1
|
Wu P, Ong A, O’Brian MR. Bradyrhizobium japonicum HmuP is an RNA-binding protein that positively controls hmuR operon expression by suppression of a negative regulatory RNA element in the 5' untranslated region. Mol Microbiol 2024; 121:1217-1227. [PMID: 38725184 PMCID: PMC11176003 DOI: 10.1111/mmi.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Alasteir Ong
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| |
Collapse
|
2
|
Chatterjee A, O'Brian MR. Rapid evolution of a bacterial iron acquisition system. Mol Microbiol 2018; 108:90-100. [PMID: 29381237 DOI: 10.1111/mmi.13918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Under iron limitation, bacteria scavenge ferric (Fe3+ ) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram-negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain-of-function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+ ) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non-selective uptake components that do not require mutation to accommodate new iron sources.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, NY, 14203-1121, USA
| | - Mark R O'Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, NY, 14203-1121, USA
| |
Collapse
|
3
|
Wright W, Little J, Liu F, Chakraborty R. Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii. Biometals 2013; 26:271-83. [DOI: 10.1007/s10534-013-9609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
|
4
|
Abstract
Iron utilization by bacteria in aerobic environments involves uptake as a ferric chelate from the environment, followed by reduction to the ferrous form. Ferric iron reduction is poorly understood in most bacterial species. Here, we identified Bradyrhizobium japonicum frcB (bll3557) as a gene adjacent to, and coregulated with, the pyoR gene (blr3555) encoding the outer membrane receptor for transport of a ferric pyoverdine. FrcB is a membrane-bound, diheme protein, characteristic of eukaryotic ferric reductases. Heme was essential for FrcB stability, as were conserved histidine residues in the protein that likely coordinate the heme moieties. Expression of the frcB gene in Escherichia coli conferred ferric reductase activity on those cells. Furthermore, reduced heme in purified FrcB was oxidized by ferric iron in vitro. B. japonicum cells showed inducible ferric reductase activity in iron-limited cells that was diminished in an frcB mutant. Steady-state levels of frcB mRNA were strongly induced under iron-limiting conditions, but transcript levels were low and unresponsive to iron in an irr mutant lacking the global iron response transcriptional regulator Irr. Thus, Irr positively controls the frcB gene. FrcB belongs to a family of previously uncharacterized proteins found in many proteobacteria and some cyanobacteria. This suggests that membrane-bound, heme-containing ferric reductase proteins are not confined to eukaryotes but may be common in bacteria.
Collapse
|
5
|
Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 2009; 7:68. [PMID: 19821963 PMCID: PMC2771747 DOI: 10.1186/1741-7007-7-68] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/12/2009] [Indexed: 12/22/2022] Open
Abstract
Background Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. Results We have screened all publicly available eubacterial genomes for sequences representing (putative) TBDTs. Based on sequence similarity, we identified 195 clusters, where elements of one cluster may possibly recognize similar substrates. For Anabaena sp. PCC 7120 we identified 22 genes as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. Conclusion We exemplified on TBDTs the power of CLANS-based classification, which demonstrates its importance for future application in systems biology. In addition, the tentative substrate assignment based on characterized proteins will stimulate the research of TBDTs in different species. For cyanobacteria, the atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, we were able to clarify a hypothesis of the absence of TonB in cyanobacteria by the identification of according sequences.
Collapse
Affiliation(s)
- Oliver Mirus
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
6
|
Small SK, Puri S, Sangwan I, O'Brian MR. Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum. J Bacteriol 2009; 191:1361-8. [PMID: 19114488 PMCID: PMC2648218 DOI: 10.1128/jb.01571-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/16/2008] [Indexed: 12/26/2022] Open
Abstract
Ferric siderophore receptors are components of high-affinity iron-chelate transport systems in gram-negative bacteria. The genes encoding these receptors are generally regulated by repression. Here, we show that the ferrichrome receptor gene bll4920 and four additional putative ferric siderophore receptor genes in Bradyrhizobium japonicum are positively controlled by the regulatory protein Irr, as observed by the low level of mRNA transcripts in an irr mutant in iron-limited cells. Potential Irr binding sites with iron control element (ICE)-like motifs were found upstream and distal to the transcription start sites of the five receptor genes. However, purified recombinant Irr bound only some of those elements. Nevertheless, dissection of the bll4920 promoter region showed that a component in extracts of wild-type cells grown in iron-limited media bound only in the ICE motif region of the promoter. This binding was not observed with extracts of cells from the parent strain grown under high-iron conditions or from an irr mutant strain. Furthermore, gel mobility supershift experiments identified Irr as the binding protein in cell extracts. Chromatin immunoprecipitation experiments demonstrated that Irr occupies the promoters of the five ferric iron transport genes in vivo. We conclude that Irr is a direct positive regulator of ferric iron transport in B. japonicum.
Collapse
Affiliation(s)
- Sandra K Small
- Department of Biochemistry, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
7
|
Jacques PÉ, Rodrigue S, Gaudreau L, Goulet J, Brzezinski R. Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs. BMC Bioinformatics 2006; 7:423. [PMID: 17014715 PMCID: PMC1615881 DOI: 10.1186/1471-2105-7-423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 10/02/2006] [Indexed: 12/03/2022] Open
Abstract
Background In bacteria, sigma factors and other transcriptional regulatory proteins recognize DNA patterns upstream of their target genes and interact with RNA polymerase to control transcription. As a consequence of evolution, DNA sequences recognized by transcription factors are thought to be enriched in intergenic regions (IRs) and depleted from coding regions of prokaryotic genomes. Results In this work, we report that genomic distribution of transcription factors binding sites is biased towards IRs, and that this bias is conserved amongst bacterial species. We further take advantage of this observation to develop an algorithm that can efficiently identify promoter boxes by a distribution-dependent approach rather than a direct sequence comparison approach. This strategy, which can easily be combined with other methodologies, allowed the identification of promoter sequences in ten species and can be used with any annotated bacterial genome, with results that rival with current methodologies. Experimental validations of predicted promoters also support our approach. Conclusion Considering that complete genomic sequences of over 1000 bacteria will soon be available and that little transcriptional information is available for most of them, our algorithm constitutes a promising tool for the prediction of promoter sequences. Importantly, our methodology could also be adapted to identify DNA sequences recognized by other regulatory proteins.
Collapse
Affiliation(s)
- Pierre-Étienne Jacques
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luc Gaudreau
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean Goulet
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryszard Brzezinski
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre d'étude et de valorisation de la diversité microbienne, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
Rudolph G, Hennecke H, Fischer HM. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 2006; 30:631-48. [PMID: 16774589 DOI: 10.1111/j.1574-6976.2006.00030.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Iron is critical for bacterial growth, but problems arise from the toxicity of excess iron; thus, iron uptake is subject to tight control. The most widely found and best-studied iron-responsive regulator in Gram-negative bacteria is the ferric uptake regulator Fur. In recent years, however, it has become apparent that iron regulation in rhizobia differs from that in many other bacteria. New regulators (RirA, Irr, Mur) were identified which appear to mediate functions that in other bacteria are accomplished by Fur. Even though some of them belong to the Fur family, they exhibit properties that clearly separate them from genuine Fur proteins. This article surveys the principal mechanisms of iron acquisition and uptake in rhizobia, and puts particular emphasis on recent findings on transcriptional regulators and their means to sense the cellular iron status and to regulate gene expression. In this context, we point out differences and similarities with regard to the operators, regulons and structure of the discussed iron regulatory proteins.
Collapse
Affiliation(s)
- Gesine Rudolph
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
9
|
Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, Fischer HM. The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol 2006; 188:733-44. [PMID: 16385063 PMCID: PMC1347296 DOI: 10.1128/jb.188.2.733-744.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont, possesses a heme uptake system encoded by the gene cluster hmuVUT-hmuR-exbBD-tonB. Transcription of the divergently oriented hmuT and hmuR genes was previously found to be induced by iron limitation and to depend on a 21-bp promoter-upstream iron control element (ICE). Here, we show by deletion analysis that the full-length ICE is needed for this type of positive control. Additional genes associated with ICE-like motifs were identified in the B. japonicum genome, of which bll6680 and blr7895 code for bacterioferritin and rubrerythrin homologs, respectively. Transcription start site mapping revealed that their ICEs directly overlap with either the -10 promoter region or the transcription initiation site, suggesting an involvement of the ICE in negative control of both genes. Consistent with this inference was the observed down-regulation of both genes under iron limitation, which in the case of bll6680 was shown to require an intact ICE motif. Using a yeast one-hybrid system, we demonstrated in vivo interaction of the iron response regulator (Irr) with all three ICEs. Moreover, specific in vitro binding of purified Irr protein to the ICE motifs of bll6680 and blr7895 was shown in electrophoretic mobility shift experiments. A genome-wide survey for iron-regulated genes with a custom-made Affymetrix gene chip revealed 17 genes to be induced and 68 to be repressed under iron-replete conditions. Remarkably, ICE-like motifs are associated with a large subset of those B. japonicum genes. We propose the ICE as an important cis-acting element in B. japonicum which represents the DNA-binding site for the Irr protein and, depending on its location within promoter regions, is involved in positive or negative control of the associated iron-regulated genes.
Collapse
Affiliation(s)
- Gesine Rudolph
- Institute of Microbiology, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Benson HP, Boncompagni E, Guerinot ML. An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:950-9. [PMID: 16167765 DOI: 10.1094/mpmi-18-0950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rhizobia live in the soil or enter into a nitrogen-fixing symbiosis with a suitable host plant. Each environment presents different challenges with respect to iron acquisition. The soybean symbiont Bradyrhizobium japonicum 61A152 can utilize a variety of siderophores (Fe[III]-specific ligands). Purification of iron-regulated outer membrane proteins had previously allowed the cloning of a gene, fegA, from B. japonicum 61A152, whose predicted protein shares significant amino acid similarity with known TonB-dependent siderophore receptors. Here, we show that fegA is in an operon with a gene, fegB, that is predicted to encode an inner membrane protein. Characterization of fegAB and fegB mutants shows that bothfegA and fegB are required for utilization of the siderophore ferrichrome. Whereas thefegB mutant forms a normal symbiosis, the fegAB mutant has a dramatic phenotype in planta. Six weeks after inoculation with a fegAB strain, soybean nodules do not contain leghemoglobin and do not fix nitrogen. Infected cells contain few symbiosomes and are filled with vesicles. As ferrichrome is a fungal siderophore not likely to be available in nodules, the symbiotic defect suggests that the fegAB operon is serving a different function in planta, possibly one involved in signaling between the two partners.
Collapse
Affiliation(s)
- Heather P Benson
- Department of Biological Sciences, 6044 Gilman, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
11
|
Benson HP, LeVier K, Guerinot ML. A dominant-negative fur mutation in Bradyrhizobium japonicum. J Bacteriol 2004; 186:1409-14. [PMID: 14973020 PMCID: PMC344408 DOI: 10.1128/jb.186.5.1409-1414.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 11/14/2003] [Indexed: 11/20/2022] Open
Abstract
In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the fur gene repress iron uptake systems and starve for iron, whereas fur mutants fail to repress iron uptake systems and survive. The B. japonicum fur mutant, as expected, fails to repress iron-regulated outer membrane proteins in the presence of iron. Unexpectedly, a wild-type copy of the fur gene cannot complement the fur mutant. Expression of the fur mutant allele in wild-type cells leads to a fur phenotype. Unlike a B. japonicum fur-null mutant, the strain carrying the dominant-negative fur mutation is unable to form functional, nitrogen-fixing nodules on soybean, mung bean, or cowpea, suggesting a role for a Fur-regulated protein or proteins in the symbiosis.
Collapse
Affiliation(s)
- Heather P Benson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
12
|
Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:295-304. [PMID: 12887581 DOI: 10.1046/j.1365-313x.2003.01802.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.
Collapse
Affiliation(s)
- Brent N Kaiser
- School of Agricultural Sciences, Discipline of Wine & Horticulture, The University of Adelaide, Urrbrae, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Janczarek M, Skorupska A. Exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii is related to various metabolic pathways. Res Microbiol 2003; 154:433-42. [PMID: 12892850 DOI: 10.1016/s0923-2508(03)00113-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhizobium leguminosarum bv. trifolii synthesizes extracellular polysaccharide (EPS) that is postulated to be a biologically active signalling molecule in clover symbiosis. A group of seven exopolysaccharide-deficient (Exo), non-nitrogen-fixing mutants of R. leguminosarum bv. trifolii strain 24.1 isolated by transposon mutagenesis were complemented to mucoid phenotype by a low-copy plasmid carrying the pssA gene encoding the first glucosyl-IP-transferase. Some of these mutants were not corrected in their symbiotic defect by the pssA gene. Precise localization of Tn5 insertion sites by subcloning and sequencing the adjacent genomic DNA in the Exo mutants identified the disrupted genes and their possible functions. Only one mutant (Rt74) was mutated in pssA gene; others were mutated in diverse genes that were not directly involved in EPS biosynthesis. The suppression of EPS deficiency in these mutants by additional copies of pssA indicated a possible connection between exopolysaccharide biosynthesis and various metabolic pathways.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of General Microbiology, M. Curie-Sklodowska University, Akademicka 19 st., 20-033 Lublin, Poland
| | | |
Collapse
|
14
|
Carter RA, Worsley PS, Sawers G, Challis GL, Dilworth MJ, Carson KC, Lawrence JA, Wexler M, Johnston AWB, Yeoman KH. The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF sigma factor RpoI. Mol Microbiol 2002; 44:1153-66. [PMID: 12028377 DOI: 10.1046/j.1365-2958.2002.02951.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cluster of eight genes, vbsGSO, vbsADL, vbsC and vbsP, are involved in the synthesis of vicibactin, a cyclic, trihydroxamate siderophore made by the symbiotic bacterium Rhizobium leguminosarum. None of these vbs genes was required for symbiotic N2 fixation on peas or Vicia. Transcription of vbsC, vbsGSO and vbsADL (but not vbsP) was enhanced by growth in low levels of Fe. Transcription of vbsGSO and vbsADL, but not vbsP or vbsC, required the closely linked gene rpoI, which encodes an ECF sigma factor of RNA polymerase. Transfer of the cloned vbs genes, plus rpoI, to Rhodobacter, Paracoccus and Sinorhizobium conferred the ability to make vicibactin on these other genera. We present a biochemical genetic model of vicibactin synthesis, which accommodates the phenotypes of different vbs mutants and the homologies of the vbs gene products. In this model, VbsS, which is similar to many non-ribosomal peptide synthetase multienzymes, has a central role. It is proposed that VbsS activates L-N5-hydroxyornithine via covalent attachment as an acyl thioester to a peptidyl carrier protein domain. Subsequent VbsA-catalysed acylation of the hydroxyornithine, followed by VbsL-mediated epimerization and acetylation catalysed by VbsC, yields the vicibactin subunit, which is then trimerized and cyclized by the thioesterase domain of VbsS to give the completed siderophore.
Collapse
Affiliation(s)
- R A Carter
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnston AW, Yeoman KH, Wexler M. Metals and the rhizobial-legume symbiosis--uptake, utilization and signalling. Adv Microb Physiol 2002; 45:113-56. [PMID: 11450108 DOI: 10.1016/s0065-2911(01)45003-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we consider how the nitrogen-fixing root nodule bacteria, the 'rhizobia', acquire various metals, paying particular attention to the uptake of iron. We also review the literature pertaining to the roles of molybdenum and nickel in the symbiosis with legumes. We highlight some gaps in our knowledge, for example the lack of information on how rhizobia acquire molybdenum. We examine the means whereby different metals affect rhizobial physiology and the role of metals as signals for gene regulation. We describe the ways in which genetics has shown (or not) if, and how, particular metal uptake and/or metal-mediated signalling pathways are required for the symbiotic interaction with legumes.
Collapse
Affiliation(s)
- A W Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
16
|
Wexler M, Yeoman KH, Stevens JB, de Luca NG, Sawers G, Johnston AW. The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron. Mol Microbiol 2001; 41:801-16. [PMID: 11532145 DOI: 10.1046/j.1365-2958.2001.02556.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the N2-fixing bacterium Rhizobium leguminosarum, mutations in a homologue of tonB (tonB(Rl)) block the import of vicibactin and haem as iron sources in free-living bacteria. TonB(Rl) mutants were normal for growth with ferric dicitrate and slightly reduced for growth with haemoglobin as sole iron sources. The deduced TonB(Rl) product is larger than that of (for example) Escherichia coli, on account of an extended N-terminal domain. Transcription of tonB(Rl) was enhanced in low-Fe growth conditions; this was not controlled by Fur, nor RpoI, an Fe-regulated extracytoplasmic sigma factor. Upstream of tonB(Rl) and transcribed divergently is an operon, hmuPSTUV, whose products are homologous to ABC transporters involved in haem uptake in pathogenic bacteria. Expression of hmuPSTUV was enhanced in low-Fe conditions, and hmu mutants show slightly diminished growth on haem as sole Fe source, suggesting that there is more than one system for the uptake of this molecule. hmuPSTUV expression appears to be from three closely linked promoters. Downstream of hmuPSTUV, a gene that may encode an extracytoplasmic sigma factor was identified, but this gene, rpoZ, did not affect the transcription of tonB(Rl) or hmuPSTUV. Mutations in tonB(Rl), hmu genes and rpoZ did not affect symbiotic N(2) fixation in peas.
Collapse
Affiliation(s)
- M Wexler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
17
|
Rogers MB, Sexton JA, DeCastro GJ, Calderwood SB. Identification of an operon required for ferrichrome iron utilization in Vibrio cholerae. J Bacteriol 2000; 182:2350-3. [PMID: 10735886 PMCID: PMC111292 DOI: 10.1128/jb.182.8.2350-2353.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutagenesis of Vibrio cholerae with TnphoA, followed by screening for fusions that were activated under low-iron conditions, led to the identification of seven independent fusion strains, each of which was deficient in the ability to utilize ferrichrome as a sole iron source for growth in a plate bioassay and had an insertion in genes encoding products homologous to Escherichia coli FhuA or FhuD. Expression of the gene fusions was independent of IrgB but regulated by Fur. We report here a map of the operon and the predicted amino acid sequence of FhuA, based on the nucleotide sequence. Unlike those of the E. coli fhu operon, the V. cholerae ferrichrome utilization genes are located adjacent and opposite in orientation to a gene encoding an ATP-binding cassette transporter homolog, but this gene, if disrupted, does not affect the utilization of ferrichrome in vitro.
Collapse
Affiliation(s)
- M B Rogers
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
18
|
Yeoman KH, Wisniewski-Dye F, Timony C, Stevens JB, deLuca NG, Downie JA, Johnston AWB. Analysis of the Rhizobium leguminosarum siderophore-uptake gene fhuA: differential expression in free-living bacteria and nitrogen-fixing bacteroids and distribution of an fhuA pseudogene in different strains. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):829-837. [PMID: 10784041 DOI: 10.1099/00221287-146-4-829] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mutation was isolated in the Rhizobium leguminosarum gene fhuA, which appears to specify the outer-membrane receptor for the siderophore vicibactin. The mutant was defective in iron uptake and accumulated the siderophore vicibactin in the extracellular medium. Expression of fhuA was regulated by Fe3+, transcription being higher in iron-depleted cells. Transcription of fhuA was independent of a functional copy of rpol, a neighbouring gene that specifies a putative ECF sigma factor of RNA polymerase and which is involved in siderophore production in Rhizobium. Mutations in fhuA did not detectably affect symbiotic N2 fixation on peas. An fhuA::gus fusion was expressed by bacteria in the meristematic zone of pea nodules but not in mature bacteroids. Some other strains of R. leguminosarum also contain a pseudogene version of fhuA. The sequences of some of these and the 'real' fhuA genes were determined.
Collapse
Affiliation(s)
- Kay H Yeoman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| | | | - Christopher Timony
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| | - James B Stevens
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| | - Nicola G deLuca
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK2
| | - Andrew W B Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| |
Collapse
|
19
|
Yeoman KH, May AG, deLuca NG, Stuckey DB, Johnston AW. A putative ECF sigma factor gene, rpol, regulates siderophore production in Rhizobium leguminosarum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:994-999. [PMID: 10550895 DOI: 10.1094/mpmi.1999.12.11.994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cloned Rhizobium leguminosarum gene, termed rpoI, when transferred to wild-type strains, caused overproduction of the siderophore vicibactin. An rpoI mutant was defective in Fe uptake but was unaffected in symbiotic N2 fixation. The RpoI gene product was similar in sequence to extra-cytoplasmic sigma factors of RNA polymerase. Transcription of rpoI was reduced in cells grown in medium that was replete with Fe.
Collapse
Affiliation(s)
- K H Yeoman
- School of Biological Sciences, University of East Anglia, Norwich, U.K
| | | | | | | | | |
Collapse
|
20
|
Luca NG, Wexler M, Pereira MJ, Yeoman KH, Johnston AW. Is thefurgene ofRhizobium leguminosarumessential? FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13286.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Moeck GS, Coulton JW, Postle K. Cell envelope signaling in Escherichia coli. Ligand binding to the ferrichrome-iron receptor fhua promotes interaction with the energy-transducing protein TonB. J Biol Chem 1997; 272:28391-7. [PMID: 9353297 DOI: 10.1074/jbc.272.45.28391] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ferrichrome-iron receptor of Escherichia coli is FhuA, an outer membrane protein that is dependent upon the energy-coupling protein TonB to enable active transport of specific hydroxamate siderophores, infection by certain phages, and cell killing by the protein antibiotics colicin M and microcin 25. In vivo cross-linking studies were performed to establish at the biochemical level the interaction between FhuA and TonB. In an E. coli strain in which both proteins were expressed from the chromosome, a high molecular mass complex was detected when the ferrichrome homologue ferricrocin was added immediately prior to addition of cross-linker. The complex included both proteins; it was absent from strains of E. coli that were devoid of either FhuA or TonB, and it was detected with anti-FhuA and anti-TonB monoclonal antibodies. These results indicate that, in vivo, the binding of ferricrocin to FhuA enhances complex formation between the receptor and TonB. An in vitro system was established with which to examine the FhuA-TonB interaction. Incubation of TonB with histidine-tagged FhuA followed by addition of Ni2+-nitrilotriacetate-agarose led to the specific recovery of both TonB and FhuA. Addition of ferricrocin or colicin M to FhuA in this system greatly increased the coupling between FhuA and TonB. Conversely, a monoclonal antibody that binds near the N terminus of FhuA reduced the retention of TonB by histidine-tagged FhuA. These studies demonstrate the significance of ligand binding at the external surface of the cell to mediate signal transduction across the outer membrane.
Collapse
Affiliation(s)
- G S Moeck
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|