1
|
Knoke LR, Zimmermann J, Lupilov N, Schneider JF, Celebi B, Morgan B, Leichert LI. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Redox Biol 2023; 64:102800. [PMID: 37413765 DOI: 10.1016/j.redox.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo "steady state" redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from -228 mV to a more reducing -243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannis F Schneider
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Beyzanur Celebi
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
2
|
Wu D, Mehdipour AR, Finke F, Goojani HG, Groh RR, Grund TN, Reichhart TMB, Zimmermann R, Welsch S, Bald D, Shepherd M, Hummer G, Safarian S. Dissecting the conformational complexity and mechanism of a bacterial heme transporter. Nat Chem Biol 2023:10.1038/s41589-023-01314-5. [PMID: 37095238 PMCID: PMC10374445 DOI: 10.1038/s41589-023-01314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Iron-bound cyclic tetrapyrroles (hemes) are redox-active cofactors in bioenergetic enzymes. However, the mechanisms of heme transport and insertion into respiratory chain complexes remain unclear. Here, we used cellular, biochemical, structural and computational methods to characterize the structure and function of the heterodimeric bacterial ABC transporter CydDC. We provide multi-level evidence that CydDC is a heme transporter required for functional maturation of cytochrome bd, a pharmaceutically relevant drug target. Our systematic single-particle cryogenic-electron microscopy approach combined with atomistic molecular dynamics simulations provides detailed insight into the conformational landscape of CydDC during substrate binding and occlusion. Our simulations reveal that heme binds laterally from the membrane space to the transmembrane region of CydDC, enabled by a highly asymmetrical inward-facing CydDC conformation. During the binding process, heme propionates interact with positively charged residues on the surface and later in the substrate-binding pocket of the transporter, causing the heme orientation to rotate 180°.
Collapse
Affiliation(s)
- Di Wu
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | - Franziska Finke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Hojjat G Goojani
- Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Faculty of Science, Vrije University of Amsterdam, Amsterdam, the Netherlands
| | - Roan R Groh
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Tamara N Grund
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Thomas M B Reichhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Rita Zimmermann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Dirk Bald
- Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Faculty of Science, Vrije University of Amsterdam, Amsterdam, the Netherlands
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Schara Safarian
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany.
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt/Main, Germany.
| |
Collapse
|
3
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
4
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
6
|
CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc Natl Acad Sci U S A 2020; 117:23565-23570. [PMID: 32900959 DOI: 10.1073/pnas.2007817117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in Escherichia coli the component of cytochrome bd-I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the cydD phenotype, unlike that of the bona fide l-cysteine exporter eamA, parallels that of the l-cystine importer tcyP. Chromosomal induction of eamA, but not of cydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellular l-cysteine, whereas induction of cydDC or tcyP causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of cydD renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of cydDC sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by eamA overexpression. Furthermore, inactivation of the ferric uptake regulator (fur) in Ptet-cydDC or Ptet-tcyP cells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2 These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.
Collapse
|
7
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
8
|
Genomic and physiological insights into the lifestyle of Bifidobacterium species from water kefir. Arch Microbiol 2020; 202:1627-1637. [PMID: 32266422 DOI: 10.1007/s00203-020-01870-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Water kefir is a fermented beverage employing a natural microbial consortium, which harbours bifidobacteria, namely Bifidobacterium aquikefiri and Bifidobacterium tibiigranuli. However, little information is available on their metabolic properties or role in the consortium. In this study, we combined genomic and physiologic investigations to predict and characterize the properties of these organisms and their possible role in the consortium. When comparing the genomes of these psychrotrophic organisms with that of the three selected mesophilic probiotic Bifidobacterium strains, we could find 143 genes shared by the 3 known isolates of bifidobacteria from water kefir that do not occur in the probiotic strains. These include genes involved in acid and oxygen tolerance. In addition, their genomically predicted carbohydrate usage and transport suggest adaptation to sucrose and other plant-related sugars. Furthermore, they proved prototrophic for all amino acids in vitro, which enables them to cope with the strong amino acid limitation in water kefir.
Collapse
|
9
|
Reis AC, Kolvenbach BA, Chami M, Gales L, Egas C, Corvini PFX, Nunes OC. Comparative genomics reveals a novel genetic organization of the sad cluster in the sulfonamide-degrader 'Candidatus Leucobacter sulfamidivorax' strain GP. BMC Genomics 2019; 20:885. [PMID: 31752666 PMCID: PMC6868719 DOI: 10.1186/s12864-019-6206-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/21/2019] [Indexed: 02/01/2023] Open
Abstract
Background Microbial communities recurrently establish metabolic associations resulting in increased fitness and ability to perform complex tasks, such as xenobiotic degradation. In a previous study, we have described a sulfonamide-degrading consortium consisting of a novel low-abundant actinobacterium, named strain GP, and Achromobacter denitrificans PR1. However, we found that strain GP was unable to grow independently and could not be further purified. Results Previous studies suggested that strain GP might represent a new putative species within the Leucobacter genus (16S rRNA gene similarity < 97%). In this study, we found that average nucleotide identity (ANI) with other Leucobacter spp. ranged between 76.8 and 82.1%, further corroborating the affiliation of strain GP to a new provisional species. The average amino acid identity (AAI) and percentage of conserved genes (POCP) values were near the lower edge of the genus delimitation thresholds (65 and 55%, respectively). Phylogenetic analysis of core genes between strain GP and Leucobacter spp. corroborated these findings. Comparative genomic analysis indicates that strain GP may have lost genes related to tetrapyrrole biosynthesis and thiol transporters, both crucial for the correct assembly of cytochromes and aerobic growth. However, supplying exogenous heme and catalase was insufficient to abolish the dependent phenotype. The actinobacterium harbors at least two copies of a novel genetic element containing a sulfonamide monooxygenase (sadA) flanked by a single IS1380 family transposase. Additionally, two homologs of sadB (4-aminophenol monooxygenase) were identified in the metagenome-assembled draft genome of strain GP, but these were not located in the vicinity of sadA nor of mobile or integrative elements. Conclusions Comparative genomics of the genus Leucobacter suggested the absence of some genes encoding for important metabolic traits in strain GP. Nevertheless, although media and culture conditions were tailored to supply its potential metabolic needs, these conditions were insufficient to isolate the PR1-dependent actinobacterium further. This study gives important insights regarding strain GP metabolism; however, gene expression and functional studies are necessary to characterize and further isolate strain GP. Based on our data, we propose to classify strain GP in a provisional new species within the genus Leucobacter, ‘Candidatus Leucobacter sulfamidivorax‘.
Collapse
Affiliation(s)
- Ana C Reis
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering - LEPABE, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Mohamed Chami
- BioEM lab, C-Cina, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde - i3S, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - ICBAS, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Conceição Egas
- Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197, Cantanhede, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 3004-504, Coimbra, Portugal
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering - LEPABE, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
10
|
Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med 2019; 140:14-27. [PMID: 31201851 PMCID: PMC7041647 DOI: 10.1016/j.freeradbiomed.2019.05.035] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
The sulfur biochemistry of the thiol group endows cysteines with a number of highly specialized and unique features that enable them to serve a variety of different functions in the cell. Typically highly conserved in proteins, cysteines are predominantly found in functionally or structurally crucial regions, where they act as stabilizing, catalytic, metal-binding and/or redox-regulatory entities. As highly abundant low molecular weight thiols, cysteine thiols and their oxidized disulfide counterparts are carefully balanced to maintain redox homeostasis in various cellular compartments, protect organisms from oxidative and xenobiotic stressors and partake actively in redox-regulatory and signaling processes. In this review, we will discuss the role of protein thiols as scavengers of hydrogen peroxide in antioxidant enzymes, use thiol peroxidases to exemplify how protein thiols contribute to redox signaling, provide an overview over the diverse set of low molecular weight thiol-based redox systems found in biology, and illustrate how thiol-based redox systems have evolved not only to protect against but to take full advantage of a world full of molecular oxygen.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Anderson MT, Mitchell LA, Sintsova A, Rice KA, Mobley HLT. Sulfur Assimilation Alters Flagellar Function and Modulates the Gene Expression Landscape of Serratia marcescens. mSystems 2019; 4:e00285-19. [PMID: 31387930 PMCID: PMC6687942 DOI: 10.1128/msystems.00285-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/24/2019] [Indexed: 11/29/2022] Open
Abstract
Sulfur is an essential nutrient that contributes to cellular redox homeostasis, transcriptional regulation, and translation initiation when incorporated into different biomolecules. Transport and reduction of extracellular sulfate followed by cysteine biosynthesis is a major pathway of bacterial sulfur assimilation. For the opportunistic pathogen Serratia marcescens, function of the cysteine biosynthesis pathway is required for extracellular phospholipase activity and flagellum-mediated surface motility, but little else is known about the influence of sulfur assimilation on the physiology of this organism. In this work, it was determined that an S. marcescens cysteine auxotroph fails to differentiate into hyperflagellated and elongated swarmer cells and that cysteine, but not other organic sulfur molecules, restores swarming motility to these bacteria. The S. marcescens cysteine auxotroph further exhibits reduced transcription of phospholipase, hemolysin, and flagellin genes, each of which is subject to transcriptional control by the flagellar regulatory system. Based on these data and the central role of cysteine in sulfur assimilation, it was reasoned that environmental sulfur availability may contribute to the regulation of these functions in S. marcescens Indeed, bacteria that are starved for sulfate exhibit substantially reduced transcription of the genes for hemolysin, phospholipase, and the FlhD flagellar master regulator. A global transcriptomic analysis further defined a large set of S. marcescens genes that are responsive to extracellular sulfate availability, including genes that encode membrane transport, nutrient utilization, and metabolism functions. Finally, sulfate availability was demonstrated to alter S. marcescens cytolytic activity, suggesting that sulfate assimilation may impact the virulence of this organism.IMPORTANCE Serratia marcescens is a versatile bacterial species that inhabits diverse environmental niches and is capable of pathogenic interactions with host organisms ranging from insects to humans. This report demonstrates for the first time the extensive impacts that environmental sulfate availability and cysteine biosynthesis have on the transcriptome of S. marcescens The finding that greater than 1,000 S. marcescens genes are differentially expressed depending on sulfate availability suggests that sulfur abundance is a crucial factor that controls the physiology of this organism. Furthermore, the high relative expression levels for the putative virulence factors flagella, phospholipase, and hemolysin in the presence of sulfate suggests that a sulfur-rich host environment could contribute to the transcription of these genes during infection.
Collapse
Affiliation(s)
- Mark T Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lindsay A Mitchell
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine A Rice
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Poole RK, Cozens AG, Shepherd M. The CydDC family of transporters. Res Microbiol 2019; 170:407-416. [PMID: 31279084 DOI: 10.1016/j.resmic.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
The CydDC family of ABC transporters export the low molecular weight thiols glutathione and cysteine to the periplasm of a variety of bacterial species. The CydDC complex has previously been shown to be important for disulfide folding, motility, respiration, and tolerance to nitric oxide and antibiotics. In addition, CydDC is thus far unique amongst ABC transporters in that it binds a haem cofactor that appears to modulate ATPase activity. CydDC has a diverse impact upon bacterial metabolism, growth, and virulence, and is of interest to those working on membrane transport mechanisms, redox biology, aerobic respiration, and stress sensing/tolerance during infection.
Collapse
Affiliation(s)
- Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Adam G Cozens
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom.
| |
Collapse
|
13
|
Eng T, Demling P, Herbert RA, Chen Y, Benites V, Martin J, Lipzen A, Baidoo EEK, Blank LM, Petzold CJ, Mukhopadhyay A. Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC. Microb Cell Fact 2018; 17:159. [PMID: 30296937 PMCID: PMC6174563 DOI: 10.1186/s12934-018-1006-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Microbial production of chemicals from renewable carbon sources enables a sustainable route to many bioproducts. Sugar streams, such as those derived from biomass pretreated with ionic liquids (IL), provide efficiently derived and cost-competitive starting materials. A limitation to this approach is that residual ILs in the pretreated sugar source can be inhibitory to microbial growth and impair expression of the desired biosynthetic pathway. RESULTS We utilized laboratory evolution to select Escherichia coli strains capable of robust growth in the presence of the IL, 1-ethyl-3-methyl-imidizolium acetate ([EMIM]OAc). Whole genome sequencing of the evolved strain identified a point mutation in an essential gene, cydC, which confers tolerance to two different classes of ILs at concentrations that are otherwise growth inhibitory. This mutation, cydC-D86G, fully restores the specific production of the bio-jet fuel candidate D-limonene, as well as the biogasoline and platform chemical isopentenol, in growth medium containing ILs. Similar amino acids at this position in cydC, such as cydC-D86V, also confer tolerance to [EMIM]OAc. We show that this [EMIM]OAc tolerance phenotype of cydC-D86G strains is independent of its wild-type function in activating the cytochrome bd-I respiratory complex. Using shotgun proteomics, we characterized the underlying differential cellular responses altered in this mutant. While wild-type E. coli cannot produce detectable amounts of either product in the presence of ILs at levels expected to be residual in sugars from pretreated biomass, the engineered cydC-D86G strains produce over 200 mg/L D-limonene and 350 mg/L isopentenol, which are among the highest reported titers in the presence of [EMIM]OAc. CONCLUSIONS The optimized strains in this study produce high titers of two candidate biofuels and bioproducts under IL stress. Both sets of production strains surpass production titers from other IL tolerant mutants in the literature. Our application of laboratory evolution identified a gain of function mutation in an essential gene, which is unusual in comparison to other published IL tolerant mutants.
Collapse
Affiliation(s)
- Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Philipp Demling
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074 Aachen, Germany
| | - Robin A. Herbert
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Veronica Benites
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Joel Martin
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598 USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598 USA
| | - Edward E. K. Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074 Aachen, Germany
| | - Christopher J. Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
14
|
Iqbal IK, Bajeli S, Akela AK, Kumar A. Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery. Pathogens 2018; 7:E24. [PMID: 29473841 PMCID: PMC5874750 DOI: 10.3390/pathogens7010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail.
Collapse
Affiliation(s)
- Iram Khan Iqbal
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Sapna Bajeli
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ajit Kumar Akela
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| |
Collapse
|
15
|
Yassin AF, Langenberg S, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Mukherjee S, Reddy TBK, Daum C, Shapiro N, Ivanova N, Woyke T, Kyrpides NC. Draft genome sequence of Actinotignum schaalii DSM 15541T: Genetic insights into the lifestyle, cell fitness and virulence. PLoS One 2017; 12:e0188914. [PMID: 29216246 PMCID: PMC5720513 DOI: 10.1371/journal.pone.0188914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.
Collapse
Affiliation(s)
- Atteyet F. Yassin
- Institut für medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
- * E-mail:
| | - Stefan Langenberg
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, Bonn, Germany
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Alicia Clum
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Manoj Pillay
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Krishnaveni Palaniappan
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Neha Varghese
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, Bonn, Germany
| | - Natalia Mikhailova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Supratim Mukherjee
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - T. B. K. Reddy
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Chris Daum
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Nikos C. Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| |
Collapse
|
16
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
18
|
Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis. Sci Rep 2017; 7:42609. [PMID: 28195212 PMCID: PMC5307378 DOI: 10.1038/srep42609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
In many bacteria, OxyR is the major regulator controlling cellular response to H2O2. A common phenotype resulting from OxyR loss is reduced growth rate, but the underlying mechanism is unknown. We demonstrated in Shewanella oneidensis, an important research model for applied and environmental microbes, that the defect is primarily due to an electron shortage to major terminal oxidase cytochrome cbb3. The loss of OxyR leads to enhanced production of electron carriers that compete for electrons against cytochrome cbb3, cytochrome bd in particular. We further showed that the oxyR mutation also results in increased production of menaquinone, an additional means to lessen electrons to cytochrome cbb3. Although regulation of OxyR on these biological processes appears to be indirect, these data indicate that the regulator plays a previously underappreciated role in mediating respiration.
Collapse
|
19
|
Charbon G, Campion C, Chan SHJ, Bjørn L, Weimann A, da Silva LCN, Jensen PR, Løbner-Olesen A. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli. PLoS Genet 2017; 13:e1006590. [PMID: 28129339 PMCID: PMC5302844 DOI: 10.1371/journal.pgen.1006590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/10/2017] [Accepted: 01/18/2017] [Indexed: 11/23/2022] Open
Abstract
Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability. In most bacteria chromosome replication is initiated by the DnaA protein. In Escherichia coli, DnaA binds ATP and ADP with similar affinity but only the ATP bound form is active. An increased level of DnaAATP causes overinitiation and cell death by accumulation of DNA strand breaks. These strand breaks often result from forks encountering gapped DNA formed during repair of oxidative damage. We provide evidence that cell death in overinitiating cells can be prevented by rewiring the metabolism to favor the micro-aerobic respiratory chain with the cytochrome bd-1 as terminal oxidase. Cytochrome bd-1 is found in aerobic as well as anaerobic bacteria. Its role is to reduce O2 in micro-aerobic conditions and work as an electron sink to prevent the formation of reactive oxygen species. Our results suggest that bacteria can cope with replication stress by increasing respiration through cytochrome bd-1 to reduce the formation of reactive oxygen species, and hence oxidative damage to a level that does not interfere with replication fork progression.
Collapse
Affiliation(s)
- Godefroid Charbon
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Campion
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Siu Hung Joshua Chan
- National Food Institute, Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby, Denmark
| | - Louise Bjørn
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Allan Weimann
- Laboratory of Clinical Pharmacology, Rigshospitalet, Section Q7642, Copenhagen Denmark and Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospitals, Copenhagen Denmark
| | - Luís Cláudio Nascimento da Silva
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby, Denmark
| | - Anders Løbner-Olesen
- Dept. of Biology, Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
20
|
The CydDC ABC transporter of Escherichia coli: new roles for a reductant efflux pump. Biochem Soc Trans 2016; 43:908-12. [PMID: 26517902 DOI: 10.1042/bst20150098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette (ABC) transporter that exports cysteine and glutathione to the periplasm. These reductants are thought to modulate periplasmic redox poise, impacting upon the disulfide folding of periplasmic and secreted proteins involved in bacterial virulence. Diminished CydDC activity abolishes the assembly of functional bd-type respiratory oxidases and perturbs haem ligation during the assembly of c-type cytochromes. The focus herein is upon a newly-discovered interaction of the CydDC complex with a haem cofactor; haem has recently been shown to modulate CydDC activity and structural modelling reveals a potential haem-binding site on the periplasmic surface of the complex. These findings have important implications for future investigations into the potential roles for the CydDC-bound haem in redox sensing and tolerance to nitric oxide (NO).
Collapse
|
21
|
Cytochrome bd Displays Significant Quinol Peroxidase Activity. Sci Rep 2016; 6:27631. [PMID: 27279363 PMCID: PMC4899803 DOI: 10.1038/srep27631] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme.
Collapse
|
22
|
Truong QL, Cho Y, Park S, Park BK, Hahn TW. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice. Microb Pathog 2016; 95:175-185. [PMID: 27057678 DOI: 10.1016/j.micpath.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
Abstract
Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus.
Collapse
Affiliation(s)
- Quang Lam Truong
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Youngjae Cho
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Soyeon Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Bo-Kyoung Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea.
| |
Collapse
|
23
|
Holyoake LV, Hunt S, Sanguinetti G, Cook GM, Howard MJ, Rowe ML, Poole RK, Shepherd M. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress. Biochem J 2016; 473:693-701. [PMID: 26699904 PMCID: PMC4785604 DOI: 10.1042/bj20150536] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
The glutathione/cysteine exporter CydDC maintains redox balance in Escherichia coli. A cydD mutant strain was used to probe the influence of CydDC upon reduced thiol export, gene expression, metabolic perturbations, intracellular pH homoeostasis and tolerance to nitric oxide (NO). Loss of CydDC was found to decrease extracytoplasmic thiol levels, whereas overexpression diminished the cytoplasmic thiol content. Transcriptomic analysis revealed a dramatic up-regulation of protein chaperones, protein degradation (via phenylpropionate/phenylacetate catabolism), β-oxidation of fatty acids and genes involved in nitrate/nitrite reduction. (1)H NMR metabolomics revealed elevated methionine and betaine and diminished acetate and NAD(+) in cydD cells, which was consistent with the transcriptomics-based metabolic model. The growth rate and ΔpH, however, were unaffected, although the cydD strain did exhibit sensitivity to the NO-releasing compound NOC-12. These observations are consistent with the hypothesis that the loss of CydDC-mediated reductant export promotes protein misfolding, adaptations to energy metabolism and sensitivity to NO. The addition of both glutathione and cysteine to the medium was found to complement the loss of bd-type cytochrome synthesis in a cydD strain (a key component of the pleiotropic cydDC phenotype), providing the first direct evidence that CydDC substrates are able to restore the correct assembly of this respiratory oxidase. These data provide an insight into the metabolic flexibility of E. coli, highlight the importance of bacterial redox homoeostasis during nitrosative stress, and report for the first time the ability of periplasmic low molecular weight thiols to restore haem incorporation into a cytochrome complex.
Collapse
Affiliation(s)
| | - Stuart Hunt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Guido Sanguinetti
- School of Informatics, The University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, U.K
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Michelle L Rowe
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K.
| |
Collapse
|
24
|
Abstract
Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3 -type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis.
Collapse
|
25
|
Brucella abortusΔcydCΔcydD and ΔcydCΔpurD double-mutants are highly attenuated and confer long-term protective immunity against virulent Brucella abortus. Vaccine 2015; 34:237-244. [PMID: 26616550 DOI: 10.1016/j.vaccine.2015.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 11/24/2022]
Abstract
We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis.
Collapse
|
26
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
27
|
Truong QL, Cho Y, Kim K, Park BK, Hahn TW. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice. MICROBIOLOGY-SGM 2015; 161:2137-48. [PMID: 26341622 DOI: 10.1099/mic.0.000170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.
Collapse
Affiliation(s)
- Quang Lam Truong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Youngjae Cho
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kiju Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bo-Kyoung Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
28
|
Holyoake LV, Poole RK, Shepherd M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Adv Microb Physiol 2015. [PMID: 26210105 DOI: 10.1016/bs.ampbs.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection.
Collapse
|
29
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
30
|
Borisov VB, Forte E, Siletsky SA, Sarti P, Giuffrè A. Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:182-188. [PMID: 25449967 DOI: 10.1016/j.bbabio.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022]
Abstract
Cytochrome bd is a prokaryotic respiratory quinol oxidase phylogenetically unrelated to heme-copper oxidases, that was found to promote virulence in some bacterial pathogens. Cytochrome bd from Escherichia coli was previously reported to contribute not only to proton motive force generation, but also to bacterial resistance to nitric oxide (NO) and hydrogen peroxide (H2O2). Here, we investigated the interaction of the purified enzyme with peroxynitrite (ONOO(-)), another harmful reactive species produced by the host to kill invading microorganisms. We found that addition of ONOO(-) to cytochrome bd in turnover with ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) causes the irreversible inhibition of a small (≤15%) protein fraction, due to the NO generated from ONOO(-) and not to ONOO(-) itself. Consistently, addition of ONOO(-) to cells of the E. coli strain GO105/pTK1, expressing cytochrome bd as the only terminal oxidase, caused only a minor (≤5%) irreversible inhibition of O2 consumption, without measurable release of NO. Furthermore, by directly monitoring the kinetics of ONOO(-) decomposition by stopped-flow absorption spectroscopy, it was found that the purified E. coli cytochrome bd in turnover with O2 is able to metabolize ONOO(-) with an apparent turnover rate as high as ~10 mol ONOO(-) (mol enzyme)(-1) s(-1) at 25°C. To the best of our knowledge, this is the first time that the kinetics of ONOO(-) decomposition by a terminal oxidase has been investigated. These results strongly suggest a protective role of cytochrome bd against ONOO(-) damage.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Elena Forte
- Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Paolo Sarti
- Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | | |
Collapse
|
31
|
Characterization and protective property of Brucella abortus cydC and looP mutants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1573-80. [PMID: 25253663 DOI: 10.1128/cvi.00164-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response.
Collapse
|
32
|
Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1178-87. [PMID: 24486503 DOI: 10.1016/j.bbabio.2014.01.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme-copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
33
|
Berney M, Cook GM. Respiration and Oxidative Phosphorylation in Mycobacteria. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity. J Bacteriol 2013; 195:3640-50. [PMID: 23749980 DOI: 10.1128/jb.00324-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity. In addition, cell membrane extracts from ΔcydX mutant strains have reduced oxidase activity in vitro. Consistent with data showing that CydX is required for cytochrome bd oxidase activity, copurification experiments indicate that CydX interacts with the CydAB cytochrome bd oxidase complex. Together, these data support the hypothesis that CydX is a subunit of the CydAB cytochrome bd oxidase complex that is required for complex activity. The results of mutation analysis of CydX suggest that few individual amino acids in the small protein are essential for function, at least in the context of protein overexpression. In addition, the results of analysis of the paralogous small transmembrane protein AppX show that the two proteins could have some overlapping functionality in the cell and that both have the potential to interact with the CydAB complex.
Collapse
|
35
|
Bode M, Longen S, Morgan B, Peleh V, Dick TP, Bihlmaier K, Herrmann JM. Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest. Antioxid Redox Signal 2013; 18:1597-612. [PMID: 23198688 PMCID: PMC3613174 DOI: 10.1089/ars.2012.4685] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/09/2012] [Accepted: 12/01/2012] [Indexed: 11/12/2022]
Abstract
AIMS To identify yeast mutants that show a strong redox dependence of the ability to respire, we systematically screened a yeast deletion library for mutants that require the presence of reductants for growth on nonfermentable carbon sources. RESULTS Respirative growth of 44 yeast mutants was significantly improved by the addition of dithiothreitol or glutathione. Two mutants that were strongly stimulated by reductants lacked the proteins Cmc1 and Coa4. Both proteins belong to the family of "twin Cx(9)C" proteins present in the intermembrane space of mitochondria. Deletion of CMC1 or COA4 leads to assembly defects of cytochrome c oxidase, in particular to the lack of Cox1 and rapid degradation of Cox2 and Cox3. Interestingly, the presence of the reductants does not suppress these assembly defects and the levels of cytochrome c oxidase remain reduced. Reductants and antioxidants such as ascorbic acid rather counteract the effects of hydrogen peroxide that is produced from partially assembled cytochrome c oxidase intermediates. INNOVATION Here we show that oxidative stress generated by the accumulation of partially assembled respiratory chain complexes prevents growth on carbon sources that force cells to respire. CONCLUSION Defects in the assembly of cytochrome c oxidase can lead to increased production of hydrogen peroxide, which is sensed in cells and blocks their proliferation. We propose that this redox-regulated feedback regulation specifically slows down the propagation of cells carrying respiratory chain mutations in order to select for cells of high mitochondrial fitness.
Collapse
Affiliation(s)
- Manuela Bode
- Division of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sebastian Longen
- Division of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Bruce Morgan
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valentina Peleh
- Division of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tobias P. Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl Bihlmaier
- Division of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
36
|
Abstract
Competition for molecular oxygen (O(2)) among respiratory microorganisms is intense because O(2) is a potent electron acceptor. This competition leads to the formation of microoxic environments wherever microorganisms congregate in aquatic, terrestrial and host-associated communities. Bacteria can harvest O(2) present at low, even nanomolar, concentrations using high-affinity terminal oxidases. Here, we report the results of surveys searching for high-affinity terminal oxidase genes in sequenced bacterial genomes and shotgun metagenomes. The results indicate that bacteria with the potential to respire under microoxic conditions are phylogenetically diverse and intriguingly widespread in nature. We explore the implications of these findings by highlighting the importance of microaerobic metabolism in host-associated bacteria related to health and disease.
Collapse
|
37
|
Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol. Appl Environ Microbiol 2012; 78:5622-9. [PMID: 22660712 DOI: 10.1128/aem.00733-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously isolated respiratory-deficient mutant (RDM) strains of Zymomonas mobilis, which exhibited greater growth and enhanced ethanol production under aerobic conditions. These RDM strains also acquired thermotolerance. Morphologically, the cells of all RDM strains were shorter compared to the wild-type strain. We investigated the respiratory chains of these RDM strains and found that some RDM strains lost NADH dehydrogenase activity, whereas others exhibited reduced cytochrome bd-type ubiquinol oxidase or ubiquinol peroxidase activities. Complementation experiments restored the wild-type phenotype. Some RDM strains seem to have certain mutations other than the corresponding respiratory chain components. RDM strains with deficient NADH dehydrogenase activity displayed the greatest amount of aerobic growth, enhanced ethanol production, and thermotolerance. Nucleotide sequence analysis revealed that all NADH dehydrogenase-deficient strains were mutated within the ndh gene, which includes insertion, deletion, or frameshift. These results suggested that the loss of NADH dehydrogenase activity permits the acquisition of higher aerobic growth, enhanced ethanol production, and thermotolerance in this industrially important strain.
Collapse
|
38
|
Dresler J, Klimentova J, Stulik J. Francisella tularensis membrane complexome by blue native/SDS-PAGE. J Proteomics 2011; 75:257-69. [DOI: 10.1016/j.jprot.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
|
39
|
Abstract
The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organism's metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (approximately 3 log(10)) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organism's pathogenesis and genetics and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens.
Collapse
|
40
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 981] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
41
|
Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 2008; 190:4903-11. [PMID: 18487342 DOI: 10.1128/jb.00447-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O(2) and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis.
Collapse
|
42
|
Chang W, Small DA, Toghrol F, Bentley WE. Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 2006; 188:1648-59. [PMID: 16452450 PMCID: PMC1367260 DOI: 10.1128/jb.188.4.1648-1659.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism.
Collapse
Affiliation(s)
- Wook Chang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park 20742, USA
| | | | | | | |
Collapse
|
43
|
Atkins HS, Dassa E, Walker NJ, Griffin KF, Harland DN, Taylor RR, Duffield ML, Titball RW. The identification and evaluation of ATP binding cassette systems in the intracellular bacterium Francisella tularensis. Res Microbiol 2006; 157:593-604. [PMID: 16503121 DOI: 10.1016/j.resmic.2005.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/29/2005] [Accepted: 12/08/2005] [Indexed: 11/22/2022]
Abstract
Francisella tularensis is a facultative intracellular bacterium responsible for the disease tularemia. Analysis of the fully sequenced genome of the virulent F. tularensis strain SCHU S4 has led to the identification of twenty ATP binding cassette (ABC) systems, of which five appear to be non-functional. The fifteen complete systems comprise three importers, five exporters, four systems involved in non-transport processes, and three systems of unknown or ill-defined function. The number and classification of the ABC systems in F. tularensis is similar to that observed in other intracellular bacteria, indicating that some of these systems may be important for the intracellular lifestyle of these organisms. Among the ABC systems identified in the genome are systems that may be involved in the virulence of F. tularensis SCHU S4. Six ABC system proteins were evaluated as candidate vaccine antigens against tularemia, although none provided significant protection against F. tularensis. However, a greater understanding of these systems may lead to the development of countermeasures against F. tularensis.
Collapse
Affiliation(s)
- Helen S Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mossialos D, Tavankar GR, Zlosnik JEA, Williams HD. Defects in a quinol oxidase lead to loss of KatC catalase activity in Pseudomonas aeruginosa: KatC activity is temperature dependent and it requires an intact disulphide bond formation system. Biochem Biophys Res Commun 2006; 341:697-702. [PMID: 16430860 DOI: 10.1016/j.bbrc.2005.12.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/21/2005] [Indexed: 11/24/2022]
Abstract
Mutation or overexpression of the cyanide-insensitive terminal oxidase (CIO) of Pseudomonas aeruginosa leads to temperature-sensitivity, multiple antibiotic sensitivity, and abnormal cell division and failure to produce a temperature-inducible catalase [G.R. Tavankar, D. Mossialos, H.D. Williams, Mutation or overexpression of a terminal oxidase leads to a cell division defect and multiple antibiotic sensitivity in Pseudomonas aeruginosa, J. Biol. Chem. 278 (2003) 4524-4530]. We identify this enzyme as KatC, a newly described catalase from P. aeruginosa. Loss of KatC activity leads to temperature-dependent hydrogen peroxide sensitivity, which correlates with its temperature-inducible expression pattern. This is the first description, to our knowledge, of a temperature-inducible bacterial catalase. The transcription of katC is not affected in strains lacking or overexpressing the CIO, indicating that a post-transcriptional effect leads to loss of KatC activity. Disulphide bond formation is affected in strains lacking or overexpressing the CIO. This is shown by reduced activity of the extracellular enzymes lipase and elastase, and an altered pattern of redox states of DsbA, a key protein in disulphide bond formation in P. aeruginosa, in these strains. Moreover, a dsbA mutant had no detectable KatC activity, demonstrating that an intact disulphide bond formation system is required for KatC activity and thus explaining the loss of this catalase in the cio mutant and overexpressing strains.
Collapse
Affiliation(s)
- Dimitris Mossialos
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
45
|
Minohara S, Sakamoto J, Sone N. Improved H+/O ratio and cell yield of Escherichia coli with genetically altered terminal quinol oxidases. J Biosci Bioeng 2005; 93:464-9. [PMID: 16233233 DOI: 10.1016/s1389-1723(02)80093-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2001] [Accepted: 02/11/2002] [Indexed: 11/17/2022]
Abstract
Escherichia coli wild-type cells, containing both cytochrome bo- and bd-type terminal oxidases, pumped protons with a H+/O ratio of 4.5-4.9 upon an oxygen pulse, while mutant cells, deprived of either cytochrome bo (deltacyo) or bd (deltacyd), showed values of 3.5-4.1 or 4.8-5.6, respectively. The cell yield of the cyo-less mutant was about 15% lower than that of the wild-type strain, while that of the cyd-less strain which over-produced cytochrome bo was about 10% higher than that of the wild-type. The simple cyd-less strain without over-production of cytochrome bo showed a high H+/O ratio, but its cell yield was low and variable from culture to culture. The growth inhibition and accelerated H+ permeability of the cell membrane of the latter strain seems due to the deletion of cytochrome bd (CydAB), the terminal oxidase having a very low K(m) for O2, which may result in severe stress on the cell. Over-production of cytochrome bo by as much as 0.4 nmol/mg membrane protein could compensate for this defect.
Collapse
Affiliation(s)
- Shinji Minohara
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | | | | |
Collapse
|
46
|
Pittman MS, Robinson HC, Poole RK. A Bacterial Glutathione Transporter (Escherichia coli CydDC) Exports Reductant to the Periplasm. J Biol Chem 2005; 280:32254-61. [PMID: 16040611 DOI: 10.1074/jbc.m503075200] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione (GSH), a major biological antioxidant, maintains redox balance in prokaryotes and eukaryotic cells and forms exportable conjugates with compounds of pharmacological and agronomic importance. However, no GSH transporter has been characterized in a prokaryote. We show here that a heterodimeric ATP-binding cassette-type transporter, CydDC, mediates GSH transport across the Escherichia coli cytoplasmic membrane. In everted membrane vesicles, GSH is imported via an ATP-driven, protonophore-insensitive, orthovanadate-sensitive mechanism, equating with export to the periplasm in intact cells. GSH transport and cytochrome bd quinol oxidase assembly are abolished in the cydD1 mutant. Glutathione disulfide (GSSG) was not transported in either Cyd(+) or Cyd(-) strains. Exogenous GSH restores defective swarming motility and benzylpenicillin sensitivity in a cydD mutant and also benzylpenicillin sensitivity in a gshA mutant defective in GSH synthesis. Overexpression of the cydDC operon in dsbD mutants defective in disulfide bond formation restores dithiothreitol tolerance and periplasmic cytochrome b assembly, revealing redundant pathways for reductant export to the periplasm. These results identify the first prokaryotic GSH transporter and indicate a key role for GSH in periplasmic redox homeostasis.
Collapse
Affiliation(s)
- Marc S Pittman
- Department of Molecular Biology and Biotechnology, Firth Court, The University of Sheffield, UK
| | | | | |
Collapse
|
47
|
Strauss B, Kelly K, Ekiert D. Cytochrome oxidase deficiency protects Escherichia coli from cell death but not from filamentation due to thymine deficiency or DNA polymerase inactivation. J Bacteriol 2005; 187:2827-35. [PMID: 15805529 PMCID: PMC1070382 DOI: 10.1128/jb.187.8.2827-2835.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Temperature-sensitive DNA polymerase mutants (dnaE) are protected from cell death on incubation at nonpermissive temperature by mutation in the cydA gene controlling cytochrome bd oxidase. Protection is observed in complex (Luria-Bertani [LB]) medium but not on minimal medium. The cydA mutation protects a thymine-deficient strain from death in the absence of thymine on LB but not on minimal medium. Both dnaE and Deltathy mutants filament under nonpermissive conditions. Filamentation per se is not the cause of cell death, because the dnaE cydA double mutant forms long filaments after 24 h of incubation in LB medium at nonpermissive temperature. These filaments have multiply dispersed nucleoids and produce colonies on return to permissive conditions. The protective effect of a deficiency of cydA at high temperature is itself suppressed by overexpression of cytochrome bo3, indicating that the phenomenon is related to energy metabolism rather than to a specific effect of the cydA protein. We propose that filamentation and cell death resulting from thymine deprivation or slowing of DNA synthesis are not sequential events but occur in response to the same or a similar signal which is modulated in complex medium by cytochrome bd oxidase. The events which follow inhibition of replication fork progression due to either polymerase inactivation, thymine deprivation, or hydroxyurea inhibition differ in detail from those following actual DNA damage.
Collapse
Affiliation(s)
- Bernard Strauss
- Center for Molecular and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
48
|
Rezaïki L, Cesselin B, Yamamoto Y, Vido K, van West E, Gaudu P, Gruss A. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 2004; 53:1331-42. [PMID: 15387813 DOI: 10.1111/j.1365-2958.2004.04217.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The impact of oxygen on a cell is strongly dependent on its metabolic state: survival in oxygen of free-living Lactococcus lactis, best known as a fermenting, acidifying bacterium, is generally poor. In contrast, if haem is present, L. lactis uses oxygen to switch from fermentation to respiration metabolism late in growth, resulting in spectacularly improved long-term survival. Oxygen is thus beneficial rather than detrimental for survival if haem is provided. We examined the effects of respiration on oxygen toxicity by comparing integrity of stationary phase cells after aerated growth without and with added haem. Aeration (no haem) growth caused considerable cellular protein and chromosomal DNA damage, increased spontaneous mutation frequencies and poor survival of recA mutants. These phenotypes were greatly diminished when haem was present, indicating that respiration constitutes an efficient barrier against oxidative stress. Using the green fluorescent protein as an indicator of intracellular oxidation state, we showed that aeration growth provokes significantly greater oxidation than respiration growth. Iron was identified as a main contributor to mortality and DNA degradation in aeration growth. Our results point to two features of respiration growth in lactococci that are responsible for maintaining low oxidative damage: One is a more reduced intracellular state, which is because of efficient oxygen elimination by respiration. The other is a higher pH resulting from the shift from acid-forming fermentation to respiration metabolism. These results have relevance to other bacteria whose respiration capacity depends on addition of exogenous haem.
Collapse
Affiliation(s)
- Lahcen Rezaïki
- Génétique Appliquée--URLGA, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Members of the bacterial genus Brucella are facultative intracellular pathogens that reside predominantly within membrane-bound compartments within two host cell types, macrophages and placental trophoblasts. Within macrophages, the brucellae route themselves to an intracellular compartment that is favourable for survival and replication, and they also appear to be well-adapted from a physiological standpoint to withstand the environmental conditions encountered during prolonged residence in this intracellular niche. Much less is known about the interactions of the Brucella with placental trophoblasts, but experimental evidence suggests that these bacteria use an iron acquisition system to support extensive intracellular replication within these host cells that is not required for survival and replication in host macrophages. Thus, it appears that the brucellae rely upon the products of distinct subsets of genes to adapt successfully to the environmental conditions encountered within the two cell types within which they reside in their mammalian hosts.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, 600 Moye Boulevard, Greenville, NC 27858-4354, USA.
| | | | | | | |
Collapse
|
50
|
Strauss B, Kelly K, Dincman T, Ekiert D, Biesieda T, Song R. Cell death in Escherichia coli dnaE(Ts) mutants incubated at a nonpermissive temperature is prevented by mutation in the cydA gene. J Bacteriol 2004; 186:2147-55. [PMID: 15028700 PMCID: PMC374420 DOI: 10.1128/jb.186.7.2147-2155.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the Escherichia coli dnaE(Ts) dnaE74 and dnaE486 mutants die after 4 h of incubation at 40 degrees C in Luria-Bertani medium. Cell death is preceded by elongation, is inhibited by chloramphenicol, tetracycline, or rifampin, and is dependent on cell density. Cells survive at 40 degrees C when they are incubated at a high population density or at a low density in conditioned medium, but they die when the medium is supplemented with glucose and amino acids. Deletion of recA or sulA has no effect. We isolated suppressors which survived for long periods at 40 degrees C but did not form colonies. The suppressors protected against hydroxyurea-induced killing. Sequence and complementation analysis indicated that suppression was due to mutation in the cydA gene. The DNA content of dnaE mutants increased about eightfold in 4 h at 40 degrees C, as did the DNA content of the suppressed strains. The amount of plasmid pBR322 in a dnaE74 strain increased about fourfold, as measured on gels, and the electrophoretic pattern appeared to be normal even though the viability of the parent cells decreased 2 logs. Transformation activity also increased. 4',6'-diamidino-2-phenylindole staining demonstrated that there were nucleoids distributed throughout the dnaE filaments formed at 40 degrees C, indicating that there was segregation of the newly formed DNA. We concluded that the DNA synthesized was physiologically competent, particularly since the number of viable cells of the suppressed strain increased during the first few hours of incubation. These observations support the view that E. coli senses the rate of DNA synthesis and inhibits septation when the rate of DNA synthesis falls below a critical level relative to the level of RNA and protein synthesis.
Collapse
Affiliation(s)
- Bernard Strauss
- Center for Molecular Oncology, Department of Molecular Genetics and Cell Biology, Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|