1
|
Chan V, Holcomb T, Kaspar JR, Shields RC. Characterization of MreCD in Streptococcus mutans. J Oral Microbiol 2025; 17:2487643. [PMID: 40206099 PMCID: PMC11980242 DOI: 10.1080/20002297.2025.2487643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Background Activities that control cell shape and division are critical for the survival of bacteria. However, little is known about the circuitry controlling these processes in the dental caries pathogen Streptococcus mutans. Methodology We designed experiments to characterize two genes, mreC and mreD, in S. mutans. Assays included cell morphology imaging, protein interaction analysis, transcriptomics, proteomics, and biofilm studies to generate a comprehensive understanding of the role of MreCD in S. mutans. Results Consistent with mreCD participating in cell elongation, cells lacking these genes were found to be rounder than wild-type cells. Using bacterial two-hybrid assays, interactions between MreCD and several other proteins implicated in cell elongation were observed. Further characterization, using proteomics, revealed that the surface-associated proteome is different in mutants lacking mreCD. Consistent with these changes we observed altered sucrose-mediated biofilm architecture. Loss of mreCD also had a noticeable impact on bacteriocin gene expression, which could account in part for the observation that mreCD mutants had a diminished capacity to compete with commensal streptococci. Conclusion Our results provide evidence that cell elongation proteins are required for normal S. mutans physiology and establish a foundation for additional examination of these and related proteins in this organism.
Collapse
Affiliation(s)
- Victor Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Tessa Holcomb
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Justin R. Kaspar
- Division of Biosciences, Ohio State University, Columbus, OH, USA
| | - Robert C. Shields
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
2
|
Huang QQ, Liu SL, Huang JH, Wang F, Zhao ZC, Deng HW, Lin C, Guo WL, Zhong ZH, Li JL, Zhang DD, Wang SF, Zhou YC. Transcriptome analysis of tilapia streptococcus agalactiae in response to baicalin. Genes Genomics 2025; 47:37-46. [PMID: 39436527 DOI: 10.1007/s13258-024-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/19/2024] [Indexed: 10/23/2024]
Abstract
Streptococcus agalactiae (S. agalactiae) is a highly pathogenic bacterial pathogen in aquatic animals. Our previous study has demonstrated the significant inhibitory effect of baicalin on β-hemolytic/cytolytic activity, which is a key virulence factor of S. agalactiae. In this study, we aimed to elucidate the mechanism underlying baicalin's inhibition of S. agalactiae β-hemolytic/cytolytic activity by transcriptomic analysis. Bacteria were exposed to 39.06 µg/mL baicalin for 6 h, and their β-hemolytic/cytolytic activities were assessed using blood plates. Then, the differentially expressed genes (DEGs) were identified and characterized by RNA sequencing (RNA-Seq), and further confirmed using the qRT-PCR. A total of 10 DEGs with 7 significantly up-regulated and 3 significantly down-regulated, were found to be affected significantly under baicalin treatment. These DEGs were associated with 5 biological processes, 5 cellular components, and 3 molecular functions. They were primarily enriched in 3 pathways: lacD and lacC in galactose metabolism, lrgA and lrgB in the two-component system, and ribH/rib4 in riboflavin metabolism. These suggested that baicalin might inhibit the conversion of pyruvate to acetyl-CoA and malonyl-CoA, which are crucial precursors for β-hemolysin/cytolysin synthesis, and result in the accumulation of pyruvate, suppress the expressions of pyruvate cell membrane channel protein genes lrgA and lrgB. Baicalin could compensatory up-regulate the expressions of tryptophan/tyrosine ABC transporter family genes, ABC.X4.A, ABC.X4.P, and ABC.X4.S by inhibiting the expression of cyl A/B in cyl operons. Moreover, it hinders the conversion of D-glucose 1-phosphate to the dTDP-L-rhamnose pathway and leads to a deficiency of L-rhamnose, an important precursor for β-hemolysin/cytolysin synthesis.
Collapse
Affiliation(s)
- Qing-Qin Huang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Shao-Long Liu
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Ji-Hui Huang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
- Technology Center of Haikou Customs District, Haikou, 570105, P.R. China
| | - Fei Wang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Zi-Chen Zhao
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, P.R. China
| | - Heng-Wei Deng
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Chuan Lin
- Aquaculture Department, Hainan Agriculture School, Haikou, 571101, P.R. China
| | - Wei-Liang Guo
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China.
| | - Zhi-Hong Zhong
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Jian-Long Li
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Dong-Dong Zhang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Shi-Feng Wang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China
| | - Yong-Can Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, P.R. China.
| |
Collapse
|
3
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
5
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
6
|
Zank A, Schulte L, Brandon X, Carstensen L, Wescott A, Schwan WR. Mutations of the brpR and brpS genes affect biofilm formation in Staphylococcus aureus. World J Clin Infect Dis 2022; 12:20-32. [DOI: 10.5495/wjcid.v12.i1.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the United States, Staphylococcus aureus (S. aureus) kills tens of thousands of individuals each year and the formation of a biofilm contributes to lethality. Biofilm-associated infections are hard to treat once the biofilm has formed. A new stilbene drug, labeled SK-03-92, was shown to kill S. aureus and affected transcription of two genes tied to a putative two-component system (TCS) we have named brpR (biofilm regulating protein regulator) and brpS (biofilm regulating protein sensor).
AIM To determine if BrpR and BrpS regulate biofilm formation, brpR and brpS mutants were assessed using biofilm assays compared to wild-type S. aureus.
METHODS A combination of biofilm and quantitative real-time-polymerase chain reaction assays were used. In addition, bioinformatic software tools were also utilized.
RESULTS Significantly more biofilm was created in the brpR and brpS mutants vs wild-type cells. Quantitative real-time polymerase chain reactions showed the brpS mutant had differences in transcription of biofilm associated genes that were eight-fold higher for srtA, two-fold lower for lrgA, and 1.6-fold higher for cidA compared to wild-type. Bioinformatic analysis demonstrated that the S. aureus brpR/brpS TCS had homology to streptococcal late-stage competence proteins involved in cell-death, increased biofilm production, and the development of persister cells.
CONCLUSION Our study suggests that brpR/brpS is a TCS that may repress S. aureus biofilm production and be linked to late-stage competence in S. aureus.
Collapse
Affiliation(s)
- Allison Zank
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Lillian Schulte
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Xavier Brandon
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Lauren Carstensen
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Amy Wescott
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| |
Collapse
|
7
|
New Mechanistic Insights into Purine Biosynthesis with Second Messenger c-di-AMP in Relation to Biofilm-Related Persistent Methicillin-Resistant Staphylococcus aureus Infections. mBio 2021; 12:e0208121. [PMID: 34724823 PMCID: PMC8561390 DOI: 10.1128/mbio.02081-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinically challenging subset of invasive, life-threatening S. aureus infections. We have recently demonstrated that purine biosynthesis plays an important role in such persistent infections. Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger that regulates many cellular pathways in bacteria. However, whether there is a regulatory connection between the purine biosynthesis pathway and c-di-AMP impacting persistent outcomes was not known. Here, we demonstrated that the purine biosynthesis mutant MRSA strain, the ΔpurF strain (compared to its isogenic parental strain), exhibited the following significant differences in vitro: (i) lower ADP, ATP, and c-di-AMP levels; (ii) less biofilm formation with decreased extracellular DNA (eDNA) levels and Triton X-100-induced autolysis paralleling enhanced expressions of the biofilm formation-related two-component regulatory system lytSR and its downstream gene lrgB; (iii) increased vancomycin (VAN)-binding and VAN-induced lysis; and (iv) decreased wall teichoic acid (WTA) levels and expression of the WTA biosynthesis-related gene, tarH. Substantiating these data, the dacA (encoding diadenylate cyclase enzyme required for c-di-AMP synthesis) mutant strain (dacAG206S strain versus its isogenic wild-type MRSA and dacA-complemented strains) showed significantly decreased c-di-AMP levels, similar in vitro effects as seen above for the purF mutant and hypersusceptible to VAN treatment in an experimental biofilm-related MRSA endovascular infection model. These results reveal an important intersection between purine biosynthesis and c-di-AMP that contributes to biofilm-associated persistence in MRSA endovascular infections. This signaling pathway represents a logical therapeutic target against persistent MRSA infections.
Collapse
|
8
|
Ftsh Sensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics by Degrading YpfP, a Lipoteichoic Acid Synthesis Enzyme. Antibiotics (Basel) 2021; 10:antibiotics10101198. [PMID: 34680778 PMCID: PMC8532640 DOI: 10.3390/antibiotics10101198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, FtsH, a membrane-bound metalloprotease, plays a critical role in bacterial virulence and stress resistance. This protease is also known to sensitize methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics; however, the molecular mechanism is not known. Here, by the analysis of FtsH substrate mutants, we found that FtsH sensitizes MRSA specifically to β-lactams by degrading YpfP, the enzyme synthesizing the anchor molecule for lipoteichoic acid (LTA). Both the overexpression of FtsH and the disruption of ypfP-sensitized MRSA to β-lactams were observed. The knockout mutation in ftsH and ypfP increased the thickness of the cell wall. The β-lactam sensitization coincided with the production of aberrantly large LTA molecules. The combination of three mutations in the rpoC, vraB, and SAUSA300_2133 genes blocked the β-lactam-sensitizing effect of FtsH. Murine infection with the ypfP mutant could be treated by oxacillin, a β-lactam antibiotic ineffective against MRSA; however, the effective concentration of oxacillin differed depending on the S. aureus strain. Our study demonstrated that the β-lactam sensitizing effect of FtsH is due to its digestion of YpfP. It also suggests that the larger LTA molecules are responsible for the β-lactam sensitization phenotype, and YpfP is a viable target for developing novel anti-MRSA drugs.
Collapse
|
9
|
Lade H, Kim JS. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:398. [PMID: 33917043 PMCID: PMC8067735 DOI: 10.3390/antibiotics10040398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens and continues to be a leading cause of morbidity and mortality worldwide. MRSA is a commensal bacterium in humans and is transmitted in both community and healthcare settings. Successful treatment remains a challenge, and a search for new targets of antibiotics is required to ensure that MRSA infections can be effectively treated in the future. Most antibiotics in clinical use selectively target one or more biochemical processes essential for S. aureus viability, e.g., cell wall synthesis, protein synthesis (translation), DNA replication, RNA synthesis (transcription), or metabolic processes, such as folic acid synthesis. In this review, we briefly describe the mechanism of action of antibiotics from different classes and discuss insights into the well-established primary targets in S. aureus. Further, several components of bacterial cellular processes, such as teichoic acid, aminoacyl-tRNA synthetases, the lipid II cycle, auxiliary factors of β-lactam resistance, two-component systems, and the accessory gene regulator quorum sensing system, are discussed as promising targets for novel antibiotics. A greater molecular understanding of the bacterial targets of antibiotics has the potential to reveal novel therapeutic strategies or identify agents against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| |
Collapse
|
10
|
Cui L, Zhang C, Li Z, Xian T, Wang L, Zhang Z, Zhu G, Peng X. Two plastidic glycolate/glycerate translocator 1 isoforms function together to transport photorespiratory glycolate and glycerate in rice chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2584-2599. [PMID: 33483723 DOI: 10.1093/jxb/erab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter. Two homologous genes, OsPLGG1a and OsPLGG1b, have been identified in the rice genome, although their distinct functions and relationships remain unknown. Herein, our analysis of exogenous expression in oocytes and yeast shows that both OsPLGG1a and OsPLGG1b have the ability to transport glycolate and glycerate. Furthermore, we demonstrate in planta that the perturbation of OsPLGG1a or OsPLGG1b expression leads to extensive accumulation of photorespiratory metabolites, especially glycolate and glycerate. Under ambient CO2 conditions, loss-of-function osplgg1a or osplgg1b mutant plants exhibited significant decreases in photosynthesis efficiency, starch accumulation, plant height, and crop productivity. These morphological defects were almost entirely recovered when the mutant plants were grown under elevated CO2 conditions. In contrast to osplgg1a, osplgg1b mutant alleles produced a mild photorespiratory phenotype and had reduced accumulation of photorespiratory metabolites. Subcellular localization analysis showed that OsPLGG1a and OsPLGG1b are located in the inner and outer membranes of the chloroplast envelope, respectively. In vitro and in vivo experiments revealed that OsPLGG1a and OsPLGG1b have a direct interaction. Our results indicate that both OsPLGG1a and OsPLGG1b are chloroplastic glycolate/glycerate transporters required for photorespiratory metabolism and plant growth, and that they may function as a singular complex.
Collapse
Affiliation(s)
- Lili Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Chuanling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhichao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tuxiu Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Limin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
The Staphylococcus aureus CidA and LrgA Proteins Are Functional Holins Involved in the Transport of By-Products of Carbohydrate Metabolism. mBio 2021; 13:e0282721. [PMID: 35100878 PMCID: PMC8805020 DOI: 10.1128/mbio.02827-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Staphylococcus aureus cidABC and lrgAB operons encode members of a well-conserved family of proteins thought to be involved in programmed cell death (PCD). Based on the structural similarities that CidA and LrgA share with bacteriophage holins, we have hypothesized that these proteins function by forming pores within the cytoplasmic membrane. To test this, we utilized a "lysis cassette" system that demonstrated the abilities of the cidA and lrgA genes to support bacteriophage endolysin-induced cell lysis. Typical of holins, CidA- and LrgA-induced lysis was dependent on the coexpression of endolysin, consistent with the proposed holin-like functions of these proteins. In addition, the CidA and LrgA proteins were shown to localize to the surface of membrane vesicles and cause leakage of small molecules, providing direct evidence of their hole-forming potential. Consistent with recent reports demonstrating a role for the lrgAB homologues in other bacterial and plant species in the transport of by-products of carbohydrate metabolism, we also show that lrgAB is important for S. aureus to utilize pyruvate during microaerobic and anaerobic growth, by promoting the uptake of pyruvate under these conditions. Combined, these data reveal that the CidA and LrgA membrane proteins possess holin-like properties that play an important role in the transport of small by-products of carbohydrate metabolism. IMPORTANCE The Staphylococcus aureus cidABC and lrgAB operons represent the founding members of a large, highly conserved family of genes that span multiple kingdoms of life. Despite the fact that they have been shown to be involved in bacterial PCD, very little is known about the molecular/biochemical functions of the proteins they encode. The results presented in this study reveal that the cidA and lrgA genes encode proteins with bacteriophage holin-like functions, consistent with their roles in cell death. However, these studies also demonstrate that these operons are involved in the transport of small metabolic by-products of carbohydrate metabolism, suggesting an intriguing link between these two seemingly disparate processes.
Collapse
|
12
|
Zafar H, Saier MH. Comparative Genomics of the Transport Proteins of Ten Lactobacillus Strains. Genes (Basel) 2020; 11:genes11101234. [PMID: 33096690 PMCID: PMC7593918 DOI: 10.3390/genes11101234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Lactobacillus includes species that may inhabit different anatomical locations in the human body, but the greatest percentage of its species are inhabitants of the gut. Lactobacilli are well known for their probiotic characteristics, although some species may become pathogenic and exert negative effects on human health. The transportome of an organism consists of the sum of the transport proteins encoded within its genome, and studies on the transportome help in the understanding of the various physiological processes taking place in the cell. In this communication we analyze the transport proteins and predict probable substrate specificities of ten Lactobacillus strains. Six of these strains (L. brevis, L. bulgaricus, L. crispatus, L. gasseri, L. reuteri, and L. ruminis) are currently believed to be only probiotic (OP). The remaining four strains (L. acidophilus, L. paracasei, L. planatarum, and L. rhamnosus) can play dual roles, being both probiotic and pathogenic (PAP). The characteristics of the transport systems found in these bacteria were compared with strains (E. coli, Salmonella, and Bacteroides) from our previous studies. Overall, the ten lactobacilli contain high numbers of amino acid transporters, but the PAP strains contain higher number of sugar, amino acid and peptide transporters as well as drug exporters than their OP counterparts. Moreover, some of the OP strains contain pore-forming toxins and drug exporters similar to those of the PAP strains, thus indicative of yet unrecognized pathogenic potential. The transportomes of the lactobacilli seem to be finely tuned according to the extracellular and probiotic lifestyles of these organisms. Taken together, the results of this study help to reveal the physiological and pathogenic potential of common prokaryotic residents in the human body.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
- Correspondence: (H.Z.); (M.H.S.J.); Tel.: +1-858-534-4084 (M.H.S.J.); Fax: +1-858-534-7108 (M.H.S.J.)
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
- Correspondence: (H.Z.); (M.H.S.J.); Tel.: +1-858-534-4084 (M.H.S.J.); Fax: +1-858-534-7108 (M.H.S.J.)
| |
Collapse
|
13
|
Abstract
Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family. In bacteria, adaptation to changes in the environment is mainly controlled through two-component signal transduction systems (TCSs). Most bacteria contain dozens of TCSs, each of them responsible for sensing a different range of signals and controlling the expression of a repertoire of target genes (regulon). Over the years, identification of the regulon controlled by each individual TCS in different bacteria has been a recurrent question. However, limitations associated with the classical approaches used have left our knowledge far from complete. In this report, using a pioneering approach in which a strain devoid of the complete nonessential TCS network was systematically complemented with the constitutively active form of each response regulator, we have reconstituted the regulon of each TCS of S. aureus in the absence of interference between members of the family. Transcriptome sequencing (RNA-Seq) and proteomics allowed us to determine the size, complexity, and insulation of each regulon and to identify the genes regulated exclusively by one or many TCSs. This gain-of-function strategy provides the first description of the complete TCS regulon in a living cell, which we expect will be useful to understand the pathobiology of this important pathogen. IMPORTANCE Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family.
Collapse
|
14
|
Ishkov IP, Ahn SJ, Rice KC, Hagen SJ. Environmental Triggers of lrgA Expression in Streptococcus mutans. Front Microbiol 2020; 11:18. [PMID: 32047487 PMCID: PMC6997555 DOI: 10.3389/fmicb.2020.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
The cidAB and lrgAB operons of Streptococcus mutans encode proteins that are structurally similar to the bacteriophage lambda family of holin-antiholin proteins, which are believed to facilitate cell death in other bacterial species. Although their precise function is not known, cidAB and lrgAB are linked to multiple virulence traits of S. mutans, including oxidative stress tolerance, biofilm formation, and autolysis. Here we investigate the regulation of lrgAB which in S. mutans shows a complex dependence on growth conditions that is not fully understood. By combining single-cell imaging of a fluorescent gene reporter with microfluidic control of the extracellular environment, we identify specific environmental cues that trigger lrgA expression and characterize cell-to-cell heterogeneity in lrgA activity. We find that the very abrupt activation of lrgA at stationary phase is tightly synchronized across the population. This activation is controlled by a small number of inputs that are sensitive to growth phase: extracellular pyruvate, glucose, and molecular oxygen. Activation of lrgA appears to be self-limiting, so that strong expression of lrgA is confined to a short interval of time. lrgA is programmed to switch on briefly at the end of exponential growth, as glucose and molecular oxygen are exhausted and extracellular pyruvate is available. Our findings are consistent with studies of other bacteria showing that homologs of lrgAB participate, with input from lytST, in the reimport of pyruvate for anaerobic fermentative growth.
Collapse
Affiliation(s)
- Ivan P Ishkov
- Department of Physics, University of Florida, Gainesville, FL, United States
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Dahyot S, Oxaran V, Niepceron M, Dupart E, Legris S, Destruel L, Didi J, Clamens T, Lesouhaitier O, Zerdoumi Y, Flaman JM, Pestel-Caron M. Role of the LytSR Two-Component Regulatory System in Staphylococcus lugdunensis Biofilm Formation and Pathogenesis. Front Microbiol 2020; 11:39. [PMID: 32038604 PMCID: PMC6993578 DOI: 10.3389/fmicb.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus lugdunensis is a coagulase negative Staphylococcus recognized as a virulent pathogen. It is responsible for a wide variety of infections, some of which are associated with biofilm production, such as implanted medical device infections or endocarditis. However, little is known about S. lugdunensis regulation of virulence factor expression. Two-component regulatory systems (TCS) play a critical role in bacterial adaptation, survival, and virulence. Among them, LytSR is widely conserved but has variable roles in different organisms, all connected to metabolism or cell death and lysis occurring during biofilm development. Therefore, we investigated here the functions of LytSR in S. lugdunensis pathogenesis. Deletion of lytSR in S. lugdunensis DSM 4804 strain did not alter either susceptibility to Triton X-100 induced autolysis or death induced by antibiotics targeting cell wall synthesis. Interestingly, ΔlytSR biofilm was characterized by a lower biomass, a lack of tower structures, and a higher rate of dead cells compared to the wild-type strain. Virulence toward Caenorhabditis elegans using a slow-killing assay was significantly reduced for the mutant compared to the wild-type strain. By contrast, the deletion of lytSR had no effect on the cytotoxicity of S. lugdunensis toward the human keratinocyte cell line HaCaT. Transcriptional analyses conducted at mid- and late-exponential phases showed that lytSR deletion affected the expression of 286 genes. Most of them were involved in basic functions such as the metabolism of amino acids, carbohydrates, and nucleotides. Furthermore, LytSR appeared to be involved in the regulation of genes encoding known or putative virulence and colonization factors, including the fibrinogen-binding protein Fbl, the major autolysin AtlL, and the type VII secretion system. Overall, our data suggest that the LytSR TCS is implicated in S. lugdunensis pathogenesis, through its involvement in biofilm formation and potentially by the control of genes encoding putative virulence factors.
Collapse
Affiliation(s)
- Sandrine Dahyot
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Department of Bacteriology, Rouen University Hospital, Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Virginie Oxaran
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Maïté Niepceron
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Eddy Dupart
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Stéphanie Legris
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Laurie Destruel
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Jennifer Didi
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment (LMSM), Normandie University, UNIROUEN, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment (LMSM), Normandie University, UNIROUEN, Evreux, France
| | - Yasmine Zerdoumi
- INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Normandie University, UNIROUEN, Rouen, France
| | - Jean-Michel Flaman
- INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Normandie University, UNIROUEN, Rouen, France
| | - Martine Pestel-Caron
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Department of Bacteriology, Rouen University Hospital, Normandie University, UNIROUEN, UNICAEN, Rouen, France
| |
Collapse
|
16
|
CX3CL1 binding protein-2 (CBP2) of Plasmodium falciparum binds nucleic acids. Int J Biol Macromol 2019; 138:996-1005. [PMID: 31356937 DOI: 10.1016/j.ijbiomac.2019.07.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Several exported Plasmodium falciparum (Pf) proteins contribute to malaria biology through their involvement in cytoadherence, immune evasion and host cell remodelling. Many of these exported proteins and other host molecules are present in iRBC (infected red blood cell) generated extracellular vesicles (EVs), which are responsible for host cell modification and parasite development. CX3CL1 binding proteins (CBPs) present on the surface of iRBCs have been reported to contribute to cytoadhesion by binding with the chemokine 'CX3CL1' via their extracellular domains. Here, we have characterized the cytoplasmic domain of CBP2 to understand its function in parasite biology using biochemical and biophysical methods. Recombinant cytoplasmic CBP2 (cCBP2) binds nucleic acids showing interaction with DNA/RNA. cCBP2 shows dimer formation under non-reducing conditions highlighting the role of disulphide bonds in its oligomerization while ATP binding leads to structural changes in the protein. In vitro interaction studies depict its binding with a Maurer's cleft resident protein 'PfSBP1', which is influenced by ATP binding of cCBP2. Our results suggest CBP2 as a two-transmembrane (2TM) receptor responsible for targeting EVs and delivering cargo to host endothelial cells. We propose CBP2 as an important molecule having roles in cytoadherence and immune modulation through its extracellular and cytoplasmic domains respectively.
Collapse
|
17
|
Shim SH, Lee SK, Lee DW, Brilhaus D, Wu G, Ko S, Lee CH, Weber AP, Jeon JS. Loss of Function of Rice Plastidic Glycolate/Glycerate Translocator 1 Impairs Photorespiration and Plant Growth. FRONTIERS IN PLANT SCIENCE 2019; 10:1726. [PMID: 32038690 PMCID: PMC6993116 DOI: 10.3389/fpls.2019.01726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/09/2019] [Indexed: 05/21/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic carbon fixation, is able to accept both O2 and CO2 as substrates. When it fixes O2, it produces 2-phosphoglycolate, which is detoxified by photorespiration and recycled to the Calvin-Benson-Bassham cycle. To complete photorespiration, metabolite transport across three organelles, chloroplasts, peroxisomes, and mitochondria, is necessary through transmembrane transporters. In rice (Oryza sativa) little is known about photorespiratory transmembrane transporters. Here, we identified the rice plastidic glycolate/glycerate translocator 1 (OsPLGG1), a homolog of Arabidopsis PLGG1. OsPLGG1 mutant lines, osplgg1-1, osplgg1-2, and osplgg1-3, showed a growth retardation phenotype, such as pale green leaf, reduced tiller number, and reduced seed grain weight as well as reduced photosynthetic carbon reduction rate due to low activities of photosystem I and II. The plant growth retardation in osplgg1 mutants was rescued under high CO2 condition. Subcellular localization of OsPLGG1-GFP fusion protein, along with its predicted N-terminal transmembrane domain, confirmed that OsPLGG1 is a chloroplast transmembrane protein. Metabolite analysis indicated significant accumulation of photorespiratory metabolites, especially glycolate and glycerate, which have been shown to be transported by the Arabidopsis PLGG1, and changes for a number of metabolites which are not intermediates of photorespiration in the mutants. These results suggest that OsPLGG1 is the functional plastidic glycolate/glycerate transporter, which is necessary for photorespiration and growth in rice.
Collapse
Affiliation(s)
- Su-Hyeon Shim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Guangxi Wu
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Sooyeon Ko
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
- *Correspondence: Jong-Seong Jeon,
| |
Collapse
|
18
|
Characterization of a Two-Component System Transcriptional Regulator, LtdR, That Impacts Group B Streptococcal Colonization and Disease. Infect Immun 2018; 86:IAI.00822-17. [PMID: 29685987 DOI: 10.1128/iai.00822-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is often a commensal bacterium that colonizes healthy adults asymptomatically and is a frequent inhabitant of the vaginal tract in women. However, in immunocompromised individuals, particularly the newborn, GBS may transition to an invasive pathogen and cause serious disease. Despite the use of the currently recommended intrapartum antibiotic prophylaxis for GBS-positive mothers, GBS remains a leading cause of neonatal septicemia and meningitis. To adapt to the various host environments encountered during its disease cycle, GBS possesses multiple two-component regulatory systems (TCSs). Here we investigated the contribution of a transcriptional regulator containing a LytTR domain, LtdR, to GBS pathogenesis. Disruption of the ltdR gene in the GBS chromosome resulted in a significant increase in bacterial invasion into human cerebral microvascular endothelial cells (hCMEC) in vitro as well as the greater penetration of the blood-brain barrier (BBB) and the development of meningitis in vivo Correspondingly, infection of hCMEC with the ΔltdR mutant resulted in increased secretion of the proinflammatory cytokines interleukin-8 (IL-8), CXCL-1, and IL-6. Further, using a mouse model of GBS vaginal colonization, we observed that the ΔltdR mutant was cleared more readily from the vaginal tract and also that infection with the ΔltdR mutant resulted in increased cytokine production from human vaginal epithelial cells. RNA sequencing revealed global transcriptional differences between the ΔltdR mutant and the parental wild-type GBS strain. These results suggest that LtdR regulates many bacterial processes that can influence GBS-host interactions to promote both bacterial persistence and disease progression.
Collapse
|
19
|
Rice KC, Turner ME, Carney OV, Gu T, Ahn SJ. Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microb Genom 2017; 3:e000104. [PMID: 28348880 PMCID: PMC5361627 DOI: 10.1099/mgen.0.000104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system is central to the physiology of this cariogenic organism, affecting oxidative stress resistance, biofilm formation and competence. Previous transcriptome analyses of lytS (responsible for the regulation of lrgAB expression) and cidB mutants have revealed pleiotropic effects on carbohydrate metabolism and stress resistance genes. In this study, it was found that an lrgAB mutant, previously shown to have diminished aerobic and oxidative stress growth, was also much more growth impaired in the presence of heat and vancomycin stresses, relative to wild-type, lrgA and lrgB mutants. To obtain a more holistic picture of LrgAB and its involvement in stress resistance, RNA sequencing and bioinformatics analyses were used to assess the transcriptional response of wild-type and isogenic lrgAB mutants under anaerobic (control) and stress-inducing culture conditions (aerobic, heat and vancomycin). Hierarchical clustering and principal components analyses of all differentially expressed genes revealed that the most distinct gene expression profiles between S. mutans UA159 and lrgAB mutant occurred during aerobic and high-temperature growth. Similar to previous studies of a cidB mutant, lrgAB stress transcriptomes were characterized by a variety of gene expression changes related to genomic islands, CRISPR-C as systems, ABC transporters, competence, bacteriocins, glucosyltransferases, protein translation, tricarboxylic acid cycle, carbohydrate metabolism/storage and transport. Notably, expression of lrgAB was upregulated in the wild-type strain under all three stress conditions. Collectively, these results demonstrate that mutation of lrgAB alters the transcriptional response to stress, and further support the idea that the Cid/Lrg system acts to promote cell homeostasis in the face of environmental stress.
Collapse
Affiliation(s)
- Kelly C Rice
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Turner
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - O'neshia V Carney
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,†Present address: Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tongjun Gu
- 2Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Sang-Joon Ahn
- 3Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
van den Esker MH, Kovács ÁT, Kuipers OP. YsbA and LytST are essential for pyruvate utilization in Bacillus subtilis. Environ Microbiol 2016; 19:83-94. [PMID: 27422364 DOI: 10.1111/1462-2920.13454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/12/2016] [Indexed: 12/01/2022]
Abstract
The genome of Bacillus subtilis encodes homologues of the Cid/Lrg network. In other bacterial species, this network consists of holin- and antiholin-like proteins that regulate cell death by controlling murein hydrolase activity. The YsbA protein of B. subtilis is currently annotated as a putative antiholin-like protein that possibly impedes cell death, whereas YwbH is thought to act as holin-like protein. However, the actual functions of YsbA and YwbH in B. subtilis have never been characterized. Therefore, we examined the impact of these proteins on growth and cell death in B. subtilis. We did not find a connection to the regulation of programmed cell death, but instead, our experiments reveal that YsbA and its two-component regulator LytST are essential for growth on pyruvate. Moreover, deletion of ysbA and lytS significantly reduces pyruvate consumption. Our findings suggest that LytST induces ysbA transcription in the presence of pyruvate, and that YsbA is involved in pyruvate utilization presumably by functioning as pyruvate uptake system. We show that B. subtilis excretes pyruvate as overflow metabolite in rich medium, indicating that pyruvate could be a common nutrient in the environment. Hence, YsbA and LytST might play a major role in environmental growth of B. subtilis.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 2016; 74:ftw060. [PMID: 27354296 DOI: 10.1093/femspd/ftw060] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA Tennessee Valley Healthcare System, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
22
|
SpoVG Regulates Cell Wall Metabolism and Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus Strain N315. Antimicrob Agents Chemother 2016; 60:3455-61. [PMID: 27001809 DOI: 10.1128/aac.00026-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
Increasing cases of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains in healthy individuals have raised concerns worldwide. MRSA strains are resistant to almost the entire family of β-lactam antibiotics due to the acquisition of an extra penicillin-binding protein, PBP2a. Studies have shown that spoVG is involved in oxacillin resistance, while the regulatory mechanism remains elusive. In this study, we have found that SpoVG plays a positive role in oxacillin resistance through promoting cell wall synthesis and inhibiting cell wall degradation in MRSA strain N315. Deletion of spoVG in strain N315 led to a significant decrease in oxacillin resistance and a dramatic increase in Triton X-100-induced autolytic activity simultaneously. Real-time quantitative reverse transcription-PCR revealed that the expression of 8 genes related to cell wall metabolism or oxacillin resistance was altered in the spoVG mutant. Electrophoretic mobility shift assay indicated that SpoVG can directly bind to the putative promoter regions of lytN (murein hydrolase), femA, and lytSR (the two-component system). These findings suggest a molecular mechanism in which SpoVG modulates oxacillin resistance by regulating cell wall metabolism in MRSA.
Collapse
|
23
|
Lou Q, Ma Y, Qu D. Two-component signal transduction system SaeRS is involved in competence and penicillin susceptibility in Staphylococcus epidermidis. J Basic Microbiol 2016; 56:358-68. [PMID: 26898187 DOI: 10.1002/jobm.201500488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022]
Abstract
Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, the S. epidermidis SaeRS was identified to negatively regulate the expression of genes involved in competence (comF, murF), cytolysis (lrgA), and autolysis (lytS) by DNA microarray or real-time RT-PCR analysis. In addition, saeRS mutant showed increased competence and higher susceptibility to antibiotics such as penicillin and oxacillin than the wild-type strain. The study will be helpful for understanding the characterization of the SaeRS in S. epidermidis.
Collapse
Affiliation(s)
- Qiang Lou
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng, China
| | - Yuanfang Ma
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
24
|
SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of cidABC Transcription. J Bacteriol 2016; 198:1114-22. [PMID: 26811317 DOI: 10.1128/jb.00954-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The death and lysis of a subpopulation in Staphylococcus aureus biofilm cells are thought to benefit the surviving population by releasing extracellular DNA, a critical component of the biofilm extracellular matrix. Although the means by which S. aureus controls cell death and lysis is not understood, studies implicate the role of the cidABC and lrgAB operons in this process. Recently, disruption of the srrAB regulatory locus was found to cause increased cell death during biofilm development, likely as a result of the sensitivity of this mutant to hypoxic growth. In the current study, we extended these findings by demonstrating that cell death in the ΔsrrAB mutant is dependent on expression of the cidABC operon. The effect of cidABC expression resulted in the generation of increased reactive oxygen species (ROS) accumulation and was independent of acetate production. Interestingly, consistently with previous studies, cidC-encoded pyruvate oxidase was found to be important for the generation of acetic acid, which initiates the cell death process. However, these studies also revealed for the first time an important role of the cidB gene in cell death, as disruption of cidB in the ΔsrrAB mutant background decreased ROS generation and cell death in a cidC-independent manner. The cidB mutation also caused decreased sensitivity to hydrogen peroxide, which suggests a complex role for this system in ROS metabolism. Overall, the results of this study provide further insight into the function of the cidABC operon in cell death and reveal its contribution to the oxidative stress response. IMPORTANCE The manuscript focuses on cell death mechanisms in Staphylococcus aureus and provides important new insights into the genes involved in this ill-defined process. By exploring the cause of increased stationary-phase death in an S. aureus ΔsrrAB regulatory mutant, we found that the decreased viability of this mutant was a consequence of the overexpression of the cidABC operon, previously shown to be a key mediator of cell death. These investigations highlight the role of the cidB gene in the death process and the accumulation of reactive oxygen species. Overall, the results of this study are the first to demonstrate a positive role for CidB in cell death and to provide an important paradigm for understanding this process in all bacteria.
Collapse
|
25
|
Arya R, Princy SA. Exploration of Modulated Genetic Circuits Governing Virulence Determinants in Staphylococcus aureus. Indian J Microbiol 2015; 56:19-27. [PMID: 26843693 DOI: 10.1007/s12088-015-0555-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
The expression of virulence genes in the human pathogen Staphylococcus aureus is strongly influenced by the multiple global regulators. The signal transduction cascade of these global regulators is accountable for recognizing and integrating the environmental cues to regulate the virulence regulon. While the production of virulent factors by individual global regulators are comparatively straightforward to define, auto-regulation of these global regulators and their impact on other regulators is more complex process. There are several reports on the production of virulent factors that are precisely regulated by switching processes of multiple global regulators including some prominent accessory regulators such as agr, sae and sar which allows S. aureus to coordinate the gene expression, and thus, provide organism an ability to act collectively. This review implicates the mechanisms involved in the global regulation of various virulence factors along with a comprehensive discussion on the differences between these signal transduction systems, their auto-induction and, coordination of classical and some comparatively new bacterial signal transduction systems.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613 401 Tamil Nadu India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, 613 401 Tamil Nadu India
| |
Collapse
|
26
|
Moche M, Schlüter R, Bernhardt J, Plate K, Riedel K, Hecker M, Becher D. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions. J Proteome Res 2015; 14:3804-22. [DOI: 10.1021/acs.jproteome.5b00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Moche
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Kristina Plate
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Katharina Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| |
Collapse
|
27
|
Guijarro JA, Cascales D, García-Torrico AI, García-Domínguez M, Méndez J. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 2015. [PMID: 26217329 PMCID: PMC4496569 DOI: 10.3389/fmicb.2015.00700] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation.
Collapse
Affiliation(s)
- José A. Guijarro
- *Correspondence: José A. Guijarro, Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, C/Julían Clavería 6, 33006 Oviedo, Spain,
| | | | | | | | | |
Collapse
|
28
|
The Matrix Reloaded: Probing the Extracellular Matrix Synchronizes Bacterial Communities. J Bacteriol 2015; 197:2092-2103. [PMID: 25825428 DOI: 10.1128/jb.02516-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In response to chemical communication, bacterial cells often organize themselves into complex multicellular communities that carry out specialized tasks. These communities are frequently referred to as biofilms, which involve collective behavior of different cell types. Like cells of multicellular eukaryotes, the biofilm cells are surrounded by self-produced polymers that constitute the extracellular matrix (ECM), which binds them to each other and to the surface. In multicellular eukaryotes, it has been evident for decades that cell-ECM interactions control multiple cellular processes during development. While cells, both in biofilms and in multicellular eukaryotes, are surrounded by ECM and activate various genetic programs, until recently it has been unclear whether cell-ECM interactions are recruited in bacterial communicative behaviors. In this review, we will describe the examples reported thus far for ECM involvement in control of cell behavior throughout the different stages of biofilm formation. The studies presented in this review provide a newly emerging perspective of the bacterial ECM as an active player in regulation of biofilm development.
Collapse
|
29
|
Patel K, Golemi-Kotra D. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS. F1000Res 2015; 4:79. [PMID: 27127614 PMCID: PMC4830213 DOI: 10.12688/f1000research.6213.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of
Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of
cidABC and
lrgAB operons, the gene products of which are involved in programmed cell death and lysis.
Invivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the
lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the
in vivo observations that regulation of the
lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of
lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS.
Collapse
Affiliation(s)
- Kevin Patel
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| | - Dasantila Golemi-Kotra
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada; Department of Biology, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
30
|
Osipovitch DC, Therrien S, Griswold KE. Discovery of novel S. aureus autolysins and molecular engineering to enhance bacteriolytic activity. Appl Microbiol Biotechnol 2015; 99:6315-26. [PMID: 25690309 DOI: 10.1007/s00253-015-6443-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 01/21/2023]
Abstract
Staphylococcus aureus is a dangerous bacterial pathogen whose clinical impact has been amplified by the emergence and rapid spread of antibiotic resistance. In the search for more effective therapeutic strategies, great effort has been placed on the study and development of staphylolytic enzymes, which benefit from high potency activity toward drug-resistant strains, and a low inherent susceptibility to emergence of new resistance phenotypes. To date, the majority of therapeutic candidates have derived from either bacteriophage or environmental competitors of S. aureus. Little to no consideration has been given to cis-acting autolysins that represent key elements in the bacterium's endogenous cell wall maintenance and recycling machinery. In this study, five putative autolysins were cloned from the S. aureus genome, and their activities were evaluated. Four of these novel enzymes, or component domains thereof, demonstrated lytic activity toward live S. aureus cells, but their potencies were 10s to 1000s of times lower than that of the well-characterized therapeutic candidate lysostaphin. We hypothesized that their poor activities were due in part to suboptimal cell wall targeting associated with their native cell wall binding domains, and we sought to enhance their antibacterial potential via chimeragenesis with the peptidoglycan binding domain of lysostaphin. The most potent chimera exhibited a 140-fold increase in lytic rate, bringing it within 8-fold of lysostaphin. While this enzyme was sensitive to certain biologically relevant environmental factors and failed to exhibit a measurable minimal inhibitory concentration, it was able to kill lysostaphin-resistant S. aureus and ultimately proved active in lung surfactant. We conclude that the S. aureus proteome represents a rich and untapped reservoir of novel antibacterial enzymes, and we demonstrate enhanced bacteriolytic activity via improved cell wall targeting of autolysin catalytic domains.
Collapse
Affiliation(s)
- Daniel C Osipovitch
- Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | | | | |
Collapse
|
31
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5:7. [PMID: 25713785 PMCID: PMC4322838 DOI: 10.3389/fcimb.2015.00007] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
32
|
Lehman MK, Bose JL, Sharma-Kuinkel BK, Moormeier DE, Endres JL, Sadykov MR, Biswas I, Bayles KW. Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression. Mol Microbiol 2015; 95:723-37. [PMID: 25491472 DOI: 10.1111/mmi.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated that expression of the Staphylococcus aureus lrgAB operon is specifically localized within tower structures during biofilm development. To gain a better understanding of the mechanisms underlying this spatial control of lrgAB expression, we carried out a detailed analysis of the LytSR two-component system. Specifically, a conserved aspartic acid (Asp53) of the LytR response regulator was shown to be the target of phosphorylation, which resulted in enhanced binding to the lrgAB promoter and activation of transcription. In addition, we identified His390 of the LytS histidine kinase as the site of autophosphorylation and Asn394 as a critical amino acid involved in phosphatase activity. Interestingly, LytS-independent activation of LytR was observed during planktonic growth, with acetyl phosphate acting as a phosphodonor to LytR. In contrast, mutations disrupting the function of LytS prevented tower-specific lrgAB expression, providing insight into the physiologic environment within these structures. In addition, overactivation of LytR led to increased lrgAB promoter activity during planktonic and biofilm growth and a change in biofilm morphology. Overall, the results of this study are the first to define the LytSR signal transduction pathway, as well as determine the metabolic context within biofilm tower structures that triggers these signaling events.
Collapse
Affiliation(s)
- McKenzie K Lehman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015. [PMID: 25713785 DOI: 10.3389/fcimb.2015.00007/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
34
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
35
|
The effect of skin fatty acids on Staphylococcus aureus. Arch Microbiol 2014; 197:245-67. [PMID: 25325933 PMCID: PMC4326651 DOI: 10.1007/s00203-014-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/19/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.
Collapse
|
36
|
Inactivation of thyA in Staphylococcus aureus attenuates virulence and has a strong impact on metabolism and virulence gene expression. mBio 2014; 5:e01447-14. [PMID: 25073642 PMCID: PMC4128360 DOI: 10.1128/mbio.01447-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). While it has been shown that TD-SCVs were associated with mutations in thymidylate synthase (TS; thyA), the impact of such mutations on protein function is lacking. In this study, we showed that mutations in thyA were leading to inactivity of TS proteins, and TS inactivity led to tremendous impact on S. aureus physiology and virulence. Whole DNA microarray analysis of the constructed ΔthyA mutant identified severe alterations compared to the wild type. Important virulence regulators (agr, arlRS, sarA) and major virulence determinants (hla, hlb, sspAB, and geh) were downregulated, while genes important for colonization (fnbA, fnbB, spa, clfB, sdrC, and sdrD) were upregulated. The expression of genes involved in pyrimidine and purine metabolism and nucleotide interconversion changed significantly. NupC was identified as a major nucleoside transporter, which supported growth of the mutant during TMP-SMX exposure by uptake of extracellular thymidine. The ΔthyA mutant was strongly attenuated in virulence models, including a Caenorhabditis elegans killing model and an acute pneumonia mouse model. This study identified inactivation of TS as the molecular basis of clinical TD-SCV and showed that thyA activity has a major role for S. aureus virulence and physiology. Thymidine-dependent small-colony variants (TD-SCVs) of Staphylococcus aureus carry mutations in the thymidylate synthase (TS) gene (thyA) responsible for de novo synthesis of thymidylate, which is essential for DNA synthesis. TD-SCVs have been isolated from patients treated for long periods with trimethoprim-sulfamethoxazole (TMP-SMX) and are associated with chronic and recurrent infections. In the era of community-associated methicillin-resistant S. aureus, the therapeutic use of TMP-SMX is increasing. Today, the emergence of TD-SCVs is still underestimated due to misidentification in the diagnostic laboratory. This study showed for the first time that mutational inactivation of TS is the molecular basis for the TD-SCV phenotype and that TS inactivation has a strong impact on S. aureus virulence and physiology. Our study helps to understand the clinical nature of TD-SCVs, which emerge frequently once patients are treated with TMP-SMX.
Collapse
|
37
|
|
38
|
El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B, Pons JL. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. PLoS One 2013; 8:e83748. [PMID: 24358307 PMCID: PMC3865298 DOI: 10.1371/journal.pone.0083748] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/07/2013] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile intestinal disease is mediated largely by the actions of toxins A (TcdA) and B (TcdB), whose production occurs after the initial steps of colonization involving different surface or flagellar proteins. In B. subtilis, the sigma factor SigD controls flagellar synthesis, motility, and vegetative autolysins. A homolog of SigD encoding gene is present in the C.difficile 630 genome. We constructed a sigD mutant in C. difficile 630 ∆erm to analyze the regulon of SigD using a global transcriptomic approach. A total of 103 genes were differentially expressed between the wild-type and the sigD mutant, including genes involved in motility, metabolism and regulation. In addition, the sigD mutant displayed decreased expression of genes involved in flagellar biosynthesis, and also of genes encoding TcdA and TcdB as well as TcdR, the positive regulator of the toxins. Genomic analysis and RACE-PCR experiments allowed us to characterize promoter sequences of direct target genes of SigD including tcdR and to identify the SigD consensus. We then established that SigD positively regulates toxin expression via direct control of tcdR transcription. Interestingly, the overexpression of FlgM, a putative anti-SigD factor, inhibited the positive regulation of motility and toxin synthesis by SigD. Thus, SigD appears to be the first positive regulator of the toxin synthesis in C. difficile.
Collapse
Affiliation(s)
- Imane El Meouche
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
| | - Johann Peltier
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
- * E-mail:
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Martine Pestel-Caron
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Jean-Louis Pons
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
- Laboratoire Ecosystème intestinal, Probiotiques, Antibiotiques (EA 4065, IFR IMTCE), Université Paris Descartes, Paris, France
| |
Collapse
|
39
|
Abstract
The cytoplasmic membrane of most bacteria is surrounded by a more or less thick murein layer (peptidoglycan) that protects the protoplast from mechanical damage, osmotic rupture and lysis. When bacteria are dividing processes are initiated stepwise that involve DNA replication, constriction of the membranes, cell growth, biosynthesis of new murein, and finally the generation of two daughter cells. As the daughter cells are still covalently interlinked by the murein network they must be separated by specific peptidoglycan hydrolases, also referred to as autolysins. In staphylococci, the major autolysin (Atl) and its processed products N-acetylmuramoyl-l-alanine amidase (AM) and endo-β-N-acetylglucosaminidase (GL) have been in the research focus for long time. This review addresses phenotypic consequences of atl mutants, impact of Atl in virulence, the mechanism of targeting to the septum region, regulation of atl, the structure of the amidase and the repeat regions, as well as the phylogeny of Atl and its use in Staphylococcus genus and species typing.
Collapse
|
40
|
Shala A, Patel KH, Golemi-Kotra D, Audette GF. Expression, purification, crystallization and preliminary X-ray analysis of the receiver domain of Staphylococcus aureus LytR protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1418-21. [PMID: 24316844 PMCID: PMC3855734 DOI: 10.1107/s1744309113030972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
Abstract
The response-regulatory protein LytR belongs to a family of transcription factors involved in the regulation of important virulence factors in pathogenic bacteria. The protein consists of a receiver domain and an effector domain, which play an important role in controlled cell death and lysis. The LytR receiver domain (LytR(N)) has been overexpressed, purified and crystallized using the sitting-drop and hanging-drop vapour-diffusion methods. The crystals grew as needles, with unit-cell parameters a = b = 84.82, c = 157.3 Å, α = β = 90, γ = 120°. LytR(N) crystallized in space group P6122 and the crystals diffracted to a maximum resolution of 2.34 Å. Based on the Matthews coefficient (V(M) = 5.44 Å(3) Da(-1)), one molecule is estimated to be present in the asymmetric unit.
Collapse
Affiliation(s)
- Agnesa Shala
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Kevin H. Patel
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Dasantila Golemi-Kotra
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
41
|
Jenkins R, Burton N, Cooper R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother 2013; 69:603-15. [PMID: 24176984 PMCID: PMC3922154 DOI: 10.1093/jac/dkt430] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen. Its resistance to multiple antibiotics and its prevalence in healthcare establishments make it a serious threat to human health that requires novel interventions. Manuka honey is a broad-spectrum antimicrobial agent that is gaining acceptance in the topical treatment of wounds. Because its mode of action is only partially understood, proteomic and genomic analysis was used to investigate the effects of manuka honey on MRSA at a molecular level. Methods Two-dimensional gel electrophoresis with dual-channel imaging was combined with matrix-assisted laser desorption ionization–time of flight mass spectrometry to determine the identities of differentially expressed proteins. The expression of the corresponding genes was investigated by quantitative PCR. Microarray analysis provided an overview of alterations in gene expression across the MRSA genome. Results Genes with increased expression following exposure to manuka honey were associated with glycolysis, transport and biosynthesis of amino acids, proteins and purines. Those with decreased expression were involved in the tricarboxylic acid cycle, cell division, quorum sensing and virulence. The greatest reductions were seen in genes conferring virulence (sec3, fnb, hlgA, lip and hla) and coincided with a down-regulation of global regulators, such as agr, sae and sarV. A model to illustrate these multiple effects was constructed and implicated glucose, which is one of the major sugars contained in honey. Conclusions A decreased expression of virulence genes in MRSA will impact on its pathogenicity and needs to be investigated in vivo.
Collapse
Affiliation(s)
- Rowena Jenkins
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | |
Collapse
|
42
|
Role of Rot in bacterial autolysis regulation of Staphylococcus aureus NCTC8325. Res Microbiol 2013; 164:695-700. [DOI: 10.1016/j.resmic.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
|
43
|
Mutation of RNA polymerase β-subunit gene promotes heterogeneous-to-homogeneous conversion of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2013; 57:4861-71. [PMID: 23877693 DOI: 10.1128/aac.00720-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three types of phenotypic expression of β-lactam resistance have been reported in methicillin-resistant Staphylococcus aureus (MRSA): heterogeneous, homogeneous, and Eagle-type resistance. Heterogeneous-to-homogeneous conversion of β-lactam resistance is postulated to be caused by a chromosomal mutation (chr*) in addition to the expression of the mecA gene. Eagle-type resistance is a unique phenotype of chr* occurring in pre-MRSA strain N315 whose mecA gene expression is strongly repressed by an intact mecI gene. We here report that certain mutations of the rpoB gene, encoding the RNA polymerase β subunit, belong to chr*. We studied homogeneous MRSA (homo-MRSA) strain N315ΔIP-H5 (abbreviated as ΔIP-H5), which was obtained from hetero-MRSA strain N315ΔIP by selection with 8 mg/liter imipenem. Whole-genome sequencing of ΔIP-H5 revealed the presence of a unique mutation in the rpoB gene, rpoB(N967I), causing the amino acid replacement of Asn by Ile at position 967 of RpoB. The effect of the rpoB(N967I) mutation was confirmed by constructing a revertant H5 rpoB(I967N) strain as well as an N315-derived mutant, N315 rpoB(N967I). H5 rpoB(I967N) regained the hetero-resistance phenotype, and the N315 rpoB(N967I) strain showed an Eagle-type phenotype similar to that of the typical Eagle-type MRSA strain N315h4. Furthermore, subsequent whole-genome sequencing revealed that N315h4 also had a missense mutation of rpoB(R644H). Introduction of the rpoB(N967I) mutation was accompanied by decreased autolysis, prolonged doubling time, and tolerance to bactericidal concentrations of methicillin. We consider that rpoB mutations are the major cause for heterogeneous-to-homogeneous phenotypic conversion of β-lactam resistance in MRSA strain N315 and its derived strains.
Collapse
|
44
|
Abranches J, Tijerina P, Avilés-Reyes A, Gaca AO, Kajfasz JK, Lemos JA. The cell wall-targeting antibiotic stimulon of Enterococcus faecalis. PLoS One 2013; 8:e64875. [PMID: 23755154 PMCID: PMC3670847 DOI: 10.1371/journal.pone.0064875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
Enterococcus faecalis is an opportunistic nosocomial pathogen that is highly resistant to a variety of environmental insults, including an intrinsic tolerance to antimicrobials that target the cell wall (CW). With the goal of determining the CW-stress stimulon of E. faecalis, the global transcriptional profile of E. faecalis OG1RF exposed to ampicillin, bacitracin, cephalotin or vancomycin was obtained via microarrays. Exposure to the β-lactams ampicillin and cephalotin resulted in the fewest transcriptional changes with 50 and 192 genes differentially expressed 60 min after treatment, respectively. On the other hand, treatment with bacitracin or vancomycin for 60 min affected the expression of, respectively, 377 and 297 genes. Despite the differences in the total number of genes affected, all antibiotics induced a very similar gene expression pattern with an overrepresentation of genes encoding hypothetical proteins, followed by genes encoding proteins associated with cell envelope metabolism as well as transport and binding proteins. In particular, all drug treatments, most notably bacitracin and vancomycin, resulted in an apparent metabolic downshift based on the repression of genes involved in translation, energy metabolism, transport and binding. Only 19 genes were up-regulated by all conditions at both the 30 and 60 min time points. Among those 19 genes, 4 genes encoding hypothetical proteins (EF0026, EF0797, EF1533 and EF3245) were inactivated and the respective mutant strains characterized in relation to antibiotic tolerance and virulence in the Galleria mellonella model. The phenotypes obtained for two of these mutants, ΔEF1533 and ΔEF3245, support further characterization of these genes as potential candidates for the development of novel preventive or therapeutic approaches.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Pamella Tijerina
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alejandro Avilés-Reyes
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Anthony O. Gaca
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jessica K. Kajfasz
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
|
46
|
Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol 2013; 79:3413-24. [PMID: 23524683 DOI: 10.1128/aem.00395-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Staphylococcus aureus cid and lrg operons play significant roles in the control of autolysis and accumulation of extracellular genomic DNA (eDNA) during biofilm development. Although the molecular mechanisms mediating this control are only beginning to be revealed, it is clear that cell death must be limited to a subfraction of the biofilm population. In the present study, we tested the hypothesis that cid and lrg expression varies during biofilm development as a function of changes in the availability of oxygen. To examine cid and lrg promoter activity during biofilm development, fluorescent reporter fusion strains were constructed and grown in a BioFlux microfluidic system, generating time-lapse epifluorescence images of biofilm formation, which allows the spatial and temporal localization of gene expression. Consistent with cid induction under hypoxic conditions, the cid::gfp fusion strain expressed green fluorescent protein predominantly within the interior of the tower structures, similar to the pattern of expression observed with a strain carrying a gfp fusion to the hypoxia-induced promoter controlling the expression of the lactose dehydrogenase gene. The lrg promoter was also expressed within towers but appeared more diffuse throughout the tower structures, indicating that it was oxygen independent. Unexpectedly, the results also demonstrated the existence of tower structures with different expression phenotypes and physical characteristics, suggesting that these towers exhibit different metabolic activities. Overall, the findings presented here support a model in which oxygen is important in the spatial and temporal control of cid expression within a biofilm and that tower structures formed during biofilm development exhibit metabolically distinct niches.
Collapse
|
47
|
Ahn SJ, Qu MD, Roberts E, Burne RA, Rice KC. Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiol 2012; 12:187. [PMID: 22937869 PMCID: PMC3507848 DOI: 10.1186/1471-2180-12-187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
Background The S. mutans LrgA/B holin-like proteins have been shown to affect biofilm formation and oxidative stress tolerance, and are regulated by oxygenation, glucose levels, and by the LytST two-component system. In this study, we sought to determine if LytST was involved in regulating lrgAB expression in response to glucose and oxygenation in S. mutans. Results Real-time PCR revealed that growth phase-dependent regulation of lrgAB expression in response to glucose metabolism is mediated by LytST under low-oxygen conditions. However, the effect of LytST on lrgAB expression was less pronounced when cells were grown with aeration. RNA expression profiles in the wild-type and lytS mutant strains were compared using microarrays in early exponential and late exponential phase cells. The expression of 40 and 136 genes in early-exponential and late exponential phase, respectively, was altered in the lytS mutant. Although expression of comYB, encoding a DNA binding-uptake protein, was substantially increased in the lytS mutant, this did not translate to an effect on competence. However, a lrgA mutant displayed a substantial decrease in transformation efficiency, suggestive of a previously-unknown link between LrgA and S. mutans competence development. Finally, increased expression of genes encoding antioxidant and DNA recombination/repair enzymes was observed in the lytS mutant, suggesting that the mutant may be subjected to increased oxidative stress during normal growth. Although the intracellular levels of reaction oxygen species (ROS) appeared similar between wild-type and lytS mutant strains after overnight growth, challenge of these strains with hydrogen peroxide (H2O2) resulted in increased intracellular ROS in the lytS mutant. Conclusions Overall, these results: (1) Reinforce the importance of LytST in governing lrgAB expression in response to glucose and oxygen, (2) Define a new role for LytST in global gene regulation and resistance to H2O2, and (3) Uncover a potential link between LrgAB and competence development in S. mutans.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
48
|
First insights into the unexplored two-component system YehU/YehT in Escherichia coli. J Bacteriol 2012; 194:4272-84. [PMID: 22685278 DOI: 10.1128/jb.00409-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two-component systems (TCSs) consisting of a membrane-anchored histidine kinase (HK) and a response regulator (RR) with DNA-binding activity. are major players in signal transduction in prokaryotes. Whereas most TCSs in Escherichia coli are well characterized, almost nothing is known about the LytS-like HK YehU and the corresponding LytTR-like RR YehT. To identify YehT-regulated genes, we compared the transcriptomes of E. coli cells overproducing either YehT or the RR KdpE (control). The expression levels of 32 genes differed more than 8-fold between the two strains. A comprehensive evaluation of these genes identified yjiY as a target of YehT. Electrophoretic mobility shift assays with purified YehT confirmed that YehT interacts directly with the yjiY promoter. Specifically, YehT binds to two direct repeats of the motif ACC(G/A)CT(C/T)A separated by a 13-bp spacer in the yjiY promoter. The target gene yjiY encodes an inner membrane protein belonging to the CstA superfamily of transporters. In E. coli cells growing in media containing peptides or amino acids as a carbon source, yjiY is strongly induced at the onset of the stationary-growth phase. Moreover, expression was found to be dependent on cyclic AMP (cAMP)/cAMP receptor protein (CRP). It is suggested that YehU/YehT participates in the stationary-phase control network.
Collapse
|
49
|
The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals. Curr Opin Microbiol 2012; 15:211-5. [PMID: 22221897 DOI: 10.1016/j.mib.2011.12.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/12/2011] [Accepted: 12/17/2011] [Indexed: 01/27/2023]
Abstract
The processes involved in the development of complex multicellular communities, including the programmed elimination of individual cells during the formation of specialized structures, exhibit fundamental similarities between prokaryotic and eukaryotic organisms. Mechanistic similarities may also exist at the molecular level, as bacterial proteins hypothesized to be related to the apoptosis regulator Bax/Bcl-2 family have been identified, fueling speculation about the existence of bacterial PCD. Here we review the regulatory networks controlling cell death and lysis in Staphylococcus aureus and examine the environmental parameters that might influence them during the development of a biofilm. We hypothesize that the heterogeneous environmental conditions found within a developing biofilm generate distinct physiological signals that coordinate the differential expression of cell death and lysis effectors.
Collapse
|
50
|
Yang Y, Jin H, Chen Y, Lin W, Wang C, Chen Z, Han N, Bian H, Zhu M, Wang J. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:81-95. [PMID: 21916894 DOI: 10.1111/j.1469-8137.2011.03867.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• A protein encoded by At1g32080 was consistently identified in proteomic studies of Arabidopsis chloroplast envelope membranes, but its function remained unclear. The protein, designated AtLrgB, may have evolved from a gene fusion of lrgA and lrgB. In bacteria, two homologous operons, lrgAB and cidAB, participate in an emerging mechanism to control cell death and lysis. • We aim to characterize AtLrgB using reverse genetics and cell biological and biochemical analysis. • AtLrgB is expressed in leaves, but not in roots. T-DNA insertion mutation of AtLrgB produced plants with interveinal chlorotic and premature necrotic leaves. Overexpression of full-length AtLrgB (or its LrgA and LrgB domains, separately), under the control of CaMV 35S promoter, produced plants exhibiting veinal chlorosis and delayed greening. At the end of light period, the T-DNA mutant had high starch and low sucrose contents in leaves, while the 35S:AtLrgB plants had low starch and high sucrose contents. Metabolite profiling revealed that AtLrgB appeared not to directly transport triose phosphate or hexose phosphates. In yeast cells, AtLrgB could augment nystatin-induced membrane permeability. • Our work indicates that AtLrgB is a new player in chloroplast development, carbon partitioning and leaf senescence, although its molecular mechanism remains to be established.
Collapse
Affiliation(s)
- Yanjun Yang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyan Jin
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yong Chen
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Weiqiang Lin
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chaoqun Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhehao Chen
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ning Han
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Hongwu Bian
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Muyuan Zhu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Junhui Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|