecosystems the most ancient continuously inhabited ecosystems on Earth. Geochemical consequences of hot water-rock interactions render these environments habitable and supply a diverse array of energy sources. Clues to the strategies for how life thrives in these dynamic ecosystems are beginning to be elucidated through a confluence of biogeochemistry, microbiology, ecology, molecular biology, and genomics. These efforts have the potential to reveal how ecosystems originate, the extent of the subsurface biosphere, and the driving forces of evolution.
Collapse
|
50
|
Abstract
The availability of water is the most important prerequisite for life of any living cell, and exposure of cells to hypersaline conditions always threatens the cells with a drastic loss of water. To re-establish the essential turgor pressure, cells increase the water activity of their cytoplasm by accumulation of compatible solutes, either by synthesis or by uptake. The ability to respond to increasing osmolality is well conserved in all three lines of descent and, here, we compare the osmoadaptive strategies of Bacteria and Archaea. The temporal sequence of events after an osmotic upshock will be discussed, with a focus on the most rapid response, notably the mechanisms of transport activation at the protein level, and different signals for osmolality will be compared. The spectrum of compatible solutes used by different organisms is rather diverse and a comparison of 'bacterial' and 'archaeal' compatible solutes will be given.
Collapse
Affiliation(s)
- M Roesser
- Lehrstuhl für Mikrobiologie der LMU München, 80638 München, Germany
| | | |
Collapse
|