1
|
Pan T, Zhou YY, Huang X, Xu JX, Guo XY, Su JQ, Li H, Yang XR. Thermophilic degradation of sulfamethazine by Geobacillus sp. S-07: pathway and mechanism. ENVIRONMENTAL RESEARCH 2025:121823. [PMID: 40355059 DOI: 10.1016/j.envres.2025.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Biodegradation is crucial for the removal and remediation of sulfonamide antibiotic (SA) contamination. Comprehensively understanding the thermophilic degradation mechanism is essential for the application of SA-biodegrading isolates in engineered systems, such as composting. In this study, we explored the thermophilic biodegradation mechanism of Geobacillus sp. S-07 on sulfamethazine (SMZ). Targeted metabolite analysis unveiled that strain S-07 effectively detoxifies SMZ by modifying the amino moiety and disassembling the sulfonamide bridge moiety. By integrating genomic and proteomic analysis, enzymes potentially involved in the SMZ biotransformation were further proposed, including an adenine deaminase, a dimethylsulfone monooxygenase, and a putative heme-containing peroxidase. Genomic analysis indicated that S-07 carries five antibiotic resistance genes, presenting a low mobility in horizontal transfer, implying its low resistance pollution risk in bioremediation application. This study offers novel insights into the thermophilic SA biodegradation mechanism, and provides biological resources for the development of thermophilic bioremediation technologies aimed at enhanced SA removal.
Collapse
Affiliation(s)
- Ting Pan
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yan-Yan Zhou
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xu Huang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Xin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Xiao-Yu Guo
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Hu Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
Jia Q, Zeng H, Xiao N, Tang J, Gao S, Xie W. The C-terminal structure of the N6-methyladenosine deaminase YerA and its role in deamination. Biochem J 2025; 482:BCJ20240728. [PMID: 39876819 DOI: 10.1042/bcj20240728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, and gene expression regulation. YerA from Bacillus subtilis is considered a novel class of enzymes that are capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense system and potential applications as a gene-editing tool, the substrate specificity, catalytic mechanism, and physiological function of YerA are currently unclear due to the lack of structural information. In the present study, we expressed the recombinant enzyme and conducted its reconstitution to yield the active form. Our deamination assays showed that N6-methyladenosine (N6-mAdo) served as a more favorable substrate than its base derivative 6mA. Here, we report the high-resolution structure of the C-terminal region of YerA, which exhibited a compact architecture composed of two antiparallel β-sheets with no obvious close structural homologs in Protein Data Bank. We also created docking models to investigate the ligand-binding pattern and found that more favorable contacts of N6-mAdo with the enzyme-binding pocket lead to its preference for N6-mAdo over 6mA. Finally, structural comparison of the N6-methyladenosine monophosphate deaminase allowed us to propose that a plausible role for this C-terminal region is to shield the active site from solvent and protect the intermediate during catalysis. Taken together, this study sheds light on the catalytic mechanism and evolutionary pathways of the promiscuous enzyme YerA, thereby contributing to our molecular understanding of epigenetic nucleoside metabolism.
Collapse
Affiliation(s)
- Qian Jia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Hui Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nan Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jing Tang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangfang Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
3
|
Neal M, Brakewood W, Betenbaugh M, Zengler K. Pan-genome-scale metabolic modeling of Bacillus subtilis reveals functionally distinct groups. mSystems 2024; 9:e0092324. [PMID: 39365060 PMCID: PMC11575223 DOI: 10.1128/msystems.00923-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Bacillus subtilis is an important industrial and environmental microorganism known to occupy many niches and produce many compounds of interest. Although it is one of the best-studied organisms, much of this focus including the reconstruction of genome-scale metabolic models has been placed on a few key laboratory strains. Here, we substantially expand these prior models to pan-genome-scale, representing 481 genomes of B. subtilis with 2,315 orthologous gene clusters, 1,874 metabolites, and 2,239 reactions. Furthermore, we incorporate data from carbon utilization experiments for eight strains to refine and validate its metabolic predictions. This comprehensive pan-genome model enables the assessment of strain-to-strain differences related to nutrient utilization, fermentation outputs, robustness, and other metabolic aspects. Using the model and phenotypic predictions, we divide B. subtilis strains into five groups with distinct patterns of behavior that correlate across these features. The pan-genome model offers deep insights into B. subtilis' metabolism as it varies across environments and provides an understanding as to how different strains have adapted to dynamic habitats. IMPORTANCE As the volume of genomic data and computational power have increased, so has the number of genome-scale metabolic models. These models encapsulate the totality of metabolic functions for a given organism. Bacillus subtilis strain 168 is one of the first bacteria for which a metabolic network was reconstructed. Since then, several updated reconstructions have been generated for this model microorganism. Here, we expand the metabolic model for a single strain into a pan-genome-scale model, which consists of individual models for 481 B. subtilis strains. By evaluating differences between these strains, we identified five distinct groups of strains, allowing for the rapid classification of any particular strain. Furthermore, this classification into five groups aids the rapid identification of suitable strains for any application.
Collapse
Affiliation(s)
- Maxwell Neal
- Department of Bioengineering, University of California, San Diego, California, USA
| | - William Brakewood
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Zhao S, Shi T, Li L, Chen Z, Li C, Yu Z, Sun P, Xu Q. The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine. Microb Cell Fact 2024; 23:309. [PMID: 39543621 PMCID: PMC11566304 DOI: 10.1186/s12934-024-02576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Hypoxanthine, prevalent in animals and plants, is used in the production of food additives, nucleoside antiviral drugs, and disease diagnosis. Current biological fermentation methods synthesize quantities insufficient to meet industrial demands. Therefore, this study aimed to develop a strain capable of industrial-scale production of hypoxanthine. RESULTS De novo synthesis of hypoxanthine was achieved by blocking the hypoxanthine decomposition pathway, thus alleviating transcriptional repression and multiple feedback inhibition, and introducing a purine operon from Bacillus subtilis to construct a chassis strain. The effects of knocking out the IMP(Inosine 5'-monophosphate) branch on the growth status and titer of the strain were then investigated, and the effectiveness of adenosine deaminase and adenine deaminase was verified. Overexpressing these enzymes created a dual pathway for hypoxanthine synthesis, enhancing the metabolic flow of hypoxanthine synthesis and preventing auxotrophic strain formation. Introducing IMP-specific 5' -nucleotidase addressed the issue of adenylate accumulation. In addition, the metabolic flow of the guanine branch was dynamically regulated by the guaB gene. The supply of glutamine and aspartic acid precursors was enhanced by introducing an exogenous glnA mutant gene, overexpressing aspC, and replacing the weaker promoter to regulate the aspartic acid branching pathway. Ultimately, fermentation in a 5 L bioreactor for 48 h produced 30.6 g/L hypoxanthine, with a maximum real-time productivity of 1.4 g/L/h, the highest value of hypoxanthine production by microbial fermentation reported so far. CONCLUSIONS The intracellular purine biosynthesis pathway is extensive and regulated at multiple levels in cells. The IMP branch in the hypoxanthine synthesis pathway has a higher metabolic flux. The current challenge lies in systematically allocating the metabolic flux within the branch pathway to achieve substantial product accumulation. In this study, E. coli was used as the chassis strain to construct a dual pathway for IMP and AMP(Adenosine 5'-monophosphate) synergistic hypoxanthine synthesis and dynamically regulate the guanine branch pathway. Overall, our experimental efforts culminated in a high-yield, plasmid- and defect-free engineered hypoxanthine strain.
Collapse
Affiliation(s)
- Siyu Zhao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Tangen Shi
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Liangwen Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Zhichao Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Zichen Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Pengjie Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
5
|
Du Q, Xu Q, Pan F, Shi Y, Yu F, Zhang T, Jiang J, Liu W, Pan X, Han D, Zhang H. Association between Intestinal Colonization and Extraintestinal Infection with Carbapenem-Resistant Klebsiella pneumoniae in Children. Microbiol Spectr 2023; 11:e0408822. [PMID: 36916927 PMCID: PMC10100809 DOI: 10.1128/spectrum.04088-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a critical public health threat. However, the association between intestinal colonization and parenteral infection among pediatric patients has not been elucidated. We collected 8 fecal CRKP strains and 10 corresponding CRKP strains responsible for extraintestinal infection from eight patients who did not manifest infection upon admission to the hospital. Paired isolates showed identical resistance to antimicrobials and identical virulence in vitro and in vivo. wzi capsule typing, multilocus sequence typing, and whole-genome sequencing (WGS) indicated high similarity between paired colonizing and infecting isolates. Mutations between colonizing and infecting isolate pairs found by WGS had a distinctive molecular signature of a high proportion of complex structural variants. The mutated genes were involved in pathways associated with infection-related physiological and pathogenic functions, including antibiotic resistance, virulence, and response to the extracellular environment. The latter is important for bacterial infection of environmental niches. Various mutations related to antibiotic resistance, virulence, and colonization that were not associated with any particular mutational hot spot correlated with an increased risk of extraintestinal infection. Notably, novel subclone carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) KL19-ST15 exhibited hypervirulence in experimental assays that reflected the severe clinical symptoms of two patients infected with the clonal strains. Taken together, our findings indicate the association between CRKP intestinal colonization and extraintestinal infection, suggesting that active screening for colonization on admission could decrease infection risk in children. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes an increasing number of nosocomial infections, which can be life-threatening, as carbapenems are last-resort antibiotics. K. pneumoniae is part of the healthy human microbiome, and this provides a potential advantage for infection. This study demonstrated that CRKP intestinal colonization is strongly linked to extraintestinal infection, based on the evidence given by whole-genome sequencing data and phenotypic assays of antimicrobial resistance and virulence. Apart from these findings, our in-depth analysis of point mutations and chromosome structural variants in patient-specific infecting isolates compared with colonizing isolates may contribute insights into bacterial adaptation underlying CRKP infection. In addition, a novel subclone of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) was observed in the study. This finding highlights the importance of CRKP active surveillance among children, targeting in particular the novel high-risk CR-hvKP clone.
Collapse
Affiliation(s)
- Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Xu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Jiang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Sun Y, Liu C, Tang W, Zhang D. Manipulation of Purine Metabolic Networks for Riboflavin Production in Bacillus subtilis. ACS OMEGA 2020; 5:29140-29146. [PMID: 33225145 PMCID: PMC7675574 DOI: 10.1021/acsomega.0c03867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Guanosine monophosphate, the precursor for riboflavin biosynthesis, can be converted to or generated from other purine compounds in purine metabolic networks. In this study, genes in these networks were manipulated in a riboflavin producer, Bacillus subtilis R, to test their contribution to riboflavin biosynthesis. Knocking out adenine phosphoribosyltransferase (apt), xanthine phosphoribosyltransferase (xpt), and adenine deaminase (adeC) increased the riboflavin production by 14.02, 6.78, and 41.50%, respectively, while other deletions in the salvage pathway, interconversion pathway, and nucleoside decomposition genes have no positive effects. The enhancement of riboflavin production in apt and adeC deletion mutants is dependent on the purine biosynthesis regulator PurR. Repression of ribonucleotide reductases (RNRs) led to a 13.12% increase of riboflavin production, which also increased in two RNR regulator mutants PerR and NrdR by 37.52 and 8.09%, respectively. The generation of deoxyribonucleoside competed for precursors with riboflavin biosynthesis, while other pathways do not contribute to the supply of precursors; nevertheless, they have regulatory effects.
Collapse
Affiliation(s)
- Yiwen Sun
- Department
of Biological Sciences, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, People’s Republic of China
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, People’s Republic
of China
| | - Chuan Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, People’s Republic
of China
- Key
Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic
of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Wenzhu Tang
- Department
of Biological Sciences, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, People’s Republic of China
| | - Dawei Zhang
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, People’s Republic
of China
- Key
Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic
of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
7
|
Mechanism analysis of combined acid-and-ethanol shock on Oenococcus oeni using RNA-Seq. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Mahor D, Prasad GS. Biochemical Characterization of Kluyveromyces lactis Adenine Deaminase and Guanine Deaminase and Their Potential Application in Lowering Purine Content in Beer. Front Bioeng Biotechnol 2018; 6:180. [PMID: 30555824 PMCID: PMC6281700 DOI: 10.3389/fbioe.2018.00180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Excess amounts of uric acid in humans leads to hyperuricemia, which is a biochemical precursor of gout and is also associated with various other disorders. Gout is termed as crystallization of uric acid, predominantly within joints. The burden of hyperuricemia and gout has increased worldwide due to lifestyle changes, obesity, and consumption of purine-rich foods, fructose-containing drinks, and alcoholic beverages. Some of the therapies available to cure gout are associated with unwanted side-effects and antigenicity. We propose an attractive and safe strategy to reduce purine content in beverages using enzymatic application of purine degrading enzymes such as adenine deaminase (ADA) and guanine deaminase (GDA) that convert adenine and guanine into hypoxanthine and xanthine, respectively. We cloned, expressed, purified, and biochemically characterized both adenine deaminase (ADA) and guanine deaminase (GDA) enzymes that play important roles in the purine degradation pathway of Kluyveromyces lactis, and demonstrate their application in lowering purine content in a beverage. The popular beverage beer has been selected as an experimental sample as it confers higher risks of hyperuricemia and gout. Quantification of purine content in 16 different beers from the Indian market showed varying concentrations of different purines. Enzymatic treatment of beer samples with ADA and GDA showed a reduction of adenine and guanine content, respectively. These enzymes in combination with other purine degrading enzymes showed marked reduction in purine content in beer samples. Both enzymes can work at 5.0–8.0 pH range and retain >50% activity at 40°C, making them good candidates for industrial applications.
Collapse
Affiliation(s)
- Durga Mahor
- Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gandham S Prasad
- Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
9
|
Abstract
Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered, are poorly known with respect to their biology within the insect guts. To understand the genomic features and related biology, we produced the whole-genome sequences of nine gut commensal fungi from disease-bearing insects (black flies, midges, and mosquitoes). The results show that insect gut fungi tend to have low GC content across their genomes. By comparing these commensals with entomopathogenic and free-living fungi that have available genome sequences, we found a universal core gene toolbox that is unique and thus potentially important for the insect-fungus symbiosis. This comparative work also uncovered different host invasion strategies employed by insect pathogens and commensals, as well as a model system to study ancient fungal genome duplication within the gut of insects.
Collapse
|
10
|
Miller DV, Brown AM, Xu H, Bevan DR, White RH. Purine salvage inMethanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase. Proteins 2016; 84:828-40. [DOI: 10.1002/prot.25033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Danielle V. Miller
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Anne M. Brown
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Huimin Xu
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - David R. Bevan
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Robert H. White
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| |
Collapse
|
11
|
Ma P, Patching SG, Ivanova E, Baldwin JM, Sharples D, Baldwin SA, Henderson PJF. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity. MICROBIOLOGY-SGM 2016; 162:823-836. [PMID: 26967546 DOI: 10.1099/mic.0.000266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis-Menten kinetics with an apparent affinity (Kmapp) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-β-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI.
Collapse
Affiliation(s)
- Pikyee Ma
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon G Patching
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ekaterina Ivanova
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jocelyn M Baldwin
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David Sharples
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen A Baldwin
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peter J F Henderson
- School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis. Appl Environ Microbiol 2015; 81:5350-62. [PMID: 26025900 DOI: 10.1128/aem.01134-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.
Collapse
|
13
|
Frank KL, Colomer-Winter C, Grindle SM, Lemos JA, Schlievert PM, Dunny GM. Transcriptome analysis of Enterococcus faecalis during mammalian infection shows cells undergo adaptation and exist in a stringent response state. PLoS One 2014; 9:e115839. [PMID: 25545155 PMCID: PMC4278851 DOI: 10.1371/journal.pone.0115839] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022] Open
Abstract
As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (p)ppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (p)ppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (p)ppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (p)ppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (p)ppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system.
Collapse
Affiliation(s)
- Kristi L. Frank
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Cristina Colomer-Winter
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Suzanne M. Grindle
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - José A. Lemos
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Gary M. Dunny
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
14
|
Jankowska DA, Faulwasser K, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G. Arxula adeninivorans recombinant adenine deaminase and its application in the production of food with low purine content. J Appl Microbiol 2013; 115:1134-46. [PMID: 23902582 DOI: 10.1111/jam.12317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 11/26/2022]
Abstract
AIMS Construction of a transgenic Arxula adeninivorans strain that produces a high concentration of adenine deaminase and investigation into the application of the enzyme in the production of food with low purine content. METHODS AND RESULTS The A. adeninivorans AADA gene, encoding adenine deaminase, was expressed in this yeast under the control of the strong inducible nitrite reductase promoter using the Xplor(®) 2 transformation/expression platform. The recombinant enzyme was biochemically characterized and was found to have a pH range of 5.5-7.5 and temperature range of 34-46 °C with medium thermostability. A beef broth was treated with the purified enzyme resulting in the concentration of adenine decreasing from 70.4 to 0.4 mg l(-1). CONCLUSIONS It was shown that the production of adenine deaminase by A. adeninivorans can be increased and that the recombinant adenine deaminase can be used to lower the adenine content in the food. SIGNIFICANCE AND IMPACT OF THE STUDY Adenine deaminase is one component of an enzymatic system that can reduce the production of uric acid from food constituents. This study gives details on the expression, characterization and application of the enzyme and thus provides evidence that supports the further development of the system.
Collapse
Affiliation(s)
- D A Jankowska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Singh P, Sengupta S. Phylogenetic analysis and comparative genomics of purine riboswitch distribution in prokaryotes. Evol Bioinform Online 2012; 8:589-609. [PMID: 23170063 PMCID: PMC3499989 DOI: 10.4137/ebo.s10048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Riboswitches are regulatory RNA that control gene expression by undergoing conformational changes on ligand binding. Using phylogenetic analysis and comparative genomics we have been able to identify the class of genes/operons regulated by the purine riboswitch and obtain a high-resolution map of purine riboswitch distribution across all bacterial groups. In the process, we are able to explain the absence of purine riboswitches upstream to specific genes in certain genomes. We also identify the point of origin of various purine riboswitches and argue that not all purine riboswitches are of primordial origin, and that some purine riboswitches must have originated after the divergence of certain Firmicute orders in the course of evolution. Our study also reveals the role of horizontal transfer events in accounting for the presence of purine riboswitches in some gammaproteobacterial species. Our work provides significant insights into the origin, distribution and regulatory role of purine riboswitches in prokaryotes.
Collapse
Affiliation(s)
- Payal Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | |
Collapse
|
16
|
Jendresen CB, Martinussen J, Kilstrup M. The PurR regulon in Lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery. MICROBIOLOGY-SGM 2012; 158:2026-2038. [PMID: 22679106 DOI: 10.1099/mic.0.059576-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purine nucleotides are either synthesized de novo from 5-phosphoribosyl-1-pyrophosphate (PRPP) or salvaged from the environment. In Lactococcus lactis, transcription of the de novo synthesis operons, purCSQLF and purDEK, has genetically been shown to be activated by the PurR protein when bound to a conserved PurBox motif present on the DNA at a fixed distance from the promoter -10 element. PurR contains a PRPP-binding site, and activation occurs when the intracellular PRPP pool is high as a consequence of low exogenous purine nucleotide pools. By an iterative approach of bioinformatics searches and motif optimization, 21 PurR-regulated genes were identified and used in a redefinition of the PurBox consensus sequence. In the process a new motif, the double-PurBox, which is present in a number of promoters and contains two partly overlapping PurBox motifs, was established. Transcriptional fusions were used to analyse wild-type promoters and promoters with inactivating PurBox mutations to confirm the relevance of the PurBox motifs as PurR-binding sites. The promoters of several operons were shown to be devoid of any -35 sequence, and found to be completely dependent on PurR-mediated activation. This suggests that binding of the PurR protein to the PurBox takes over the role of the -35 sequence. The study has expanded the PurR regulon to include promoters in nucleotide metabolism, C(1) compound metabolism, phosphonate transport, pyrophosphatase activity, (p)ppGpp metabolism, and translation-related functions. Of special interest is the presence of PurBox motifs in rrn promoters, suggesting a novel connection between nucleotide availability and the translational machinery.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- Center for Systems Microbiology, Department for Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Jan Martinussen
- Center for Systems Microbiology, Department for Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Mogens Kilstrup
- Center for Systems Microbiology, Department for Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
17
|
Miller EF, Vaish S, Maier RJ. Efficiency of purine utilization by Helicobacter pylori: roles for adenosine deaminase and a NupC homolog. PLoS One 2012; 7:e38727. [PMID: 22701700 PMCID: PMC3368855 DOI: 10.1371/journal.pone.0038727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023] Open
Abstract
The ability to synthesize and salvage purines is crucial for colonization by a variety of human bacterial pathogens. Helicobacter pylori colonizes the gastric epithelium of humans, yet its specific purine requirements are poorly understood, and the transport mechanisms underlying purine uptake remain unknown. Using a fully defined synthetic growth medium, we determined that H. pylori 26695 possesses a complete salvage pathway that allows for growth on any biological purine nucleobase or nucleoside with the exception of xanthosine. Doubling times in this medium varied between 7 and 14 hours depending on the purine source, with hypoxanthine, inosine and adenosine representing the purines utilized most efficiently for growth. The ability to grow on adenine or adenosine was studied using enzyme assays, revealing deamination of adenosine but not adenine by H. pylori 26695 cell lysates. Using mutant analysis we show that a strain lacking the gene encoding a NupC homolog (HP1180) was growth-retarded in a defined medium supplemented with certain purines. This strain was attenuated for uptake of radiolabeled adenosine, guanosine, and inosine, showing a role for this transporter in uptake of purine nucleosides. Deletion of the GMP biosynthesis gene guaA had no discernible effect on mouse stomach colonization, in contrast to findings in numerous bacterial pathogens. In this study we define a more comprehensive model for purine acquisition and salvage in H. pylori that includes purine uptake by a NupC homolog and catabolism of adenosine via adenosine deaminase.
Collapse
Affiliation(s)
- Erica F. Miller
- Microbiology Department, The University of Georgia, Athens, Georgia, United States of America
| | - Soumya Vaish
- Microbiology Department, The University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Maier
- Microbiology Department, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
18
|
Boitz JM, Strasser R, Hartman CU, Jardim A, Ullman B. Adenine aminohydrolase from Leishmania donovani: unique enzyme in parasite purine metabolism. J Biol Chem 2012; 287:7626-39. [PMID: 22238346 DOI: 10.1074/jbc.m111.307884] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent K(m) of 15.4 μM, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2'-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2'-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
19
|
Kamat SS, Holmes-Hampton GP, Bagaria A, Kumaran D, Tichy SE, Gheyi T, Zheng X, Bain K, Groshong C, Emtage S, Sauder JM, Burley SK, Swaminathan S, Lindahl PA, Raushel FM. The catalase activity of diiron adenine deaminase. Protein Sci 2011; 20:2080-94. [PMID: 21998098 DOI: 10.1002/pro.748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/05/2022]
Abstract
Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.
Collapse
Affiliation(s)
- Siddhesh S Kamat
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kamat SS, Fan H, Sauder JM, Burley SK, Shoichet BK, Sali A, Raushel FM. Enzymatic deamination of the epigenetic base N-6-methyladenine. J Am Chem Soc 2011; 133:2080-3. [PMID: 21275375 DOI: 10.1021/ja110157u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two enzymes of unknown function from the amidohydrolase superfamily were discovered to catalyze the deamination of N-6-methyladenine to hypoxanthine and methyl amine. The methylation of adenine in bacterial DNA is a common modification for the protection of host DNA against restriction endonucleases. The enzyme from Bacillus halodurans, Bh0637, catalyzes the deamination of N-6-methyladenine with a k(cat) of 185 s(-1) and a k(cat)/K(m) of 2.5 × 10(6) M(-1) s(-1). Bh0637 catalyzes the deamination of N-6-methyladenine 2 orders of magnitude faster than adenine. A comparative model of Bh0637 was computed using the three-dimensional structure of Atu4426 (PDB code: 3NQB) as a structural template and computational docking was used to rationalize the preferential utilization of N-6-methyladenine over adenine. This is the first identification of an N-6-methyladenine deaminase (6-MAD).
Collapse
Affiliation(s)
- Siddhesh S Kamat
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Lin J, Liao X, Du G, Chen J. Enhancement of glutathione production in a coupled system of adenosine deaminase-deficient recombinant Escherichia coli and Saccharomyces cerevisiae. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep 2009; 28:335-47. [PMID: 18673302 DOI: 10.1042/bsr20080081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Homogeneous adenine deaminases (EC 3.5.4.2) from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and a putative ADA (adenosine deaminase; EC 3.5.4.4) from Arabidopsis thaliana were obtained for the first time as purified recombinant proteins by molecular cloning of the corresponding genes and their overexpression in Escherichia coli. The enzymes showed comparable molecular properties with well-known mammalian ADAs, but exhibited much lower k(cat) values. Adenine was the most favoured substrate for the yeast enzymes, whereas the plant enzyme showed only very low activities with either adenine, adenosine, AMP or ATP. Interestingly, the yeast enzymes also hydrolysed N6-substituted adenines from cytokinins, a group of plant hormones, cleaving them to inosine and the corresponding side chain amine. The hydrolytic cleavage of synthetic cytokinin 2,6-di-substituted analogues that are used in cancer therapy, such as olomoucine, roscovitine and bohemine, was subsequently shown for a reference sample of human ADA1. ADA1, however, showed a different reaction mechanism to that of the yeast enzymes, hydrolysing the compounds to an adenine derivative and a side chain alcohol. The reaction products were identified using reference compounds on HPLC coupled to UV and Q-TOF (quadrupole-time-of-flight) detectors.The ADA1 activity may constitute the debenzylation metabolic route already described for bohemine and, as a consequence, it may compromise the physiological or therapeutic effects of exogenously applied cytokinin derivatives.
Collapse
|
23
|
Oestreicher N, Ribard C, Scazzocchio C. The nadA gene of Aspergillus nidulans, encoding adenine deaminase, is subject to a unique regulatory pattern. Fungal Genet Biol 2007; 45:760-75. [PMID: 18055231 DOI: 10.1016/j.fgb.2007.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 11/24/2022]
Abstract
The adenine deaminase of A. nidulans, encoded by nadA, can be considered both as a catabolic and a purine salvage enzyme. We show that its transcriptional regulation reflects this double metabolic role. As all other genes involved in purine utilisation it is induced by uric acid, and this induction is mediated by the UaY transcription factor. However, it is also independently and synergistically induced by adenosine by a UaY-independent mechanism. At variance with all other enzymes of purine catabolism it is not repressed but induced by ammonium. This is at least partly due to the ammonium responsive GATA factor, AreA, acting in the nadA promoter as a competitor rather than in synergy with UaY. The adB gene, encoding adenylo-succinate synthetase, which can be considered both a biosynthetic and a salvage pathway enzyme, shares with nadA both ammonium and adenosine induction.
Collapse
Affiliation(s)
- Nathalie Oestreicher
- Université Paris XI, CNRS UMR8621, Institut de Génétique et Microbiologie, Bâtiment 409, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
24
|
Schiedel AC, Meyer H, Alsdorf BBA, Gorzalka S, Brüssel H, Müller CE. [(3)H]Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions. Purinergic Signal 2007; 3:347-58. [PMID: 18404448 PMCID: PMC2072912 DOI: 10.1007/s11302-007-9060-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Accepted: 06/25/2007] [Indexed: 12/18/2022] Open
Abstract
[3H]Adenine has previously been used to label the newly discovered G protein-coupled murine adenine receptors. Recent reports have questioned the suitability of [3H]adenine for adenine receptor binding studies because of curious results, e.g. high specific binding even in the absence of mammalian protein. In this study, we showed that specific [3H]adenine binding to various mammalian membrane preparations increased linearly with protein concentration. Furthermore, we found that Tris-buffer solutions typically used for radioligand binding studies (50 mM, pH 7.4) that have not been freshly prepared but stored at 4°C for some time may contain bacterial contaminations that exhibit high affinity binding for [3H]adenine. Specific binding is abolished by heating the contaminated buffer or filtering it through 0.2-μm filters. Three different, aerobic, gram-negative bacteria were isolated from a contaminated buffer solution and identified as Achromobacter xylosoxidans, A. denitrificans, and Acinetobacter lwoffii. A. xylosoxidans, a common bacterium that can cause nosocomial infections, showed a particularly high affinity for [3H]adenine in the low nanomolar range. Structure–activity relationships revealed that hypoxanthine also bound with high affinity to A. xylosoxidans, whereas other nucleobases (uracil, xanthine) and nucleosides (adenosine, uridine) did not. The nature of the labeled site in bacteria is not known, but preliminary results indicate that it may be a high-affinity purine transporter. We conclude that [3H]adenine is a well-suitable radioligand for adenine receptor binding studies but that bacterial contamination of the employed buffer solutions must be avoided.
Collapse
Affiliation(s)
- Anke C Schiedel
- University of Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, Rosa PA. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol 2007; 64:1358-74. [PMID: 17542926 PMCID: PMC1974800 DOI: 10.1111/j.1365-2958.2007.05746.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID50 relative to the isogenic lp36+ clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity.
Collapse
Affiliation(s)
- Mollie W Jewett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD. Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 2007; 65:1193-217. [PMID: 17645733 PMCID: PMC2967192 DOI: 10.1111/j.1365-2958.2007.05860.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Borrelia burgdorferi (Bb) adapts to its arthropod and mammalian hosts by altering its transcriptional and antigenic profiles in response to environmental signals associated with each of these milieus. In studies presented here, we provide evidence to suggest that mammalian host signals are important for modulating and maintaining both the positive and negative aspects of mammalian host adaptation mediated by the alternative sigma factor RpoS in Bb. Although considerable overlap was observed between genes induced by RpoS during growth within the mammalian host and following temperature-shift, comparative microarray analyses demonstrated unequivocally that RpoS-mediated repression requires mammalian host-specific signals. A substantial portion of the in vivo RpoS regulon was uniquely upregulated within dialysis membrane chambers, further underscoring the importance of host-derived environmental stimuli for differential gene expression in Bb. Expression profiling of genes within the RpoS regulon by quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed a level of complexity to RpoS-dependent gene regulation beyond that observed by microarray, including a broad range of expression levels and the presence of genes whose expression is only partially dependent on RpoS. Analysis of Bb-infected ticks by qRT-PCR established that expression of rpoS is induced during the nymphal blood meal but not within unfed nymphs or engorged larvae. Together, these data have led us to postulate that RpoS acts as a gatekeeper for the reciprocal regulation of genes involved in the establishment of infection within the mammalian host and the maintenance of spirochetes within the arthropod vector.
Collapse
Affiliation(s)
- Melissa J Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pospisilova H, Frebort I. AMINOHYDROLASES ACTING ON ADENINE, ADENOSINE AND THEIR DERIVATIVES. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007; 151:3-10. [PMID: 17690732 DOI: 10.5507/bp.2007.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adenine and adenosine-acting aminohydrolases are important groups of enzymes responsible for the metabolic salvage of purine compounds. Several subclasses of these enzymes have been described and given current knowledge of the full genome sequences of many organisms, it is possible to identify genes encoding these enzymes and group them according to their primary structure. METHODS AND RESULTS This article is a short overview of the enzymes classified as adenine and adenosine deaminase. It summarises knowledge of their occurrence, genetic basis and their catalytic and structural properties. CONCLUSIONS These enzymes are constitutive components of purine metabolism and their impairment may cause serious medical disorders. In humans, adenosine deaminase deficiency is linked to severe combined immunodeficiency and as such the enzyme has been approved for the first gene therapy trial. The role of these enzymes in plants is unclear, since the activity was has not been detected in extracts and putative genes have not been yet cloned and analyzed. A literature search and amino acid identity comparison show that Ascomycetes contain only adenine deaminase, but not adenosine deaminase, despite the fact that corresponding genes are annotated in databases as the adenosine cleaving enzymes because they share the same conserved domain.
Collapse
Affiliation(s)
- Hana Pospisilova
- Department of Biochemistry, Faculty of Science, Palacky University, Slechtitelu 11, Olomouc 783 71, Czech Republic.
| | | |
Collapse
|
28
|
Dorgan KM, Wooderchak WL, Wynn DP, Karschner EL, Alfaro JF, Cui Y, Zhou ZS, Hevel JM. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem 2006; 350:249-55. [PMID: 16460659 DOI: 10.1016/j.ab.2006.01.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/30/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Modification of small molecules and proteins by methyltransferases affects a wide range of biological processes. Here, we report an enzyme-coupled continuous spectrophotometric assay to quantitatively characterize S-adenosyl-L-methionine (AdoMet/SAM)-dependent methyltransferase activity. In this assay, S-adenosyl-L-homocysteine (AdoHcy/SAH), the transmethylation product of AdoMet-dependent methyltransferases, is hydrolyzed to S-ribosylhomocysteine and adenine by recombinant S-adenosylhomocysteine/5'-methylthioadenosine nucleosidase (SAHN/MTAN, EC 3.2.2.9). Subsequently, adenine generated from AdoHcy is further hydrolyzed to hypoxanthine and ammonia by recombinant adenine deaminase (EC 3.5.4.2). This deamination is associated with a decrease in absorbance at 265 nm that can be monitored continuously. Coupling enzymes are recombinant and easily purified. The utility of this assay was shown using recombinant rat protein arginine N-methyltransferase 1 (PRMT1, EC 2.1.1.125), which catalyzes the mono- and dimethylation of guanidino nitrogens of arginine residues in select proteins. Using this assay, the kinetic parameters of PRMT1 with three synthetic peptides were determined. An advantage of this assay is the destruction of AdoHcy by AdoHcy nucleosidase, which alleviates AdoHcy product feedback inhibition of S-adenosylmethionine-dependent methyltransferases. Finally, this method may be used to assay other enzymes that produce AdoHcy, 5'-methylthioadenosine, or compounds that can be cleaved by AdoHcy nucleosidase.
Collapse
Affiliation(s)
- Kathleen M Dorgan
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 2005; 57:1367-80. [PMID: 16102006 DOI: 10.1111/j.1365-2958.2005.04776.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signature-tagged mutagenesis (STM) was used to identify new genes involved in the virulence of the Gram-positive intracellular pathogen Listeria monocytogenes. One of the mutants isolated by this technique had the transposon inserted in virR, a gene encoding a putative response regulator of a two-component system. Deletion of virR severely decreased virulence in mice as well as invasion in cell-culture experiments. Using a transcriptomic approach, we identified 12 genes regulated by VirR, including the dlt-operon, previously reported to be important for L. monocytogenes virulence. However, a strain lacking dltA, was not as impaired in virulence as the DeltavirR strain, suggesting a role in virulence for other members of the vir regulon. Another VirR-regulated gene is homologous to mprF, which encodes a protein that modifies membrane phosphatidyl glycerol with l-lysine and that is involved in resistance to human defensins in Staphylococcus aureus. VirR thus appears to control virulence by a global regulation of surface components modifications. These modifications may affect interactions with host cells, including components of the innate immune system. Surprisingly, although controlling the same set of genes as VirR, the putative cognate histidine kinase of VirR, VirS, encoded by a gene located three genes downstream of virR, was shown not to be essential for virulence. By monitoring the activity of VirR with a GFP reporter construct, we showed that VirR can be activated independently of VirS, for example through a mechanism involving variations in the level of intracellular acetyl phosphate. In silico analysis of the VirR-regulated promoters revealed a VirR DNA-binding consensus site and specific interaction between purified VirR protein and this consensus sequence was demonstrated by gel mobility shift assays. This study identifies a second key virulence regulon in L. monocytogenes, after the prfA regulon.
Collapse
Affiliation(s)
- Pierre Mandin
- Unité des Interactions Bactéries cellules, Institut Pasteur, INSERM U604, INRA USC2020, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kloepfer JA, Mielke RE, Nadeau JL. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 2005; 71:2548-57. [PMID: 15870345 PMCID: PMC1087584 DOI: 10.1128/aem.71.5.2548-2557.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are <5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of <5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.
Collapse
Affiliation(s)
- J A Kloepfer
- Center for Life Detection, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | |
Collapse
|
31
|
Nygaard P, Saxild HH. The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size. J Bacteriol 2005; 187:791-4. [PMID: 15629952 PMCID: PMC543539 DOI: 10.1128/jb.187.2.791-794.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the expression of genes encoding enzymes and other proteins involved in purine de novo synthesis and salvage is affected by purine bases and phosphoribosylpyrophosphate (PRPP). The transcription of the genes belonging to the PurR regulon is negatively regulated by the PurR protein and PRPP. The expression of the genes belonging to the G-box (XptR) regulon, including the pbuE gene, is negatively regulated by a riboswitch-controlled transcription termination mechanism. The G-box regulon effector molecules are hypoxanthine and guanine. pbuE encodes a purine base efflux pump and is now recognized as belonging to a third purine regulon. The expression of the pbuE gene is positively regulated by a riboswitch that recognizes adenine. Here we show that the expression of pbuE'-lacZ transcriptional fusions are induced by adenine to the highest extent in mutants which do not express a functional PbuE pump. In a mutant defective in the metabolism of adenine, the ade apt mutant, we found a high intracellular level of adenine and constitutive high levels of PbuE. A growth test using a purine auxotroph provided further evidence for the role of PbuE in lowering the intracellular concentration of purine bases, including adenine. Purine analogs also affect the expression of pbuE, which might be of importance for the protection against toxic analogs. In a mutant that overexpresses PbuE, the expression of genes belonging to the PurR regulon was increased. Our findings provide further evidence for important functions of the PbuE protein, such as acting as a pump that lowers the purine base pool and affects the expression of the G-box and PurR regulons, including pbuE itself, and as a pump involved in protection against toxic purine base analogs.
Collapse
Affiliation(s)
- Per Nygaard
- Institute of Molecular Biology, Department of Biological Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Johansson E, Fanø M, Bynck JH, Neuhard J, Larsen S, Sigurskjold BW, Christensen U, Willemoës M. Structures of dCTP deaminase from Escherichia coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes. J Biol Chem 2004; 280:3051-9. [PMID: 15539408 DOI: 10.1074/jbc.m409534200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dCTP deaminase (EC 3.5.4.13) catalyzes the deamination of dCTP forming dUTP that via dUTPase is the main pathway providing substrate for thymidylate synthase in Escherichia coli and Salmonella typhimurium. dCTP deaminase is unique among nucleoside and nucleotide deaminases as it functions without aid from a catalytic metal ion that facilitates preparation of a water molecule for nucleophilic attack on the substrate. Two active site amino acid residues, Arg(115) and Glu(138), were identified by mutational analysis as important for activity in E. coli dCTP deaminase. None of the mutant enzymes R115A, E138A, or E138Q had any detectable activity but circular dichroism spectra for all mutant enzymes were similar to wild type suggesting that the overall structure was not changed. The crystal structures of wild-type E. coli dCTP deaminase and the E138A mutant enzyme have been determined in complex with dUTP and Mg(2+), and the mutant enzyme also with the substrate dCTP and Mg(2+). The enzyme is a third member of the family of the structurally related trimeric dUTPases and the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii. However, the C-terminal fold is completely different from dUTPases resulting in an active site built from residues from two of the trimer subunits, and not from three subunits as in dUTPases. The nucleotides are well defined as well as Mg(2+) that is tridentately coordinated to the nucleotide phosphate chains. We suggest a catalytic mechanism for the dCTP deaminase and identify structural differences to dUTPases that prevent hydrolysis of the dCTP triphosphate.
Collapse
Affiliation(s)
- Eva Johansson
- Centre for Crystallographic Studies, Department of Chemistry, University of Copenhagen Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ribard C, Rochet M, Labedan B, Daignan-Fornier B, Alzari P, Scazzocchio C, Oestreicher N. Sub-families of alpha/beta barrel enzymes: a new adenine deaminase family. J Mol Biol 2004; 334:1117-31. [PMID: 14643670 DOI: 10.1016/j.jmb.2003.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
No gene coding for an adenine deaminase has been described in eukaryotes. However, physiological and genetical evidence indicates that adenine deaminases are present in the ascomycetes. We have cloned and characterised the genes coding for the adenine deaminases of Aspergillus nidulans, Saccharomyces cerevisiae and Schizosaccharomyces pombe. The A.nidulans gene was expressed in Escherichia coli and the purified enzyme shows adenine but not adenosine deaminase activity. The open reading frames coded by the three genes are very similar and obviously related to the bacterial and eukaryotic adenosine deaminases rather than to the bacterial adenine deaminases. The latter are related to allantoinases, ureases and dihydroorotases. The fungal adenine deaminases and the homologous adenosine deaminases differ in a number of residues, some of these being clearly involved in substrate specificity. Other prokaryotic enzymes in the database, while clearly related to the above, do not fit into either sub-class, and may even have a different specificity. These results imply that adenine deaminases have appeared twice in the course of evolution, from different ancestral enzymes constructed both around the alpha/beta barrel scaffold.
Collapse
Affiliation(s)
- Carin Ribard
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 409, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Johansen LE, Nygaard P, Lassen C, Agersø Y, Saxild HH. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J Bacteriol 2003; 185:5200-9. [PMID: 12923093 PMCID: PMC181001 DOI: 10.1128/jb.185.17.5200-5209.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis expression of genes or operons encoding enzymes and other proteins involved in purine synthesis is affected by purine bases and nucleosides in the growth medium. The genes belonging to the PurR regulon (purR, purA, glyA, guaC, pbuO, pbuG, and the pur, yqhZ-folD, and xpt-pbuX operons) are controlled by the PurR repressor, which inhibits transcription initiation. Other genes are regulated by a less-well-described transcription termination mechanism that responds to the presence of hypoxanthine and guanine. The pur operon and the xpt-pbuX operon, which were studied here, are regulated by both mechanisms. We isolated two mutants resistant to 2-fluoroadenine in which the pur operon and the xpt-pbuX operon are expressed at increased levels in a PurR-independent manner. The mutations were caused by deletions that disrupted a potential transcription terminator structure located immediately upstream of the ydhL gene. The 5' part of the ydhL leader region contained a 63-nucleotide (nt) sequence very similar to the 5' ends of the leaders of the pur and xpt-pbuX operons. Transcripts of these regions may form a common tandem stem-loop secondary structure. Two additional genes with potential leader regions containing the 63-nt sequence are pbuG, encoding a hypoxanthine-guanine transporter, and yxjA, which was shown to encode a purine nucleoside transporter and is renamed nupG. Transcriptional lacZ fusions and mutations in the 63-nt sequence encoding the possible secondary structures provided evidence that expression of the pur and xpt-pbuX operons and expression of the ydhL, nupG, and pbuG genes are regulated by a common mechanism. The new pur regulon is designated the XptR regulon. Except for ydhL, the operons and genes were negatively regulated by hypoxanthine and guanine. ydhL was positively regulated. The derived amino acid sequence encoded by ydhL (now called pbuE) is similar to the amino acid sequences of metabolite efflux pumps. When overexpressed, PbuE lowers the sensitivity to purine analogs. Indirect evidence indicated that PbuE decreases the size of the internal pool of hypoxanthine. This explains why the hypoxanthine- and guanine-regulated genes are expressed at elevated levels in a mutant that overexpresses pbuE.
Collapse
|
35
|
Brandenburg JL, Wray LV, Beier L, Jarmer H, Saxild HH, Fisher SH. Roles of PucR, GlnR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter. J Bacteriol 2002; 184:6060-4. [PMID: 12374841 PMCID: PMC135401 DOI: 10.1128/jb.184.21.6060-6064.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the P3 promoter of the Bacillus subtilis ureABC operon is activated during nitrogen-limited growth by PucR, the transcriptional regulator of the purine-degradative genes. Addition of allantoic acid, a purine-degradative intermediate, to nitrogen-limited cells stimulated transcription of ure P3 twofold. Since urea is produced during purine degradation in B. subtilis, regulation of ureABC expression by PucR allows purines to be completely degraded to ammonia. The nitrogen transcription factor TnrA was found to indirectly regulate ure P3 expression by activating pucR expression. The two consensus GlnR/TnrA binding sites located in the ure P3 promoter region were shown to be required for negative regulation by GlnR. Mutational analysis indicates that a cooperative interaction occurs between GlnR dimers bound at these two sites. B. subtilis is the first example where urease expression is both nitrogen regulated and coordinately regulated with the enzymes involved in purine transport and degradation.
Collapse
Affiliation(s)
- Jaclyn L Brandenburg
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
36
|
Petersen C, Møller LB, Valentin-Hansen P. The cryptic adenine deaminase gene of Escherichia coli. Silencing by the nucleoid-associated DNA-binding protein, H-NS, and activation by insertion elements. J Biol Chem 2002; 277:31373-80. [PMID: 12077137 DOI: 10.1074/jbc.m204268200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli there are two pathways for conversion of adenine into guanine nucleotides, both involving the intermediary formation of IMP. The major pathway involves conversion of adenine into hypoxanthine in three steps via adenosine and inosine, with subsequent phosphoribosylation of hypoxanthine to IMP. The minor pathway involves formation of ATP, which is converted via the histidine pathway to the purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide and, subsequently, to IMP. Here we describe E. coli mutants, in which a third pathway for conversion of adenine to IMP has been activated. This pathway was shown to involve direct deamination of adenine to hypoxanthine by a manganese-dependent adenine deaminase encoded by a cryptic gene, yicP, which we propose be renamed ade. Insertion elements, located from -145 to +13 bp relative to the transcription start site, activated the ade gene as did unlinked mutations in the hns gene, encoding the histone-like protein H-NS. Gene fusion analysis indicated that ade transcription is repressed more than 10-fold by H-NS and that a region of 231 bp including the ade promoter is sufficient for this regulation. The activating insertion elements essentially eliminated the H-NS-mediated silencing, and stimulated ade gene expression 2-3-fold independently of the H-NS protein.
Collapse
Affiliation(s)
- Carsten Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK1307 Copenhagen K, Denmark.
| | | | | |
Collapse
|
37
|
Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 2002; 184:2500-20. [PMID: 11948165 PMCID: PMC134987 DOI: 10.1128/jb.184.9.2500-2520.2002] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response in Bacillus subtilis was characterized by using proteome and transcriptome approaches. Comparison of protein synthesis patterns of wild-type and relA mutant cells cultivated under conditions which provoke the stringent response revealed significant differences. According to their altered synthesis patterns in response to DL-norvaline, proteins were assigned to four distinct classes: (i) negative stringent control, i.e., strongly decreased protein synthesis in the wild type but not in the relA mutant (e.g., r-proteins); (ii) positive stringent control, i.e., induction of protein synthesis in the wild type only (e.g., YvyD and LeuD); (iii) proteins that were induced independently of RelA (e.g., YjcI); and (iv) proteins downregulated independently of RelA (e.g., glycolytic enzymes). Transcriptome studies based on DNA macroarray techniques were used to complement the proteome data, resulting in comparable induction and repression patterns of almost all corresponding genes. However, a comparison of both approaches revealed that only a subset of RelA-dependent genes or proteins was detectable by proteomics, demonstrating that the transcriptome approach allows a more comprehensive global gene expression profile analysis. The present study presents the first comprehensive description of the stringent response of a bacterial species and an almost complete map of protein-encoding genes affected by (p)ppGpp. The negative stringent control concerns reactions typical of growth and reproduction (ribosome synthesis, DNA synthesis, cell wall synthesis, etc.). Negatively controlled unknown y-genes may also code for proteins with a specific function during growth and reproduction (e.g., YlaG). On the other hand, many genes are induced in a RelA-dependent manner, including genes coding for already-known and as-yet-unknown proteins. A passive model is preferred to explain this positive control relying on the redistribution of the RNA polymerase under the influence of (p)ppGpp.
Collapse
Affiliation(s)
- Christine Eymann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
38
|
Snyder FF, Yuan RG, Bin JC, Carter KL, McKay DJ. Human guanine deaminase: cloning, expression and characterisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:111-4. [PMID: 11783465 DOI: 10.1007/0-306-46843-3_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F F Snyder
- Department of Medical Genetics, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
39
|
Meng Q, Switzer RL. Regulation of transcription of the Bacillus subtilis pyrG gene, encoding cytidine triphosphate synthetase. J Bacteriol 2001; 183:5513-22. [PMID: 11544212 PMCID: PMC95441 DOI: 10.1128/jb.183.19.5513-5522.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B. subtilis pyrG gene, which encodes CTP synthetase, is located far from the pyrimidine biosynthetic operon on the chromosome and is independently regulated. The pyrG promoter and 5' leader were fused to lacZ and integrated into the chromosomes of several B. subtilis strains having mutations in genes of pyrimidine biosynthesis and salvage. These mutations allowed the intracellular pools of cytidine and uridine nucleotides to be manipulated by the composition of the growth medium. These experiments indicated that pyrG expression is repressed by cytidine nucleotides but is largely independent of uridine nucleotides. The start of pyrG transcription was mapped by primer extension to a position 178 nucleotides upstream of the translation initiation codon. A factor-independent termination hairpin lying between the pyrG promoter and its coding region is essential for regulation of pyrG expression. Primer-extended transcripts were equally abundant in repressed and derepressed cells when the primer bound upstream of the terminator, but they were much less abundant in repressed cells when the primer bound downstream of the terminator. Furthermore, deletion of the terminator from pyrG-lacZ fusions integrated into the chromosome yielded elevated levels of expression that was not repressible by cytidine. We suggest that cytidine repression of pyrG expression is mediated by an antitermination mechanism in which antitermination by a putative trans-acting protein is reduced by elevated levels of cytidine nucleotides. Conservation of sequences and secondary structural elements in the pyrG 5' leaders of several other gram-positive bacteria indicates that their pyrG genes are regulated by a similar mechanism.
Collapse
Affiliation(s)
- Q Meng
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
40
|
Schultz AC, Nygaard P, Saxild HH. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol 2001; 183:3293-302. [PMID: 11344136 PMCID: PMC99626 DOI: 10.1128/jb.183.11.3293-3302.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Bacillus subtilis has developed a highly controlled system for the utilization of a diverse array of low-molecular-weight compounds as a nitrogen source when the preferred nitrogen sources, e.g., glutamate plus ammonia, are exhausted. We have identified such a system for the utilization of purines as nitrogen source in B. subtilis. Based on growth studies of strains with knockout mutations in genes, complemented with enzyme analysis, we could ascribe functions to 14 genes encoding enzymes or proteins of the purine degradation pathway. A functional xanthine dehydrogenase requires expression of five genes (pucA, pucB, pucC, pucD, and pucE). Uricase activity is encoded by the pucL and pucM genes, and a uric acid transport system is encoded by pucJ and pucK. Allantoinase is encoded by the pucH gene, and allantoin permease is encoded by the pucI gene. Allantoate amidohydrolase is encoded by pucF. In a pucR mutant, the level of expression was low for all genes tested, indicating that PucR is a positive regulator of puc gene expression. All 14 genes except pucI are located in a gene cluster at 284 to 285 degrees on the chromosome and are contained in six transcription units, which are expressed when cells are grown with glutamate as the nitrogen source (limiting conditions), but not when grown on glutamate plus ammonia (excess conditions). Our data suggest that the 14 genes and the gde gene, encoding guanine deaminase, constitute a regulon controlled by the pucR gene product. Allantoic acid, allantoin, and uric acid were all found to function as effector molecules for PucR-dependent regulation of puc gene expression. When cells were grown in the presence of glutamate plus allantoin, a 3- to 10-fold increase in expression was seen for most of the genes. However, expression of the pucABCDE unit was decreased 16-fold, while expression of pucR was decreased 4-fold in the presence of allantoin. We have identified genes of the purine degradation pathway in B. subtilis and showed that their expression is subject to both general nitrogen catabolite control and pathway-specific control.
Collapse
Affiliation(s)
- A C Schultz
- Section for Molecular Microbiology, BioCentrum-DTU, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | |
Collapse
|
41
|
Nygaard P, Bested SM, Andersen KAK, Saxild HH. Bacillus subtilis guanine deaminase is encoded by the yknA gene and is induced during growth with purines as the nitrogen source. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3061-3069. [PMID: 11101664 DOI: 10.1099/00221287-146-12-3061] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis can utilize the purine bases adenine, hypoxanthine and xanthine as nitrogen sources. The utilization of guanine as a nitrogen source is reported here. The first step is the deamination of guanine to xanthine catalysed by guanine deaminase (GDEase). To isolate mutants defective in GDEase activity, a collection of mutant strains was screened for strains unable to use guanine as a nitrogen source. The strain BFA1819 (yknA) showed the expected phenotype and no GDEase activity could be detected in this strain. A new name for yknA, namely gde, is proposed. The gde gene encodes a 156 amino acid polypeptide and was preceded by a promoter sequence that is recognized by the sigma(A) form of RNA polymerase. High levels of GDEase were found in cells grown with purines and intermediary compounds of the purine catabolic pathway as nitrogen sources. Allantoic acid, most likely, is a low molecular mass inducer molecule. The level of GDEase was found to be subjected to global nitrogen control exerted by the GlnA/TnrA-dependent signalling pathway. The two regulatory proteins of this pathway, TnrA and GlnR, indirectly and positively affected gde expression. This is the first instance of a gene whose expression is positively regulated by GlnR. The GDEase amino acid sequence shows no homology with the mammalian enzyme. In agreement with this are the different physiological roles for the two enzymes.
Collapse
Affiliation(s)
- Per Nygaard
- Department of Biological Chemistry, University of Copenhagen, DK-1307 Copenhagen K, Denmark1
| | - Søren M Bested
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark2
| | | | - Hans H Saxild
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark2
| |
Collapse
|
42
|
Maynes JT, Yuan RG, Snyder FF. Identification, expression, and characterization of Escherichia coli guanine deaminase. J Bacteriol 2000; 182:4658-60. [PMID: 10913105 PMCID: PMC94643 DOI: 10.1128/jb.182.16.4658-4660.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a K(m) of 15 microM with guanine and a k(cat) of 3.2 s(-1). The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3' from an open reading frame which shows homology to a bacterial purine base permease.
Collapse
Affiliation(s)
- J T Maynes
- Departments of Medical Genetics and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
43
|
Schuch R, Garibian A, Saxild HH, Piggot PJ, Nygaard P. Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2957-66. [PMID: 10537218 DOI: 10.1099/00221287-145-10-2957] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Bacillus subtilis, nucleosides are readily taken up from the growth medium and metabolized. The key enzymes in nucleoside catabolism are nucleoside phosphorylases, phosphopentomutase, and deoxyriboaldolase. The characterization of two closely linked loci, drm and pupG, which encode phosphopentomutase (Drm) and guanosine (inosine) phosphorylase (PupG), respectively, is reported here. When expressed in Escherichia coli mutant backgrounds, drm and pupG confer phosphopentomutase and purine-nucleoside phosphorylase activity. Northern blot and enzyme analyses showed that drm and pupG form a dicistronic operon. Both enzymes are induced when nucleosides are present in the growth medium. Using mutants deficient in nucleoside catabolism, it was demonstrated that the low-molecular-mass effectors of this induction most likely were deoxyribose 5-phosphate and ribose 5-phosphate. Both Drm and PupG activity levels were higher when succinate rather than glucose served as the carbon source, indicating that the expression of the operon is subject to catabolite repression. Primer extension analysis identified two transcription initiation signals upstream of drm; both were utilized in induced and non-induced cells. The nucleoside-catabolizing system in B. subtilis serves to utilize the base for nucleotide synthesis while the pentose moiety serves as the carbon source. When added alone, inosine barely supports growth of B. subtilis. This slow nucleoside catabolism contrasts with that of E. coli, which grows rapidly on a nucleoside as a carbon source. When inosine was added with succinate or deoxyribose, however, a significant increase in growth was observed in B. subtilis. The findings of this study therefore indicate that the B. subtilis system for nucleoside catabolism differs greatly from the well-studied system in E. coli.
Collapse
Affiliation(s)
- R Schuch
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
44
|
Yuan G, Bin JC, McKay DJ, Snyder FF. Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein. J Biol Chem 1999; 274:8175-80. [PMID: 10075721 DOI: 10.1074/jbc.274.12.8175] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse erythrocyte guanine deaminase has been purified to homogeneity. The native enzyme was dimeric, being comprised of two identical subunits of approximately 50,000 Da. The protein sequence was obtained from five cyanogen bromide cleavage products giving sequences ranging from 12 to 25 amino acids in length and corresponding to 99 residues. Basic Local Alignment Search Tool (BLAST) analysis of expressed sequence databases enabled the retrieval of a human expressed sequence tag cDNA clone highly homologous to one of the mouse peptide sequences. The presumed coding region of this clone was used to screen a human kidney cDNA library and secondarily to polymerase chain reaction-amplify the full-length coding sequence of the human brain cDNA corresponding to an open reading frame of 1365 nucleotides and encoding a protein of 51,040 Da. Comparison of the mouse peptide sequences with the inferred human protein sequence revealed 88 of 99 residues to be identical. The human coding sequence of the putative enzyme was subcloned into the bacterial expression vector pMAL-c2, expressed, purified, and characterized as having guanine deaminase activity with a Km for guanine of 9.5 +/- 1.7 microM. The protein shares a 9-residue motif with other aminohydrolases and amidohydrolases (PGX[VI]DXH[TVI]H) that has been shown to be ligated with heavy metal ions, commonly zinc. The purified recombinant guanine deaminase was found to contain approximately 1 atom of zinc per 51-kDa monomer.
Collapse
Affiliation(s)
- G Yuan
- Department of Medical Genetics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
45
|
Gojkovic Z, Paracchini S, Piskur J. A new model organism for studying the catabolism of pyrimidines and purines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:475-9. [PMID: 9598114 DOI: 10.1007/978-1-4615-5381-6_94] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Z Gojkovic
- Department of Microbiology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
46
|
Stuer-Lauridsen B, Nygaard P. Purine salvage in two halophilic archaea: characterization of salvage pathways and isolation of mutants resistant to purine analogs. J Bacteriol 1998; 180:457-63. [PMID: 9457844 PMCID: PMC106908 DOI: 10.1128/jb.180.3.457-463.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1997] [Accepted: 11/24/1997] [Indexed: 02/06/2023] Open
Abstract
In exponentially growing cultures of the extreme halophile Halobacterium halobium and the moderate halophile Haloferax volcanii, growth characteristics including intracellular protein levels, RNA content, and nucleotide pool sizes were analyzed. This is the first report on pool sizes of nucleoside triphosphates, NAD, and PRPP (5-phosphoribosyl-alpha-1-pyrophosphate) in archaea. The presence of a number of salvage and interconversion enzymes was determined by enzymatic assays. The levels varied significantly between the two organisms. The most significant difference was the absence of GMP reductase activity in H. halobium. The metabolism of exogenous purines was investigated in growing cultures. Both purine bases and nucleosides were readily taken up and were incorporated into nucleic acids. Growth of both organisms was affected by a number of inhibitors of nucleotide synthesis. H. volcanii was more sensitive than H. halobium, and purine base analogs were more toxic than nucleoside analogs. Growth of H. volcanii was inhibited by trimethoprim and sulfathiazole, while these compounds had no effect on the growth of H. halobium. Spontaneous mutants resistant to purine analogs were isolated. The most frequent cause of resistance was a defect in purine phosphoribosyltransferase activity coupled with reduced purine uptake. A single phosphoribosyltransferase seemed to convert guanine as well as hypoxanthine to nucleoside monophosphates, and another phosphoribosyltransferase had specificity towards adenine. The differences in the metabolism of purine bases and nucleosides and the sensitivity to purine analogs between the two halobacteria were reflected in differences in purine enzyme levels. Based on our results, we conclude that purine salvage and interconversion pathways differ just as much between the two archaeal species as among archaea, bacteria, and eukarya.
Collapse
Affiliation(s)
- B Stuer-Lauridsen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
47
|
Christiansen LC, Schou S, Nygaard P, Saxild HH. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 1997; 179:2540-50. [PMID: 9098051 PMCID: PMC179002 DOI: 10.1128/jb.179.8.2540-2550.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The xpt and pbuX genes from Bacillus subtilis were cloned, and their nucleotide sequences were determined. The xpt gene encodes a specific xanthine phosphoribosyltransferase, and the pbuX gene encodes a xanthine-specific purine permease. The genes have overlapping coding regions, and Northern (RNA) blot analysis indicated an operon organization. The translation of the second gene, pbuX, was strongly dependent on the translation of the first gene, xpt. Expression of the operon was repressed by purines, and the effector molecules appear to be hypoxanthine and guanine. When hypoxanthine and guanine were added together, a 160-fold repression was observed. The regulation of expression was at the level of transcription, and we propose that a transcription termination-antitermination control mechanism similar to the one suggested for the regulation of the purine biosynthesis operon exists. The expression of the xpt-pbuX operon was reduced when hypoxanthine served as the sole nitrogen source. Under these conditions, the level of the hypoxanthine- and xanthine-degrading enzyme, xanthine dehydrogenase, was induced more than 80-fold. The xanthine dehydrogenase level was completely derepressed in a glnA (glutamine synthetase) genetic background. Although the regulation of the expression of the xpt-pbuX operon was found to be affected by the nitrogen source, it was normal in a glnA mutant strain. This result suggests the existence of different signalling pathways for repression of the transcription of the xpt-pbuX operon and the induction of xanthine dehydrogenase.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacillus subtilis/enzymology
- Bacillus subtilis/genetics
- Bacterial Proteins
- Base Sequence
- Cloning, Molecular
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/physiology
- Genes, Bacterial
- Glutamate-Ammonia Ligase/metabolism
- Membrane Transport Proteins/genetics
- Molecular Sequence Data
- Nitrogen/pharmacology
- Nucleic Acid Conformation
- Operon/genetics
- Pentosyltransferases/genetics
- Pentosyltransferases/metabolism
- Protein Biosynthesis/genetics
- Purines/metabolism
- Purines/pharmacology
- RNA, Bacterial/analysis
- RNA, Bacterial/chemistry
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- Recombinant Fusion Proteins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic/genetics
- Xanthine
- Xanthines/metabolism
Collapse
Affiliation(s)
- L C Christiansen
- Department of Biological Chemistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|