1
|
Singh PK, Donnenberg MS. Revolutionizing Molecular cloning: Introducing FastCloneAssist, a Streamlined Python tool for optimizing primer design in restriction & ligation-independent PCR cloning. PLoS One 2025; 20:e0306950. [PMID: 40080516 PMCID: PMC11906075 DOI: 10.1371/journal.pone.0306950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
FastCloning, a paradigm shift in PCR cloning, has streamlined the process by eliminating laborious, multi-step traditional methods. This innovative technique, pioneered by Li et al. (2011), utilizes overlapping PCR primers and DpnI digestion for seamless integration of insert DNA into any desired vector position, regardless of restriction sites. This versatility makes FastCloning ideal for constructing fusion proteins, chimeric cDNAs, and manipulating genes with unparalleled ease. However, efficient primer design remains a critical hurdle, particularly for newcomers, as errors can lead to failed cloning attempts. To address this bottleneck, we present FastCloneAssist, a user-friendly Python program that automates FastCloning primer design with minimal user input. Users simply provide vector and insert sequences, along with the desired melting temperature (Tm), and FastCloneAssist provides best primer pairs after calculating optimal primer parameters for efficient PCR amplification and seamless DNA integration using established bioinformatics libraries. This open-source, freely available tool simplifies and accelerates cloning, making this powerful technique accessible to researchers of all levels and expediting scientific discovery.
Collapse
Affiliation(s)
- Pradip Kumar Singh
- Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | |
Collapse
|
2
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
3
|
Misra T, Tare M, Jha PN. Characterization of functional amyloid curli in biofilm formation of an environmental isolate Enterobacter cloacae SBP-8. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01843-y. [PMID: 37243862 DOI: 10.1007/s10482-023-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The biofilm formation by bacteria is a complex process that is strongly mediated by various genetic and environmental factors. Biofilms contribute to disease infestation, especially in chronic infections. It is, therefore important to understand the factors affecting biofilm formation. This study reports the role of a functional amyloid curli in biofilm formation at various abiotic surfaces, including medical devices, by an environmental isolate of Enterobacter cloacae (SBP-8) which has been known for its pathogenic potential. A knockout mutant of csgA, the gene encoding the major structural unit of curli, was created to study the effect of curli on biofilm formation by E. cloacae SBP-8. Our findings confirm the production of curli at 25 °C and 37 °C in the wild-type strain. We further investigated the role of curli in the attachment of E. cloacae SBP-8 to glass, enteral feeding tube, and foley latex catheter. Contrary to the previous studies reporting the curli production below 30 °C in the majority of biofilm-forming bacterial species, we observed its production in E. cloacae SBP-8 at 37 °C. The formation of more intense biofilm in wild-type strain on various surfaces compared to curli-deficient strain (ΔcsgA) at both 25 °C and 37 °C suggested a prominent role of curli in biofilm formation. Further, electron and confocal microscopy studies demonstrated the formation of diffused monolayers of microbial cells on the abiotic surfaces by ΔcsgA strain as compared to the thick biofilm by respective wild-type strain, indicating the involvement of curli in biofilm formation by E. cloacae SBP-8. Overall, our findings provide insight into biofilm formation mediated by curli in E. cloacae SBP-8. Further, we show that it can be expressed at a physiological temperature on all surfaces, thereby indicating the potential role of curli in pathogenesis.
Collapse
Affiliation(s)
- Tripti Misra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
4
|
Kaur P, Dudeja PK. Pathophysiology of Enteropathogenic Escherichia coli-induced Diarrhea. NEWBORN (CLARKSVILLE, MD.) 2023; 2:102-113. [PMID: 37388762 PMCID: PMC10308259 DOI: 10.5005/jp-journals-11002-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are important diarrheal pathogens of infants and young children. Since the availability of molecular diagnosis methods, we now have new insights into the incidence and prevalence of these infections. Recent epidemiological studies indicate that atypical EPEC (aEPEC) are seen more frequently than typical EPEC (tEPEC) worldwide, including in both endemic diarrhea and diarrhea outbreaks. Therefore, it is important to further characterize the pathogenicity of these emerging strains. The virulence mechanisms and pathophysiology of the attaching and effacing lesion (A/E) and the type-three-secretion-system (T3SS) are complex but well-studied. A/E strains use their pool of locus of enterocyte effacement (LEE)-encoded and non-LEE-encoded effector proteins to subvert and modulate cellular and barrier properties of the host. However, the exact mechanisms of diarrhea in EPEC infection are not completely understood. From the clinical perspective, there is a need for fast, easy, and inexpensive diagnostic methods to define optimal treatment and prevention for children in endemic areas. In this article, we present a review of the classification of EPEC, epidemiology, pathogenesis of the disease caused by these bacteria, determinants of virulence, alterations in signaling, determinants of colonization vs. those of disease, and the limited information we have on the pathophysiology of EPEC-induced diarrhea. This article combines peer-reviewed evidence from our own studies and the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Prabhdeep Kaur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, United States of America
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
6
|
Lara-Ochoa C, González-Lara F, Romero-González LE, Jaramillo-Rodríguez JB, Vázquez-Arellano SI, Medrano-López A, Cedillo-Ramírez L, Martínez-Laguna Y, Girón JA, Pérez-Rueda E, Puente JL, Ibarra JA. The transcriptional activator of the bfp operon in EPEC (PerA) interacts with the RNA polymerase alpha subunit. Sci Rep 2021; 11:8541. [PMID: 33879812 PMCID: PMC8058060 DOI: 10.1038/s41598-021-87586-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Enteropathogenic E. coli virulence genes are under the control of various regulators, one of which is PerA, an AraC/XylS-like regulator. PerA directly promotes its own expression and that of the bfp operon encoding the genes involved in the biogenesis of the bundle-forming pilus (BFP); it also activates PerC expression, which in turn stimulates locus of enterocyte effacement (LEE) activation through the LEE-encoded regulator Ler. Monomeric PerA directly binds to the per and bfp regulatory regions; however, it is not known whether interactions between PerA and the RNA polymerase (RNAP) are needed to activate gene transcription as has been observed for other AraC-like regulators. Results showed that PerA interacts with the alpha subunit of the RNAP polymerase and that it is necessary for the genetic and phenotypic expression of bfpA. Furthermore, an in silico analysis shows that PerA might be interacting with specific alpha subunit amino acids residues highlighting the direction of future experiments.
Collapse
Affiliation(s)
- Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Fabiola González-Lara
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis E Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan B Jaramillo-Rodríguez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Abraham Medrano-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lilia Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Mexico
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
7
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Houeix B, Synowsky S, Cairns MT, Kane M, Kilcoyne M, Joshi L. Identification of putative adhesins and carbohydrate ligands of Lactobacillus paracasei using a combinatorial in silico and glycomics microarray profiling approach. Integr Biol (Camb) 2020; 11:315-329. [PMID: 31712825 DOI: 10.1093/intbio/zyz026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
Commensal bacteria must colonize host mucosal surfaces to exert health-promoting properties, and bind to gastrointestinal tract (GIT) mucins via their cell surface adhesins. Considerable effort has been directed towards discovery of pathogen adhesins and their ligands to develop anti-infective strategies; however, little is known about the lectin-like adhesins and associated carbohydrate ligands in commensals. In this study, an in silico approach was used to detect surface exposed adhesins in the human commensal Lactobacillus paracasei subsp. paracasei, a promising probiotic commonly used in dairy product fermentation that presents anti-microbial activity. Of the 13 adhesin candidates, 3 sortase-dependent pili clusters were identified in this strain and expression of the adhesin candidate genes was confirmed in vitro. Mass spectrometry analysis confirmed the presence of surface adhesin elongation factor Tu and the chaperonin GroEL, but not pili expression. Whole cells were subsequently incubated on microarrays featuring a panel of GIT mucins from nine different mammalian species and two human-derived cell lines and a library of carbohydrate structures. Binding profiles were compared to those of two known pili-producing lactobacilli, L. johnsonii and L. rhamnosus and all Lactobacillus species displayed overlapping but distinct signatures, which may indicate different abilities for regiospecific GIT colonization. In addition, L. paracasei whole cells favoured binding to α-(2 → 3)-linked sialic acid and α-(1 → 2)-linked fucose-containing carbohydrate structures including blood groups A, B and O and Lewis antigens x, y and b. This study furthers our understanding of host-commensal cross-talk by identifying potential adhesins and specific GIT mucin and carbohydrate ligands and provides insight into the selection of colonization sites by commensals in the GIT.
Collapse
Affiliation(s)
- Benoit Houeix
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Silvia Synowsky
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Michael T Cairns
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Marian Kane
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.,Carbohydrate Signalling Group, Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
9
|
Ligthart K, Belzer C, de Vos WM, Tytgat HLP. Bridging Bacteria and the Gut: Functional Aspects of Type IV Pili. Trends Microbiol 2020; 28:340-348. [PMID: 32298612 DOI: 10.1016/j.tim.2020.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Cell-surface-located proteinaceous appendages, such as flagella and fimbriae or pili, are ubiquitous in bacterial communities. Here, we focus on conserved type IV pili (T4P) produced by bacteria in the intestinal tract, one of the most densely populated human ecosystems. Computational analysis revealed that approximately 30% of known intestinal bacteria are predicted to produce T4P. To rationalize how T4P allow intestinal bacteria to interact with their environment, other microbiota members, and host cells, we review their established role in gut commensals and pathogens with respect to adherence, motility, and biofilm formation, as well as protein secretion and DNA uptake. This work indicates that T4P are widely spread among the known members of the intestinal microbiota and that their contribution to human health might be underestimated.
Collapse
Affiliation(s)
- Kate Ligthart
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Research Program Human Microbiome, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Luna Rico A, Zheng W, Petiot N, Egelman EH, Francetic O. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Mol Microbiol 2019; 111:732-749. [PMID: 30561149 DOI: 10.1111/mmi.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Type 4a pili (T4aP) are long, thin and dynamic fibres displayed on the surface of diverse bacteria promoting adherence, motility and transport functions. Genomes of many Enterobacteriaceae contain conserved gene clusters encoding putative T4aP assembly systems. However, their expression has been observed only in few strains including Enterohaemorrhagic Escherichia coli (EHEC) and their inducers remain unknown. Here we used EHEC genomic DNA as a template to amplify and assemble an artificial operon composed of four gene clusters encoding 13 pilus assembly proteins. Controlled expressions of this operon in nonpathogenic E. coli strains led to efficient assembly of T4aP composed of the major pilin PpdD, as shown by shearing assays and immunofluorescence microscopy. When compared with PpdD pili assembled in a heterologous Klebsiella T2SS type 2 secretion system (T2SS) by using cryo-electron microscopy (cryoEM), these pili showed indistinguishable helical parameters, emphasizing that major pilins are the principal determinants of the fibre structure. Bacterial two-hybrid analysis identified several interactions of PpdD with T4aP assembly proteins, and with components of the T2SS that allow for heterologous fibre assembly. These studies lay ground for further characterization of the T4aP structure, function and biogenesis in enterobacteria.
Collapse
Affiliation(s)
- Areli Luna Rico
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France.,Structural Bioinformatics Unit and NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathalie Petiot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| |
Collapse
|
11
|
Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLoS Pathog 2017; 13:e1006706. [PMID: 29084270 PMCID: PMC5685641 DOI: 10.1371/journal.ppat.1006706] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/14/2017] [Accepted: 10/20/2017] [Indexed: 01/31/2023] Open
Abstract
Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces. Enteropathogenic E. coli (EPEC) causes diarrhea and generates the attaching and effacing (A/E) lesion in human gut epithelium. A/E lesion formation requires the locus of enterocyte effacement (LEE) in the bacterial genome, which encodes a protein injection system delivering the translocated intimin receptor (Tir), which binds to intimin on the bacterial surface. Intimin-Tir interaction is sufficient for bacterial attachment to epithelial cells in vitro but additional effectors may be needed for A/E lesion formation in the human gut. By generating deletion mutants lacking combinations or the whole repertoire of protein effectors encoded by EPEC, we show that intimin-Tir interaction is not sufficient and reveal an additive role of non-LEE effectors for A/E lesion formation in human intestinal tissue.
Collapse
|
12
|
Silva C, Zavala-Alvarado C, Puente JL. Self-Conjugation of the Enteropathogenic Escherichia coli Adherence Factor Plasmid of Four Typical EPEC Isolates. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6325736. [PMID: 29226143 PMCID: PMC5684527 DOI: 10.1155/2017/6325736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/01/2017] [Indexed: 11/17/2022]
Abstract
The enteropathogenic Escherichia coli (EPEC) adherence factor plasmid (pEAF) encodes the proteins involved in the biogenesis of the bundle-forming pilus (BFP), a key virulence factor that mediates microcolony formation and the localized adherence phenotype on the surface of the host enterocytes. The presence or absence of this plasmid defines typical EPEC (tEPEC) and atypical EPEC (aEPEC), respectively. Although lateral transfer of pEAF has been evidenced by phylogenetic studies, conjugal transfer ability has been experimentally established only for two pEAF plasmids from strains isolated in the late 60s. In the present work, we tested the self-conjugation ability of four pEAF plasmids from tEPEC strains isolated between 2007 and 2008 from children in Peru and the potential of aEPEC to receive them. A kanamycin resistance cassette was inserted into donor pEAF plasmids in order to provide a selectable marker in the conjugation experiments. Two aEPEC isolated from the same geographic region were used as recipient strains along with the laboratory E. coli DH5α strain. Here we show that the four pEAF plasmids tested are self-conjugative, with transfer frequencies in the range of 10-6 to 10-9. Moreover, the generation of aEPEC strains harboring pEAF plasmids provides valuable specimens to further perform functional studies.
Collapse
Affiliation(s)
- Claudia Silva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - Crispín Zavala-Alvarado
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| |
Collapse
|
13
|
Pearson JS, Giogha C, Wong Fok Lung T, Hartland EL. The Genetics of EnteropathogenicEscherichia coliVirulence. Annu Rev Genet 2016; 50:493-513. [DOI: 10.1146/annurev-genet-120215-035138] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaclyn S. Pearson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Cristina Giogha
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| |
Collapse
|
14
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
15
|
Abstract
Enteropathogenic Escherichia coli (EPEC) strains induce morphological changes in infected epithelial cells. The resulting attaching and effacing (A/E) lesion is characterized by intimate bacterial adherence to epithelial cells, with microvillus destruction, cytoskeletal rearrangement, and aggregation of host cytoskeletal proteins. This review presents an overview of the adhesion mechanisms used for the colonization of the human gastrointestinal tract by EPEC. The mechanisms underlying EPEC adhesion, prior to and during the formation of the A/E lesion, and the host cytosolic responses to bacterial infection leading to diarrheal disease are discussed.
Collapse
|
16
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
17
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
18
|
Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids. Infect Immun 2015; 83:4103-17. [PMID: 26238712 DOI: 10.1128/iai.00769-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022] Open
Abstract
Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.
Collapse
|
19
|
Abstract
UNLABELLED Type IV pili (T4Ps) are surface appendages used by Gram-negative and Gram-positive pathogens for motility and attachment to epithelial surfaces. In Gram-negative bacteria, such as the important pediatric pathogen enteropathogenic Escherichia coli (EPEC), during extension and retraction, the pilus passes through an outer membrane (OM) pore formed by the multimeric secretin complex. The secretin is common to Gram-negative assemblies, including the related type 2 secretion (T2S) system and the type 3 secretion (T3S) system. The N termini of the secretin monomers are periplasmic and in some systems have been shown to mediate substrate specificity. In this study, we mapped the topology of BfpB, the T4P secretin from EPEC, using a combination of biochemical and biophysical techniques that allowed selective identification of periplasmic and extracellular residues. We applied rules based on solved atomic structures of outer membrane proteins (OMPs) to generate our topology model, combining the experimental results with secondary structure prediction algorithms and direct inspection of the primary sequence. Surprisingly, the C terminus of BfpB is extracellular, a result confirmed by flow cytometry for BfpB and a distantly related T4P secretin, PilQ, from Pseudomonas aeruginosa. Keeping with prior evidence, the C termini of two T2S secretins and one T3S secretin were not detected on the extracellular surface. On the basis of our data and structural constraints, we propose that BfpB forms a beta barrel with 16 transmembrane beta strands. We propose that the T4P secretins have a C-terminal segment that passes through the center of each monomer. IMPORTANCE Secretins are multimeric proteins that allow the passage of secreted toxins and surface structures through the outer membranes (OMs) of Gram-negative bacteria. To date, there have been no atomic structures of the C-terminal region of a secretin, although electron microscopy (EM) structures of the complex are available. This work provides a detailed topology prediction of the membrane-spanning domain of a type IV pilus (T4P) secretin. Our study used innovative techniques to provide new and comprehensive information on secretin topology, highlighting similarities and differences among secretin subfamilies. Additionally, the techniques used in this study may prove useful for the study of other OM proteins.
Collapse
|
20
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
21
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Abstract
Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species.
Collapse
|
23
|
In vitro evolution of an archetypal enteropathogenic Escherichia coli strain. J Bacteriol 2013; 195:4476-83. [PMID: 23913321 DOI: 10.1128/jb.00704-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nal(r)) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nal(r) strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Str(r)) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nal(r) clone has a lower growth rate than the Str(r) isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nal(r) clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.
Collapse
|
24
|
Further characterization of functional domains of PerA, role of amino and carboxy terminal domains in DNA binding. PLoS One 2013; 8:e56977. [PMID: 23451127 PMCID: PMC3581565 DOI: 10.1371/journal.pone.0056977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 01/16/2013] [Indexed: 12/24/2022] Open
Abstract
PerA is a key regulator of virulence genes in enteropathogenic E. coli. PerA is a member of the AraC/XylS family of transcriptional regulators that directly regulates the expression of the bfp and per operons in response to different environmental cues. Here, we characterized mutants in both the amino (NTD) and carboxy (CTD) terminal domains of PerA that affect its ability to activate the expression of the bfp and per promoters. Mutants at residues predicted to be important for DNA binding within the CTD had a significant defect in their ability to bind to the regulatory regions of the bfp and per operons and, consequently, in transcriptional activation. Notably, mutants in specific NTD residues were also impaired to bind to DNA suggesting that this domain is involved in structuring the protein for correct DNA recognition. Mutations in residues E116 and D168, located in the vicinity of the putative linker region, significantly affected the activation of the perA promoter, without affecting PerA binding to the per or bfp regulatory sequences. Overall these results provide additional evidence of the importance of the N-terminal domain in PerA activity and suggest that the activation of these promoters involves differential interactions with the transcriptional machinery. This study further contributes to the characterization of the functional domains of PerA by identifying critical residues involved in DNA binding, differential promoter activation and, potentially, in the possible response to environmental cues.
Collapse
|
25
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
26
|
Generation of recombinant bacillus Calmette–Guérin and Mycobacterium smegmatis expressing BfpA and intimin as vaccine vectors against enteropathogenic Escherichia coli. Vaccine 2012; 30:5999-6005. [DOI: 10.1016/j.vaccine.2012.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/11/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
|
27
|
De Masi L, Szmacinski H, Schreiber W, Donnenberg MS. BfpL is essential for type IV bundle-forming pilus biogenesis and interacts with the periplasmic face of BfpC. MICROBIOLOGY-SGM 2012; 158:2515-2526. [PMID: 22837303 DOI: 10.1099/mic.0.060889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea among infants in developing countries. The bundle-forming pilus (BFP), a type IV pilus found on the surface of EPEC, is essential for full virulence of typical EPEC strains. The machinery for BFP assembly and function is encoded by an operon of 14 genes. Here we investigate the role in pilus biogenesis of BfpL, a small protein with a single N-terminal predicted transmembrane domain reminiscent of pilin-like proteins. We confirmed that a bfpL mutant lacks BFP, and associated auto-aggregation and localized adherence phenotypes. Furthermore, we found that a double mutant unable to express both the putative retraction ATPase BfpF and BfpL also lacks BFP and associated phenotypes, distinguishing BfpL from pilin-like proteins. Western blots of sheared pilus preparations did not suggest that BfpL is a component of BFP. Topology studies using C-terminal truncations and a dual reporter revealed that most of the BfpL protein resides in the periplasm. Further, we demonstrated through yeast two-hybrid assays and confirmed by fluorescence anisotropy that BfpL interacts with the periplasmic face of BfpC. Thus, BfpL has a function distinct from those of pilin-like proteins and is instead part of an inner-membrane subassembly complex that is believed to extract bundlin, the main pilus subunit, from the inner membrane to be incorporated into BFP.
Collapse
Affiliation(s)
- Leon De Masi
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wiebke Schreiber
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Ark NM, Mann BJ. Impact of Francisella tularensis pilin homologs on pilus formation and virulence. Microb Pathog 2011; 51:110-20. [PMID: 21605655 DOI: 10.1016/j.micpath.2011.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 12/28/2022]
Abstract
Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Virulence factors for this bacterium, particularly those that facilitate host cell interaction, remain largely uncharacterized. However, genes homologous to those involved in type IV pilus structure and assembly, including six genes encoding putative major pilin subunit proteins, are present in the genome of the highly virulent Schu S4 strain. To analyze the roles of three putative pilin genes in pili structure and function we constructed individual pilE4, pilE5, and pilE6 deletion mutants in both the F. tularensis tularensis strain Schu S4 and the Live Vaccine Strain (LVS), an attenuated derivative strain of F. tularensis holarctica. Transmission electron microscopy (TEM) of Schu S4 and LVS wild-type and deletion strains confirmed that pilE4 was essential for the expression of type IV pilus-like fibers by both subspecies. By the same method, pilE5 and pilE6 were dispensable for pilus production. In vitro adherence assays with J774A.1 cells revealed that LVS pilE4, pilE5, and pilE6 deletion mutants displayed increased attachment compared to wild-type LVS. However, in the Schu S4 background, similar deletion mutants displayed adherence levels similar to wild-type. In vivo, LVS pilE5 and pilE6 deletion mutants were significantly attenuated compared to wild-type LVS by intradermal and subcutaneous murine infection, while no Schu S4 deletion mutant was significantly attenuated compared to wild-type Schu S4. While pilE4 was essential for fiber expression on both Schu S4 and LVS, neither its protein product nor the assembled fibers contributed significantly to virulence in mice. Absent a role in pilus formation, we speculate PilE5 and PilE6 are pseudopilin homologs that comprise, or are associated with, a novel type II-related secretion system in Schu S4 and LVS.
Collapse
Affiliation(s)
- Nicole M Ark
- Department of Internal Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
29
|
Iida M, Okamura N, Yamazaki M, Yatsuyanagi J, Kurazono T, Suzuki R, Hiruta N, Isobe J, Seto K, Kawano K, Narimatsu H, Ratchtrachenchai OA, Okabe N, Ito K. Classification of perA sequences and their correlation with autoaggregation in typical enteropathogenic Escherichia coli isolates collected in Japan and Thailand. Microbiol Immunol 2010; 54:184-95. [PMID: 20377747 DOI: 10.1111/j.1348-0421.2010.00212.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) strains produce a bundle-forming pilus (BFP) that mediates localized adherence (LA) to intestinal epithelial cells. The major structural subunit of the BFP is bundlin, which is encoded by the bfpA gene located on a large EAF plasmid. The perA gene has been shown to activate genes within the bfp operon. We analyzed perA gene polymorphism among typical (eae- and bfpA-positive) EPEC strains isolated from healthy and diarrheal persons in Japan (n=27) and Thailand (n=26) during the period 1995 to 2007 and compared this with virulence and phenotypic characteristics. Eight genotypes of perA were identified by heteroduplex mobility assay (HMA). The strains isolated in Thailand showed strong autoaggregation and had an intact perA, while most of those isolated in Japan showed weak or no autoaggregation, and had a truncated perA due to frameshift mutation. The degree of autoaggregation was well correlated with adherence to HEp-2 cells, contact hemolysis and BFP expression. Our results showed that functional deficiency due to frameshift mutation and subsequent nonsense mutation in perA reduced BFP expression in typical EPEC strains isolated in Japan.
Collapse
Affiliation(s)
- Mariko Iida
- Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bardiau M, Szalo M, Mainil JG. Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res 2010; 41:57. [PMID: 20423697 PMCID: PMC2881418 DOI: 10.1051/vetres/2010029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 04/27/2010] [Indexed: 12/26/2022] Open
Abstract
Initial adherence to host cells is the first step of the infection of enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC) and verotoxigenic Escherichia coli (VTEC) strains. The importance of this step in the infection resides in the fact that (1) adherence is the first contact between bacteria and intestinal cells without which the other steps cannot occur and (2) adherence is the basis of host specificity for a lot of pathogens. This review describes the initial adhesins of the EPEC, EHEC and VTEC strains. During the last few years, several new adhesins and putative colonisation factors have been described, especially in EHEC strains. Only a few adhesins (BfpA, AF/R1, AF/R2, Ral, F18 adhesins) appear to be host and pathotype specific. The others are found in more than one species and/or pathotype (EPEC, EHEC, VTEC). Initial adherence of EPEC, EHEC and VTEC strains to host cells is probably mediated by multiple mechanisms.
Collapse
Affiliation(s)
- Marjorie Bardiau
- Department of Infectious and Parasitic Diseases, Bacteriology, Faculty of Veterinary Medicine, University of Liège, Liège B4000, Belgium.
| | | | | |
Collapse
|
31
|
Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS, Armstrong GD, Raivio TL. The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 2010; 76:1095-110. [PMID: 20444097 PMCID: PMC2904494 DOI: 10.1111/j.1365-2958.2010.07145.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Cpx envelope stress response is induced by the misfolding of periplasmic proteins and restores envelope homeostasis by upregulating several periplasmic protein folding and degrading factors. The Cpx response also regulates the expression of a variety of envelope-spanning protein complexes, including flagella, secretion systems and pili, which play an important role in pathogenesis. In a previous study, we inactivated the Cpx response in enteropathogenic Escherichia coli (EPEC), a causative agent of infant diarrhoea, and observed decreased expression of its major adhesin, the bundle-forming pilus (BFP). Here, we examined the mechanism underlying this BFP expression defect, and found that this phenotype can be attributed to insufficient expression of periplasmic folding factors, such as DsbA, DegP and CpxP. Hence, a low level of Cpx pathway activity promotes BFP synthesis by upregulating factors important for folding of BFP component proteins. Conversely, we found that full induction of the Cpx response inhibits BFP expression, mainly by repressing transcription of the bfp gene cluster. In combination with a previous report examining EPEC type III secretion, our results demonstrate that the Cpx response co-ordinates the repression of cell-surface structures during periods of envelope stress.
Collapse
Affiliation(s)
- Stefanie L Vogt
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Balakrishna AM, Saxena AM, Mok HYK, Swaminathan K. Structural basis of typhoid: Salmonella typhi type IVb pilin (PilS) and cystic fibrosis transmembrane conductance regulator interaction. Proteins 2009; 77:253-61. [PMID: 19626704 DOI: 10.1002/prot.22500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (DeltaPilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of DeltaPilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.
Collapse
Affiliation(s)
- Asha M Balakrishna
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
33
|
Nara JM, Cianciarullo AM, Culler HF, Bueris V, Horton DSPQ, Menezes MA, Franzolin MR, Elias WP, Piazza RMF. Differentiation of typical and atypical enteropathogenic Escherichia coli using colony immunoblot for detection of bundle-forming pilus expression. J Appl Microbiol 2009; 109:35-43. [PMID: 19968733 DOI: 10.1111/j.1365-2672.2009.04625.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS The aim of study was to develop a colony immunoblot assay to differentiate typical from atypical enteropathogenic Escherichia coli (EPEC) by detection of bundle-forming pilus (BFP) expression. METHODS AND RESULTS Anti-BFP antiserum was raised in rabbits and its reactivity was confirmed by immunoelectron microscopy and by immunoblotting recognizing bundlin, the major pilus repeating subunit. The bacterial isolates tested in the colony immunoblot assay were grown in different media. Proteins from bacterial isolates were transferred to nitrocellulose membrane after treatment with phosphate buffer containing Triton X-100, EDTA and sodium chloride salts. When 24 typical EPEC and 96 isolates including, 72 atypical EPEC, 13 Gram-negative type IV-expressing strains and 11 enterobacteriaceae were cultivated in Dulbecco's Modified Eagle's Medium agar containing fetal bovine serum or in blood agar in the presence of CaCl(2) , they showed a positivity of 92 and 83%, and specificity of 96 and 97%, respectively. CONCLUSION The assay enables reliable identification of BFP-expressing isolates and contributes to the differentiation of typical and atypical EPEC. SIGNIFICANCE AND IMPACT OF THE STUDY The colony immunoblot for BFP detection developed in this study combines the simplicity of an immunoserological assay with the high efficiency of testing a large number of EPEC colonies.
Collapse
Affiliation(s)
- J M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Viarre V, Cascales E, Ball G, Michel GPF, Filloux A, Voulhoux R. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J Biol Chem 2009; 284:33815-23. [PMID: 19815547 DOI: 10.1074/jbc.m109.065938] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretins are an unusual and important class of bacterial outer membrane (OM) proteins. They are involved in the transport of single proteins or macromolecular structures such as pili, needle complexes, and bacteriophages across the OM. Secretins are multimeric ring-shaped structures that form large pores in the OM. The targeting of such macromolecular structures to the OM often requires special assistance, conferred by specific pilotins or pilot proteins. Here, we investigated HxcQ, the OM component of the second Pseudomonas aeruginosa type II secretion system. We found that HxcQ forms high molecular mass structures resistant to heat and SDS, revealing its secretin nature. Interestingly, we showed that HxcQ is a lipoprotein. Construction of a recombinant nonlipidated HxcQ (HxcQnl) revealed that lipidation is essential for HxcQ function. Further phenotypic analysis indicated that HxcQnl accumulates as multimers in the inner membrane of P. aeruginosa, a typical phenotype observed for secretins in the absence of their cognate pilotin. Our observations led us to the conclusion that the lipid anchor of HxcQ plays a pilotin role. The self-piloting of HxcQ to the OM was further confirmed by its correct multimeric OM localization when expressed in the heterologous host Escherichia coli. Altogether, our results reveal an original and unprecedented pathway for secretin transport to the OM.
Collapse
Affiliation(s)
- Véronique Viarre
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UPR 9027), CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The widespread role of pili as colonization factors in pathogens has long been recognized in Gram-negative bacteria and more recently in Gram-positive bacteria, making the study of these hair-like filaments a perennial hot topic for research. No other pili are found in as many or as diverse bacteria as type IV pili. This is likely a consequence of their ancient origin and unique ability to promote multiple and strikingly different phenotypes such as attachment to surfaces, aggregation, uptake of DNA during transformation, motility, etc. Two decades of investigations in several model species have shed some light on the structure of these filaments and the molecular basis of some of the properties they confer. Moreover, recent discoveries have led to a better knowledge of the genetic basis and molecular mechanisms of type IV pili biogenesis. This brings us a few steps closer to understanding how these filaments are produced, but leaves us wondering whether (as in the famous motto that inspired the title) out of the many models studied will emerge one unifying mechanism.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Department of Microbiology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Nishiguchi M, Hirsch AM, Devinney R, Vedantam G, Riley M, Mansky L. Deciphering Evolutionary Mechanisms Between Mutualistic and Pathogenic Symbioses. VIE ET MILIEU (PARIS, FRANCE : 1980) 2008; 58:87-106. [PMID: 19655044 PMCID: PMC2719982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The continuum between mutualistic and pathogenic symbioses has been an underlying theme for understanding the evolution of infection and disease in a number of eukaryotic-microbe associations. The ability to monitor and then predict the spread of infectious diseases may depend upon our knowledge and capabilities of anticipating the behavior of virulent pathogens by studying related, benign symbioses. For instance, the ability of a symbiotic species to infect, colonize, and proliferate efficiently in a susceptible host will depend on a number of factors that influence both partners during the infection. Levels of virulence are not only affected by the genetic and phenotypic composite of the symbiont, but also the life history, mode(s) of transmission, and environmental factors that influence colonization, such as antibiotic treatment. Population dynamics of both host and symbiont, including densities, migration, as well as competition between symbionts will also affect infection rates of the pathogen as well as change the evolutionary dynamics between host and symbiont. It is therefore important to be able to compare the evolution of virulence between a wide range of mutualistic and pathogenic systems in order to determine when and where new infections might occur, and what conditions will render the pathogen ineffective. This perspective focuses on several symbiotic models that compare mutualistic associations to pathogenic forms and the questions posed regarding their evolution and radiation. A common theme among these systems is the prevailing concept of how heritable mutations can eventually lead to novel phenotypes and eventually new species.
Collapse
Affiliation(s)
- M.K. Nishiguchi
- Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003-8001, USA
| | - A. M. Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California, 405 Hilgard Ave., Los Angeles, CA 90095-1606, USA
| | - R. Devinney
- Department of Microbiology and Infectious Disease, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - G. Vedantam
- Department of Medicine, Section of Infectious Diseases, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - M.A. Riley
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L.M. Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St. SE Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Mellies JL, Barron AMS, Carmona AM. Enteropathogenic and enterohemorrhagic Escherichia coli virulence gene regulation. Infect Immun 2007; 75:4199-210. [PMID: 17576759 PMCID: PMC1951183 DOI: 10.1128/iai.01927-06] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, 3203 S.E. Woodstock Boulevard, Portland, OR 97202, USA.
| | | | | |
Collapse
|
38
|
Brinkley C, Burland V, Keller R, Rose DJ, Boutin AT, Klink SA, Blattner FR, Kaper JB. Nucleotide sequence analysis of the enteropathogenic Escherichia coli adherence factor plasmid pMAR7. Infect Immun 2006; 74:5408-13. [PMID: 16926437 PMCID: PMC1594828 DOI: 10.1128/iai.01840-05] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence was determined for pMAR7, an enteropathogenic Escherichia coli (EPEC) adherence factor (EAF) plasmid that contains genes encoding a type IV attachment pilus (Bfp) and the global virulence regulator per. Prototypic EAF plasmid pMAR7 is self-transmissible, unlike the smaller EAF plasmid pB171, which has no genes encoding conjugative functions. The tra locus, a highly conserved 33-kb segment found in pMAR7, is similar to the tra (conjugation) region of the F plasmid. ISEc13 copies flanking the pMAR7 tra region could potentially mobilize or delete the tra genes. Hybridization of 134 EPEC strains showed that a complete tra region is present only in strains of the EPEC1 clonal group. This study confirms EPEC's potential for dissemination of virulence attributes by horizontal transfer of the EAF plasmid.
Collapse
Affiliation(s)
- Carl Brinkley
- Department of Microbiology and Immunology, Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Steele M, Ziebell K, Zhang Y, Benson A, Konczy P, Johnson R, Gannon V. Identification of Escherichia coli O157:H7 genomic regions conserved in strains with a genotype associated with human infection. Appl Environ Microbiol 2006; 73:22-31. [PMID: 17056689 PMCID: PMC1797103 DOI: 10.1128/aem.00982-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-glucuronidase-negative, sorbitol-nonfermenting isolates of Shiga toxin-producing Escherichia coli O157 comprise part of a clone complex of related enterohemorrhagic E. coli isolates. High-resolution genotyping shows that the O157 populations have diverged into two different lineages that appear to have different ecologies. To identify genomic regions unique to the most common human-associated genotype, suppression subtractive hybridization was used to identify DNA sequences present in two clinical strains representing the human lineage I O157:H7 strains but absent from two bovine-derived lineage II strains. PCR assays were then used to test for the presence of these regions in 10 lineage I strains and 20 lineage II strains. Twelve conserved regions of genomic difference for lineage I (CRD(I)) were identified that were each present in at least seven of the lineage I strains but absent in most of the lineage II strains tested. The boundaries of the lineage I conserved regions were further delimited by PCR. Eleven of these CRD(I) were associated with E. coli Sakai S-loops 14, 16, 69, 72, 78, 82, 83, 91 to 93, 153, and 286, and the final CRD(I) was located on the pO157 virulence plasmid. Several potential virulence factors were identified within these regions, including a putative hemolysin-activating protein, an iron transport system, and several possible regulatory genes. Cluster analysis based on lineage I conserved regions showed that the presence/absence of these regions was congruent with the inferred phylogeny of the strains.
Collapse
Affiliation(s)
- Marina Steele
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 1st floor, C.F.I.A. Building, Lethbridge, AB T1J 3Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Mellies JL, Barron AMS, Haack KR, Korson AS, Oldridge DA. The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans. Infect Immun 2006; 74:64-72. [PMID: 16368958 PMCID: PMC1346621 DOI: 10.1128/iai.74.1.64-72.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries and is useful for general investigations of the bacterial infection process. However, the study of the molecular pathogenesis of EPEC has been hampered by the lack of genetically tractable, convenient animal models. We have therefore developed the use of the nematode Caenorhabditis elegans as a small animal model of infection for this diarrheal pathogen. We found that nematodes died faster on nematode growth medium in the presence of EPEC pathogens than in the presence of the laboratory control strain MG1655. Increased numbers of pathogens in the gut, determined by standard plate count assays and fluorescence microscopy using green fluorescent protein-expressing bacteria, correlated with killing. Deletion of the gene encoding the global regulator Ler severely reduced the ability of EPEC to colonize the nematode gut and could be complemented by providing the ler gene on a multicopy plasmid in trans. Neither the type III secretion system nor the type IV bundle-forming pilus was required for colonization. Combined, the similarities and distinct differences between EPEC infection of nematodes and that of humans offer a unique opportunity to study several stages of the infection process, namely, attachment, colonization, and persistence, in a genetically tractable, inexpensive, and convenient in vivo system.
Collapse
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, 3203 S.E. Woodstock Blvd., Portland, OR 97202, USA.
| | | | | | | | | |
Collapse
|
41
|
Melo AR, Lasunskaia EB, de Almeida CMC, Schriefer A, Kipnis TL, Dias da Silva W. Expression of the virulence factor, BfpA, by enteropathogenic Escherichia coli is essential for apoptosis signalling but not for NF-kappaB activation in host cells. Scand J Immunol 2005; 61:511-9. [PMID: 15963045 DOI: 10.1111/j.1365-3083.2005.01626.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Localized adherence (LA) of enteropathogenic Escherichia coli (EPEC) to epithelial cells results in attaching and effacing of the surface of these cells. LA depends on the gene bfpA, which codes for the BfpA protein. We found that EPEC-E. coli adherence factor (EAF)((+)), expressing BfpA, significantly reduced HeLa cell viability in comparison with EPEC-EAF((-)), as evaluated by the mitochondrial-dependent succinate dehydrogenase conversion of 3'-[4,5,-dimethylthiazol-2yl]2,5-diphenyltetrazolium bromide (MTT) to its formazan. Apoptosis accounts for a substantial loss of the cell viability, because the cells incubated with EPEC-EAF((+)) or with cloned BfpA (data not shown), but not with EPEC-EAF((-)), were positive for annexin-V binding, demonstrated chromatin condensation and nuclei fragmentation and exhibited a high level of caspase-3 activity. Because the blockade of bacterial cell-surface-associated BfpA by anti-BfpA immunoglobulin (Ig)Y antibody suppressed apoptotic death induced by EPEC-EAF((+)), BfpA may be the trigger for apoptosis. Both EPEC-EAF((+)) and EPEC-EAF((-)), as well as recombinant BfpA (data not shown), activated nuclear factor (NF)-kappaB in a similar manner as analysed by the electrophoretic mobility shift assay (EMSA). EMSA supershift analysis demonstrated the presence of p65/RelA in a DNA-binding complex. In contrast to DNA binding, NF-kappaB-dependent reporter gene transactivation was stimulated more strongly by EPEC B171/EAF((+)), suggesting a role for this virulence factor in the regulation of transcriptional activity of NF-kappaB. Because suppression of NF-kappaB activation by BAY11-7085, a NF-kappaB inhibitor, neither induced apoptosis by itself nor blocked apoptosis induction by EPEC-EAF((+)), it may be suggested that apoptosis is not regulated by the NF-kappaB pathway in HeLa cells.
Collapse
Affiliation(s)
- A R Melo
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Iyoda S, Watanabe H. ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 2005; 187:4086-94. [PMID: 15937171 PMCID: PMC1151716 DOI: 10.1128/jb.187.12.4086-4094.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the type III protein secretion system (TTSS), encoded in the locus of enterocyte effacement (LEE) of enterohemorrhagic Escherichia coli (EHEC), has been shown to be controlled by various regulators. In a search for additional regulatory genes, we identified a DNA fragment containing clpX and clpP that has a positive regulatory effect on LEE expression in EHEC O157. The expression of LEE-encoded Esp proteins was significantly reduced in a clpXP deletion mutant. Deletion of grlR, a negative regulatory gene within LEE, markedly increased LEE expression even in the clpXP mutant. To verify the regulatory mechanism of GrlR expression, a chromosomal epitope-tagged allele of grlR (grlR-FLAG) was constructed. GrlR-FLAG expression was increased significantly in the clpXP deletion mutant, suggesting that the GrlR level is under the control of ClpXP, and this regulation is critical for the ClpXP-dependent expression of LEE in EHEC. Deletion of rpoS, the gene encoding a stationary-phase-inducing sigma factor that is a substrate for ClpXP protease, partially restored LEE expression in the clpXP mutant. A multicopy plasmid carrying rpoS strongly repressed expression of Esp proteins, suggesting that positive regulation by ClpXP is partially mediated through a negative effect of RpoS on LEE expression. We also found that rpoS deletion induces transcription of pchA, which encodes one of the positive regulators for LEE expression in EHEC. These results suggest that ClpXP controls expression of LEE through the regulation of RpoS and GrlR levels in EHEC.
Collapse
Affiliation(s)
- Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | |
Collapse
|
43
|
Crowther LJ, Yamagata A, Craig L, Tainer JA, Donnenberg MS. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 2005; 280:24839-48. [PMID: 15866879 PMCID: PMC1224739 DOI: 10.1074/jbc.m500253200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type IV pilus biogenesis, protein secretion, DNA transfer, and filamentous phage morphogenesis systems are thought to possess similar architectures and mechanisms. These multiprotein complexes include members of the PulE superfamily of putative NTPases that have extensive sequence similarity and probably similar functions as the energizers of macromolecular transport. We purified the PulE homologue BfpD of the enteropathogenic Escherichia coli bundle-forming pilus (BFP) biogenesis machine and characterized its ATPase activity, providing new insights into its mode of action. Numerous techniques revealed that BfpD forms hexamers in the presence of nucleotide. Hexameric BfpD displayed weak ATPase activity. We previously demonstrated that the N termini of membrane proteins BfpC and BfpE recruit BfpD to the cytoplasmic membrane. Here, we identified two BfpD-binding sites, BfpE(39-76) and BfpE(77-114), in the N terminus of BfpE using a yeast two-hybrid system. Isothermal titration calorimetry and protease sensitivity assays showed that hexameric BfpD-ATPgammaS binds to BfpE(77-114), whereas hexameric BfpD-ADP binds to BfpE(39-76). Interestingly, the N terminus of BfpC and BfpE(77-114) together increased the ATPase activity of hexameric BfpD over 1200-fold to a V(max) of 75.3 mumol of P(i) min(-1) mg(-1), which exceeds by over 1200-fold the activity of other PulE family members. This augmented activity occurred only in the presence of Zn(2+). We conclude that allosteric interactions between BfpD and BfpC and BfpE dramatically stimulate its ATPase activity. The differential nucleotide-dependent binding of hexameric BfpD to BfpE(39-76) and BfpE(77-114) suggests a model for the mechanism by which BfpD transduces mechanical energy to the biogenesis machine.
Collapse
Affiliation(s)
- Lynette J. Crowther
- From the Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA, and the
| | - Atsushi Yamagata
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Craig
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John A. Tainer
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael S. Donnenberg
- From the Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA, and the
- Address correspondence to: Michael S. Donnenberg, Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, Maryland 21201, USA; Tel. (+1) 410 706-7560; Fax (+1) 410 706-8700; E-mail:
| |
Collapse
|
44
|
Chiang P, Habash M, Burrows LL. Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 2005; 187:829-39. [PMID: 15659660 PMCID: PMC545728 DOI: 10.1128/jb.187.3.829-839.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.
Collapse
Affiliation(s)
- Poney Chiang
- Centre for Infection and Biomaterials Research, 7142A Elm Wing, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
45
|
Nevesinjac AZ, Raivio TL. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol 2005; 187:672-86. [PMID: 15629938 PMCID: PMC543543 DOI: 10.1128/jb.187.2.672-686.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Cpx envelope stress response mediates adaptation to potentially lethal envelope stresses in Escherichia coli. The two-component regulatory system consisting of the sensor kinase CpxA and the response regulator CpxR senses and mediates adaptation to envelope insults believed to result in protein misfolding in this compartment. Recently, a role was demonstrated for the Cpx response in the biogenesis of P pili, attachment organelles expressed by uropathogenic E. coli. CpxA senses misfolded P pilus assembly intermediates and initiates increased expression of both assembly and regulatory factors required for P pilus elaboration. In this report, we demonstrate that the Cpx response is also involved in the expression of the type IV bundle-forming pili of enteropathogenic E. coli (EPEC). Bundle-forming pili were not elaborated from an exogenous promoter in E. coli laboratory strain MC4100 unless the Cpx pathway was constitutively activated. Further, an EPEC cpxR mutant synthesized diminished levels of bundle-forming pili and was significantly affected in adherence to epithelial cells. Since type IV bundle-forming pili are very different from chaperone-usher-type P pili in both form and biogenesis, our results suggest that the Cpx envelope stress response plays a general role in the expression of envelope-localized organelles with diverse structures and assembly pathways.
Collapse
Affiliation(s)
- Anna Z Nevesinjac
- Department of Biological Sciences, CW405A Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
46
|
Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun 2005; 73:18-29. [PMID: 15618137 PMCID: PMC538947 DOI: 10.1128/iai.73.1.18-29.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
47
|
Chen HD, Frankel G. EnteropathogenicEscherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 2005; 29:83-98. [PMID: 15652977 DOI: 10.1016/j.femsre.2004.07.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a gram-negative bacterial pathogen that adheres to intestinal epithelial cells, causing diarrhoea. It constitutes a significant risk to human health and remains an important cause of infant mortality in developing countries. Although EPEC was the first E. coli strain to be implicated in human disease in the 1940s and 1950s, the mechanisms by which this pathogen induced diarrhoea remained a complete mystery throughout most of the 40 years since its description. It was only during the late 1980s that major advances were made in unravelling the mechanisms behind EPEC pathogenesis. Ever since, progress has been made at a stunning pace and there have been major breakthroughs in identifying the bacterial factors involved in attaching and effacing (A/E) lesion formation, host signal transduction pathways in response to EPEC infection and the genetic basis of EPEC pathogenesis. The rapid pace of discovery is a result of intensive research by investigators in this field and portends that EPEC will soon be among one of the most understood diarrhoea-causing infectious agents. This review aims to trace the progress of EPEC research since its existence was first reported by John Bray in 1945, highlighting the major findings that have revolutionised our understanding of EPEC pathogenesis.
Collapse
Affiliation(s)
- Huiwen Deborah Chen
- Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Imperial College London, Flowers Building, London SW7 2AZ, UK
| | | |
Collapse
|
48
|
Crowther LJ, Anantha RP, Donnenberg MS. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol 2004; 52:67-79. [PMID: 15049811 DOI: 10.1111/j.1365-2958.2003.03963.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IV pili (Tfps) are filamentous surface appendages expressed by Gram-negative microorganisms and play numerous roles in bacterial cell biology. Tfp biogenesis machineries are highly conserved and resemble protein secretion and DNA uptake systems. Although components of Tfp biogenesis systems have been identified, it is not known how they interact to form these machineries. Using the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli as a model Tfp system, we provide evidence of a cytoplasmic membrane subassembly of the Tfp assembly machine composed of putative cytoplasmic nucleotide-binding and cytoplasmic membrane proteins. A combination of genetic, biochemical and biophysical approaches revealed interactions among putative cytoplasmic nucleotide-binding proteins BfpD and BfpF and cytoplasmic membrane proteins BfpC and BfpE of the BFP biogenesis machine. The polytopic membrane protein BfpE appears to be a central component of this subassembly as it interacts with BfpC, BfpD and BfpF. We report that BFP biogenesis probably requires interactions among BfpC, BfpD and BfpE, whereas BFP retraction requires interaction of the PilT-like putative ATPase BfpF with a conserved domain of BfpE. BfpE is the first protein that is not a member of the PilT family to be implicated in Tfp retraction. Furthermore, we found that the putative ATPases BfpD and BfpF play antagonistic roles in BFP biogenesis and retraction, respectively, by interacting with distinct domains of the BFP biogenesis machine.
Collapse
Affiliation(s)
- Lynette J Crowther
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
49
|
Iyoda S, Watanabe H. Positive effects of multiple pch genes on expression of the locus of enterocyte effacement genes and adherence of enterohaemorrhagic Escherichia coli O157 : H7 to HEp-2 cells. Microbiology (Reading) 2004; 150:2357-2571. [PMID: 15256577 DOI: 10.1099/mic.0.27100-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) genomes contain a pathogenicity island, termed the locus of enterocyte effacement (LEE), which encodes genes involved in the formation of attaching and effacing lesions on epithelial cells. To elucidate the regulatory mechanism of the LEE genes in EHEC, an EHEC O157 genomic library was screened for clones which modulated expression of the LEE genes. From more than 5000 clones, a DNA fragment was obtained containing a perC homologue as a positive regulator for the LEE genes. In EPEC, perC is known to be part of the per operon, along with perA and perB, located on the EPEC adherence factor plasmid, which is not found in EHEC. However, the complete genome sequence of EHEC O157 Sakai strain reveals that there are five perC-like sequences, but no perA and perB, on the chromosome. These five perC homologues were characterized, and it was found that three of the homologues (renamed
perC
homologue pchA, pchB and pchC) encoded 104 aa proteins, and when expressed on a multicopy plasmid enhanced the expression of LEE genes. In contrast, perC homologues encoding proteins of 89 and 90 aa, renamed pchD and pchE, respectively, had no significant effect. Deletion mutants of the pch genes were constructed, and the effect on the expression of LEE-encoded type III effector proteins, such as EspA, B and D, and adhesion phenotype to HEp-2 cells was examined. Deletion of pchA or pchB, but not pchC, decreased the expression of Esp proteins and adhesion to HEp-2 cells. Such effects were more apparent with mutants carrying double deletions of pchA/pchB or pchA/pchC, suggesting that pchA/B/C are all necessary for full expression of the LEE genes and adhesion to HEp-2 cells. Further study demonstrated that the positive effect of pchA/B/C was caused by enhanced transcription of the LEE-encoded regulatory gene, ler. Introduction of a multicopy plasmid carrying each pchA/B/C gene significantly induced microcolony formation by EHEC O157 on HEp-2 cells. These results suggest that the pchABC genes are necessary for full virulence of EHEC O157.
Collapse
Affiliation(s)
- Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
50
|
Rajanna C, Wang J, Zhang D, Xu Z, Ali A, Hou YM, Karaolis DKR. The vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J Bacteriol 2004; 185:6893-901. [PMID: 14617653 PMCID: PMC262723 DOI: 10.1128/jb.185.23.6893-6901.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Vibrio pathogenicity island (VPI) in epidemic Vibrio cholerae is an essential virulence gene cluster. Like many pathogenicity islands, the VPI has at its termini a phage-like integrase gene (int), a transposase-like gene (vpiT), and phage-like attachment (att) sites, and is inserted at a tRNA-like locus (ssrA). We report that the VPI precisely excises from the chromosome and that its left and right ends join to form an extrachromosomal circular excision product (pVPI). Two-stage nested PCR analysis and DNA sequencing confirmed the int-att-vpiT junction and that the core attP of pVPI is identical to the chromosomal VPI attR site. Excision was independent of toxR and toxT. Excision was independent of recA, suggesting that it is mediated by site-specific recombination. Interestingly, while excision was detected in int and vpiT mutants, excision was abolished in a double (int vpiT) mutant and was restored by plasmids containing genes for either recombinase. Excision results in deletion of A361 in the ssrA locus, which flanks the right junction of the VPI. Since A361 encodes U70 in the critical G. U base pair in the acceptor stem of the ssrA RNA that is the determinant for aminoacylation with alanine, this deletion might have deleterious effects on ssrA function. Also, vpiT may have undergone interchromosomal translocation or may represent an independent integration event, as it was found downstream of hutA in some isolates. Our results provide new insight into the molecular biology of the VPI, and we propose that the process of excision and circularization is important in the emergence, pathogenesis, and persistence of epidemic V. cholerae.
Collapse
Affiliation(s)
- C Rajanna
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|