1
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
2
|
Wolfram-Schauerte M, Höfer K. NAD-capped RNAs - a redox cofactor meets RNA. Trends Biochem Sci 2023; 48:142-155. [PMID: 36068130 DOI: 10.1016/j.tibs.2022.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
RNA modifications immensely expand the diversity of the transcriptome, thereby influencing the function, localization, and stability of RNA. One prominent example of an RNA modification is the eukaryotic cap located at the 5' terminus of mRNAs. Interestingly, the redox cofactor NAD can be incorporated into RNA by RNA polymerase in vitro. The existence of NAD-modified RNAs in vivo was confirmed using liquid chromatography and mass spectrometry (LC-MS). In the past few years novel technologies and methods have characterized NAD as a cap-like RNA structure and enabled the investigation of NAD-capped RNAs (NAD-RNAs) in a physiological context. We highlight the identification of NAD-RNAs as well as the regulation and functions of this epitranscriptomic mark in all domains of life.
Collapse
Affiliation(s)
| | - Katharina Höfer
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, 35043, Hessen, Germany.
| |
Collapse
|
3
|
Swaminath S, Pradhan A, Nair RR, Ajitkumar P. Deletion of rifampicin-inactivating mono-ADP-ribosyl transferase gene of Mycobacterium smegmatis globally altered gene expression profile that favoured increase in ROS levels and thereby antibiotic resister generation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100142. [PMID: 35909599 PMCID: PMC9325912 DOI: 10.1016/j.crmicr.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/21/2022] [Accepted: 05/29/2022] [Indexed: 10/31/2022] Open
Abstract
Physiological role of mono-ADP-ribosyl transferase (Arr) of Mycobacterium smegmatis revealed. Arr is required to maintain ROS levels in actively growing M. smegmatis. Arr influences gene expression at global level in several pathways. Expression of electron transfer, antioxidation, and DNA repair genes are influenced by Arr. Arr is required to maintain an optimal oxidative and metabolic status.
The physiological role of mono-ADP-ribosyl transferase (Arr) of Mycobacterium smegmatis, which inactivates rifampicin, remains unclear. An earlier study reported increased expression of arr during oxidative stress and DNA damage. This suggested a role for Arr in the oxidative status of the cell and its associated effect on DNA damage. Since reactive oxygen species (ROS) influence oxidative status, we investigated whether Arr affected ROS levels in M. smegmatis. Significantly elevated levels of superoxide and hydroxyl radical were found in the mid-log phase (MLP) cultures of the arr knockout strain (arr-KO) as compared those in the wild-type strain (WT). Complementation of arr-KO with expression from genomically integrated arr under its native promoter restored the levels of ROS equivalent to that in WT. Due to the inherently high ROS levels in the actively growing arr-KO, rifampicin resisters with rpoB mutations could be selected at 0 hr of exposure itself against rifampicin, unlike in the WT where the resisters emerged at 12th hr of rifampicin exposure. Microarray analysis of the actively growing cultures of arr-KO revealed significantly high levels of expression of genes from succinate dehydrogenase I and NADH dehydrogenase I operons, which would have contributed to the increased superoxide levels. In parallel, expression of specific DNA repair genes was significantly decreased, favouring retention of the mutations inflicted by the ROS. Expression of several metabolic pathway genes also was significantly altered. These observations revealed that Arr was required for maintaining a gene expression profile that would provide optimum levels of ROS and DNA repair system in the actively growing M. smegmatis.
Collapse
|
4
|
Lalić J, Posavec Marjanović M, Palazzo L, Perina D, Sabljić I, Žaja R, Colby T, Pleše B, Halasz M, Jankevicius G, Bucca G, Ahel M, Matić I, Ćetković H, Luić M, Mikoč A, Ahel I. Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor. J Biol Chem 2016; 291:23175-23187. [PMID: 27634042 PMCID: PMC5087735 DOI: 10.1074/jbc.m116.721894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is a post-translational modification that can alter the physical and chemical properties of target proteins and that controls many important cellular processes. Macrodomains are evolutionarily conserved structural domains that bind ADP-ribose derivatives and are found in proteins with diverse cellular functions. Some proteins from the macrodomain family can hydrolyze ADP-ribosylated substrates and therefore reverse this post-translational modification. Bacteria and Streptomyces, in particular, are known to utilize protein ADP-ribosylation, yet very little is known about their enzymes that synthesize and remove this modification. We have determined the crystal structure and characterized, both biochemically and functionally, the macrodomain protein SCO6735 from Streptomyces coelicolor This protein is a member of an uncharacterized subfamily of macrodomain proteins. Its crystal structure revealed a highly conserved macrodomain fold. We showed that SCO6735 possesses the ability to hydrolyze PARP-dependent protein ADP-ribosylation. Furthermore, we showed that expression of this protein is induced upon DNA damage and that deletion of this protein in S. coelicolor increases antibiotic production. Our results provide the first insights into the molecular basis of its action and impact on Streptomyces metabolism.
Collapse
Affiliation(s)
| | | | - Luca Palazzo
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | - Roko Žaja
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- the Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10002, Croatia
| | - Thomas Colby
- the Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany, and
| | | | | | - Gytis Jankevicius
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Giselda Bucca
- the School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
| | - Marijan Ahel
- the Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10002, Croatia
| | - Ivan Matić
- the Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany, and
| | | | | | | | - Ivan Ahel
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom,
| |
Collapse
|
5
|
Szirák K, Keserű J, Biró S, Schmelczer I, Barabás G, Penyige A. Disruption of SCO5461 gene coding for a mono-ADP-ribosyltransferase enzyme produces a conditional pleiotropic phenotype affecting morphological differentiation and antibiotic production in Streptomyces coelicolor. J Microbiol 2012; 50:409-18. [PMID: 22752904 DOI: 10.1007/s12275-012-1440-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
The SCO5461 gene of Streptomyces coelicolor A3(2) codes for an ADP-ribosyltransferase enzyme that is predicted to be a transmembrane protein with an extracellular catalytic domain. PCR-targeted disruption of the gene resulted in a mutant that differentiated normally on complex SFM medium; however, morphological differentiation in minimal medium was significantly delayed and this phenotype was even more pronounced on osmotically enhanced minimal medium. The mutant did not sporulate when it was grown on R5 medium, however the normal morphological differentiation was restored when the strain was cultivated beside the wild-type S. coelicolor M145 strain. Comparison of the pattern of ADP-ribosylated proteins showed a difference between the mutant and the wild type, fewer modified proteins were present in the cellular crude extract of the mutant strain. These results support our previous suggestions that protein ADP-ribosylation is involved in the regulation of differentiation and antibiotic production and secretion in Streptomyces.
Collapse
Affiliation(s)
- Krisztina Szirák
- Department of Human Genetics, Medical and Health Science Center, University of Debrecen, Debrecen, Nagyerdei krt 98, H-4032, Hungary
| | | | | | | | | | | |
Collapse
|
6
|
Stallings CL, Chu L, Li LX, Glickman MS. Catalytic and non-catalytic roles for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. PLoS One 2011; 6:e21807. [PMID: 21789183 PMCID: PMC3138739 DOI: 10.1371/journal.pone.0021807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/07/2011] [Indexed: 01/28/2023] Open
Abstract
Recent evidence indicates that the mycobacterial response to DNA double strand breaks (DSBs) differs substantially from previously characterized bacteria. These differences include the use of three DSB repair pathways (HR, NHEJ, SSA), and the CarD pathway, which integrates DNA damage with transcription. Here we identify a role for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. Arr is transcriptionally induced following DNA damage and cellular stress. Although Arr is not required for induction of a core set of DNA repair genes, Arr is necessary for suppression of a set of ribosomal protein genes and rRNA during DNA damage, placing Arr in a similar pathway as CarD. Surprisingly, the catalytic activity of Arr is not required for this function, as catalytically inactive Arr was still able to suppress ribosomal protein and rRNA expression during DNA damage. In contrast, Arr substrate binding and catalytic activities were required for regulation of a small subset of other DNA damage responsive genes, indicating that Arr has both catalytic and noncatalytic roles in the DNA damage response. Our findings establish an endogenous cellular function for a mono-ADP-ribosyltransferase apart from its role in mediating Rifampin resistance.
Collapse
Affiliation(s)
- Christina L. Stallings
- Department of Molecular Microbiology Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linda Chu
- Immunology program, Sloan Kettering Institute, New York, New York, United States of America
| | - Lucy X. Li
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Summer Undergraduate Research Program, New York, New York, United States of America
| | - Michael S. Glickman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology program, Sloan Kettering Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Fahie K, Hu P, Swatkoski S, Cotter RJ, Zhang Y, Wolberger C. Side chain specificity of ADP-ribosylation by a sirtuin. FEBS J 2009; 276:7159-76. [PMID: 19895577 PMCID: PMC2805772 DOI: 10.1111/j.1742-4658.2009.07427.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endogenous mono-ADP-ribosylation in eukaryotes is involved in regulating protein synthesis, signal transduction, cytoskeletal integrity, and cell proliferation, although few cellular ADP-ribosyltransferases have been identified. The sirtuins constitute a highly conserved family of protein deacetylases, and several family members have also been reported to perform protein ADP-ribosylation. We characterized the ADP-ribosylation reaction of the nuclear sirtuin homolog Trypanosoma brucei SIR2-related protein 1 (TbSIR2RP1) on both acetylated and unacetylated substrates. We demonstrated that an acetylated substrate is not required for ADP-ribosylation to occur, indicating that the reaction performed by TbSIR2RP1 is a genuine enzymatic reaction and not a side reaction of deacetylation. Biochemical and MS data showed that arginine is the major ADP-ribose acceptor for unacetylated substrates, whereas arginine does not appear to be the major ADP-ribose acceptor in reactions with acetylated histone H1.1. We performed combined ab initio quantum mechanical/molecular mechanical molecular dynamics simulations, which indicated that sirtuin ADP-ribosylation at arginine is energetically feasible, and involves a concerted mechanism with a highly dissociative transition state. In comparison with the corresponding nicotinamide cleavage in the deacetylation reaction, the simulations suggest that sirtuin ADP-ribosylation would be several orders slower but less sensitive to nicotinamide inhibition, which is consistent with experimental results. These results suggest that TbSIR2RP1 can perform ADP-ribosylation using two distinct mechanisms, depending on whether or not the substrate is acetylated.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Po Hu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Stephen Swatkoski
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Bellinzoni M, Riccardi G. Techniques and applications: The heterologous expression of Mycobacterium tuberculosis genes is an uphill road. Trends Microbiol 2003; 11:351-8. [PMID: 12915092 DOI: 10.1016/s0966-842x(03)00180-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Marco Bellinzoni
- Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata, 1, 27100, Pavia, Italy
| | | |
Collapse
|
9
|
Abstract
There have been significant advances in genetic and molecular approaches to understanding the physiology of organisms belonging to the genera Mycobacterium, Corynebacterium, Nocardia and Streptomyces. This review discusses recent advances in heterologous protein expression in members of the actinomycete group, including codon usage, post-translational modification and inducible gene expression.
Collapse
Affiliation(s)
- N D Connell
- Department of Microbiology and Molecular Genetics, Ruy V Lourenco Center for Emerging and Re-emerging Pathogens, NJMS-National Tuberculosis Center, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
10
|
Pallen MJ, Lam AC, Loman NJ, McBride A. An abundance of bacterial ADP-ribosyltransferases--implications for the origin of exotoxins and their human homologues. Trends Microbiol 2001; 9:302-7; discussion 308. [PMID: 11435081 DOI: 10.1016/s0966-842x(01)02074-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ADP-ribosylation is a post-translational modification that can be seen in many contexts, including as the primary mechanism of action of many important bacterial exotoxins. By data-mining complete and incomplete bacterial genome sequences, we have discovered >20 novel putative ADP-ribosyltransferases, including several new potential toxins.
Collapse
Affiliation(s)
- M J Pallen
- Microbial Genomics and Pathogenesis Unit, Division of Immunity and Infection, The Medical School, University of Birmingham, B15 2TT, Birmingham, UK.
| | | | | | | |
Collapse
|
11
|
Dabbs ER, Quan S. Light inhibits rifampicin inactivation and reduces rifampicin resistance due to a cloned mycobacterial ADP-ribosylation gene. FEMS Microbiol Lett 2000; 182:105-9. [PMID: 10612740 DOI: 10.1111/j.1574-6968.2000.tb08882.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rifampicin is a principal drug used to combat infections by mycobacteria and related organisms. Most strains of Mycobacterium are able to inactivate this antibiotic by ribosylation via an ADP-ribosylated intermediate. We found that this inactivation was inhibited by light at levels similar to those prevailing in laboratory environments. Rifampicin resistance arising from the cloned ADP-ribosyl transferase was also greatly diminished at these light levels. The cloned Rhodococcus equi monooxygenase which inactivates this antibiotic by a different mechanism was, in contrast, not inhibited by light.
Collapse
Affiliation(s)
- E R Dabbs
- Department of Molecular and Cell Biology, University of the Witwatersrand, P.O. WITS 2050, Witwatersrand, South Africa.
| | | |
Collapse
|
12
|
Kim K, Zhang Y, Roberts GP. Correlation of activity regulation and substrate recognition of the ADP-ribosyltransferase that regulates nitrogenase activity in Rhodospirillum rubrum. J Bacteriol 1999; 181:1698-702. [PMID: 10049407 PMCID: PMC93565 DOI: 10.1128/jb.181.5.1698-1702.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodospirillum rubrum, nitrogenase activity is regulated posttranslationally through the ADP-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT). Several DRAT variants that are altered both in the posttranslational regulation of DRAT activity and in the ability to recognize variants of dinitrogenase reductase have been found. This correlation suggests that these two properties are biochemically connected.
Collapse
Affiliation(s)
- K Kim
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|