1
|
Phillips RS, Brown SM. Structure and dynamics of Proteus vulgaris tryptophan indole-lyase complexes with l-ethionine and l-alanine. Arch Biochem Biophys 2025; 768:110402. [PMID: 40147499 PMCID: PMC12074790 DOI: 10.1016/j.abb.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Tryptophan indole-lyase (TIL; [E.C. 4.1.99.1]) is a pyridoxal-5'-phosphate (PLP) dependent enzyme that catalyzes the reversible β-elimination of indole from l-tryptophan. l-Alanine and l-ethionine are TIL competitive inhibitors that form stable quinonoid complexes with λmax ∼508 nm. We have now determined the X-ray crystal structure of the tetrameric TIL complexes with l-alanine and l-ethionine, with either K+ or Na+ in the cation binding site. For the K+-form, the structures show a mixture of external aldimine and quinonoid complexes, with both open and closed active site conformations. However, the Na+-form exhibits noncovalent and external aldimine complexes in only open active site conformations. Stopped-flow kinetics of l-ethionine binding show that the Na+-form of TIL reacts much more slowly than the K+-form. The l-alanine and l-ethionine complexes of TIL are affected by hydrostatic pressure, suggesting that solvation contributes to the reaction. As pressure increases, the peak at 508 nm decreases, and a new peak at 344 nm appears. These changes are reversible when pressure is released. The 344 nm species could be either a gem-diamine or an enolimine tautomer of the external aldimine. We measured the fluorescence spectrum of the complex under pressure to differentiate these structures. When excited at either 290 or 325 nm, the complex emits at 400 nm, establishing that it is a gem-diamine complex. This peak does not form when the Na+-form of TIL complexed with l-ethionine is subjected to high pressure. Pressure jumps for the TIL-K+-l-ethionine complex measured at 508 nm result in pressure dependent relaxation rate constants. The relaxations show a large activation volume in the direction of quinonoid intermediate formation, suggesting that it is coupled with a conformational change. These results provide new insights into the dynamics of ligand binding to TIL.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| | - S Meredith Brown
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Phillips RS, Brown SM, Patel RS. Structural Snapshots of Proteus vulgaris Tryptophan Indole-Lyase Reveal Insights into the Catalytic Mechanism. ACS Catal 2024; 14:11498-11511. [PMID: 39114092 PMCID: PMC11301627 DOI: 10.1021/acscatal.4c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Tryptophan indole lyase (TIL; [E.C. 4.1.99.1]) is a bacterial pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes reversible β-elimination of indole from L-tryptophan. The mechanism of elimination of indole from L-tryptophan starts with the formation of an external aldimine of the substrate and PLP, followed by deprotonation of the α-CH of the substrate, forming a resonance-stabilized quinonoid intermediate. Proton transfer to C3 of the indole ring and carbon-carbon bond cleavage of the quinonoid intermediate provide indole and aminoacrylate bound to PLP, which then releases indole, followed by iminopyruvate. We have now determined the X-ray crystal structures of TIL complexes with (3S)-dioxindolyl-l-alanine, an inhibitor, and with substrates L-tryptophan, 7-aza-L-tryptophan, and S-ethyl-l-cysteine (SEC) in the presence of benzimidazole (BZI), an isostere of the product indole. These structures show a mixture of gem-diamine, external aldimine, quinonoid, and aminoacrylate intermediates, in both open and closed active site conformations. In the closed conformations of L-tryptophan, (3S)-dioxindolyl-l-alanine, and 7-aza-L-tryptophan complexes, hydrogen bonds form between Asp-133 with N1 of the ligand heterocyclic ring and NE2 of His-458 in the small domain of TIL. This hydrogen bond also forms in the BZI complex with the aminoacrylate intermediates formed from both L-tryptophan and SEC. The closed quinonoid complex of 7-aza-L-tryptophan shows that the azaindole ring in the closed conformation is bent out of plane of the Cβ-C3 bond by about 40°, putting it in a geometry that leads toward the transition-state geometry. Thus, both conformational dynamics and substrate activation play critical roles in the reaction mechanism of the TIL.
Collapse
Affiliation(s)
- Robert S. Phillips
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - S. Meredith Brown
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Ravi S. Patel
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Kappler U, Henningham A, Nasreen M, Yamamoto A, Buultjens AH, Stinear TP, Sly P, Fantino E. Tolerance to Haemophilus influenzae infection in human epithelial cells: Insights from a primary cell-based model. PLoS Pathog 2024; 20:e1012282. [PMID: 38990812 PMCID: PMC11239077 DOI: 10.1371/journal.ppat.1012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood. Here, we have investigated how H. influenzae adapts to the host environment and triggers the host immune response using a human primary cell-based infection model that closely resembles human nasal epithelia (NHNE). Physiological assays combined with dualRNAseq revealed that NHNE from five healthy donors all responded to H. influenzae infection with an initial, 'unproductive' inflammatory response that included a strong hypoxia signature but did not produce pro-inflammatory cytokines. Subsequently, an apparent tolerance to large extracellular and intraepithelial burdens of H. influenzae developed, with NHNE transcriptional profiles resembling the pre-infection state. This occurred in parallel with the development of intraepithelial bacterial populations, and appears to involve interruption of NFκB signalling. This is the first time that large-scale, persistence-promoting immunomodulatory effects of H. influenzae during infection have been observed, and we were able to demonstrate that only infections with live, but not heat-killed H. influenzae led to immunomodulation and reduced expression of NFκB-controlled cytokines such as IL-1β, IL-36γ and TNFα. Interestingly, NHNE were able to re-activate pro-inflammatory responses towards the end of the 14-day infection, resulting in release of IL-8 and TNFα. In addition to providing first molecular insights into mechanisms enabling persistence of H. influenzae in the host, our data further indicate the presence of infection stage-specific gene expression modules, highlighting fundamental similarities between immune responses in NHNE and canonical immune cells, which merit further investigation.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Andrew H. Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| |
Collapse
|
4
|
A Novel Glaesserella sp. Isolated from Pigs with Severe Respiratory Infections Has a Mosaic Genome with Virulence Factors Putatively Acquired by Horizontal Transfer. Appl Environ Microbiol 2018; 84:AEM.00092-18. [PMID: 29572210 DOI: 10.1128/aem.00092-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/19/2018] [Indexed: 01/31/2023] Open
Abstract
An unknown member of the family Pasteurellaceae was repeatedly isolated from 20- to 24-week-old pigs with severe pulmonary lesions reared on the same farm in Victoria, Australia. The etiological diagnosis of the disease was inconclusive. The complete genome sequence analysis of one strain, 15-184, revealed some phylogenic proximity to Glaesserella (Haemophilus) parasuis, the cause of Glasser's disease. However, the sequences of the 16S rRNA and housekeeping genes, as well as the average nucleotide identity scores, differed from those of all other known species in the family Pasteurellaceae The protein content of 15-184 was composite, with 60% of coding sequences matching known G. parasuis products, while more than 20% had a closer relative in the genera Actinobacillus, Mannheimia, Pasteurella, and Bibersteinia Several putative virulence genes absent from G. parasuis but present in other Pasteurellaceae were also found, including the apxIII RTX toxin gene from Actinobacillus pleuropneumoniae, ABC transporters from Actinobacillus minor, and iron transporters from various species. Three prophages and one integrative conjugative element were present in the isolate. Horizontal gene transfers might explain the mosaic genomic structure and atypical metabolic and virulence characteristics of 15-184. This organism has not been assigned a taxonomic position in the family, but this study underlines the need for a large-scale epidemiological and clinical characterization of this novel pathogen in swine populations, as a genomic analysis suggests it could have a severe impact on pig health.IMPORTANCE Several species of Pasteurellaceae cause a range of significant diseases in pigs. A novel member of this family was recently isolated from Australian pigs suffering from severe respiratory infections. Comparative whole-genome analyses suggest that this bacterium represents a new species, which possesses a number of virulence genes horizontally acquired from a diverse range of other Pasteurellaceae While the possible contribution of other coinfecting noncultivable agents to the disease has not been ruled out in this study, the repertoire of virulence genes found in this organism may nevertheless explain some aspects of the associated pathology observed on the farm. The prevalence of this novel pathogen within pig populations is currently unknown. This finding is of particular importance for the pig industry, as this organism can have a serious impact on the health of these animals.
Collapse
|
5
|
Alexeev EE, Lanis JM, Kao DJ, Campbell EL, Kelly CJ, Battista KD, Gerich ME, Jenkins BR, Walk ST, Kominsky DJ, Colgan SP. Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1183-1194. [PMID: 29454749 DOI: 10.1016/j.ajpath.2018.01.011] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Abstract
Interactions between the gut microbiota and the host are important for health, where dysbiosis has emerged as a likely component of mucosal disease. The specific constituents of the microbiota that contribute to mucosal disease are not well defined. The authors sought to define microbial components that regulate homeostasis within the intestinal mucosa. Using an unbiased, metabolomic profiling approach, a selective depletion of indole and indole-derived metabolites was identified in murine and human colitis. Indole-3-propionic acid (IPA) was selectively diminished in circulating serum from human subjects with active colitis, and IPA served as a biomarker of disease remission. Administration of indole metabolites showed prominent induction of IL-10R1 on cultured intestinal epithelia that was explained by activation of the aryl hydrocarbon receptor. Colonization of germ-free mice with wild-type Escherichia coli, but not E. coli mutants unable to generate indole, induced colonic epithelial IL-10R1. Moreover, oral administration of IPA significantly ameliorated disease in a chemically induced murine colitis model. This work defines a novel role of indole metabolites in anti-inflammatory pathways mediated by epithelial IL-10 signaling and identifies possible avenues for utilizing indoles as novel therapeutics in mucosal disease.
Collapse
Affiliation(s)
- Erica E Alexeev
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jordi M Lanis
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel J Kao
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eric L Campbell
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Caleb J Kelly
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kayla D Battista
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mark E Gerich
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brittany R Jenkins
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Douglas J Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.
| | - Sean P Colgan
- Mucosal Inflammation Program and Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
6
|
Carabarin-Lima A, Lozano-Zarain P, Castañeda-Lucio M, Martínez de la Peña CF, Martinez-Garcia J, Flores NL, Cruz ECDL, González-Posos S, Rocha-Gracia RDC. Flagellar expression in clinical isolates of non-typeable Haemophilus influenzae. J Med Microbiol 2017; 66:592-600. [PMID: 28513418 DOI: 10.1099/jmm.0.000471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Haemophilus influenzae is a commensal organism found in the upper respiratory tract of humans. When H. influenzae becomes a pathogen, these bacteria can move out of their commensal niche and cause multiple respiratory tract diseases such as otitis media, sinusitis, conjunctivitis and bronchitis in children, and chronic obstructive pulmonary disease in adults. However, H. influenzae is currently considered a non-flagellate bacterium. METHODOLOGY AND RESULTS In this study, 90 clinical isolates of H. influenzae strains (typeable and non-typeable) showed different degrees of the swarm-motility phenotype in vitro.Keys findings. One of these strains, NTHi BUAP96, showed the highest motility rate and its flagella were revealed using transmission electron microscopy and Ryu staining. Moreover, the flagellar genes fliC and flgH exhibited high homology with those of Actinobacillus pleuropneumoniae, Escherichia coli and Shigella flexneri. Furthermore, Western blot analysis, using anti-flagellin heterologous antibodies from E. coli, demonstrated cross-reaction with a protein present in NTHi BUAP96. CONCLUSION This study provides, for the first time, information on flagellar expression in H. influenzae, representing an important finding related to its evolution and pathogenic potential.
Collapse
Affiliation(s)
- Alejandro Carabarin-Lima
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | - Patricia Lozano-Zarain
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | - Miguel Castañeda-Lucio
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | - Claudia Fabiola Martínez de la Peña
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | - Julieta Martinez-Garcia
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | - Norarizbeth Lara Flores
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | - Elías Campos de la Cruz
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| | | | - Rosa Del Carmen Rocha-Gracia
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Puebla, México
| |
Collapse
|
7
|
Nuidate T, Tansila N, Saengkerdsub S, Kongreung J, Bakkiyaraj D, Vuddhakul V. Role of Indole Production on Virulence of Vibrio cholerae Using Galleria mellonella Larvae Model. Indian J Microbiol 2016; 56:368-74. [PMID: 27407302 DOI: 10.1007/s12088-016-0592-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Cell to cell communication facilitated by chemical signals plays crucial roles in regulating various cellular functions in bacteria. Indole, one such signaling molecule has been demonstrated to control various bacterial phenotypes such as biofilm formation and virulence in diverse bacteria including Vibrio cholerae. The present study explores some key factors involved in indole production and the subsequent pathogenesis of V. cholerae. Indole production was higher at 37 °C than at 30 °C, although the growth at 37 °C was slightly higher. A positive correlation was observed between indole production and biofilm formation in V. cholerae. Maximum indole production was detected at pH 7. There was no significant difference in indole production between clinical and environmental V. cholerae isolates, although indole production in one environmental isolate was significantly different. Both growth and indole production showed relevant changes with differences in salinity. An indole negative mutant strain was constructed using transposon mutagenesis and the direct effect of indole on the virulence of V. cholerae was evaluated using Galleria mellonella larvae model. Comparison to the wild type strain, the mutant significantly reduced the mortality of G. mellonella larvae which regained its virulence after complementation with exogenous indole. A gene involved in indole production and the virulence of V. cholerae was identified.
Collapse
Affiliation(s)
- Taiyeebah Nuidate
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Suwat Saengkerdsub
- Department of Food Technology, Faculty of Agroindustry, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Jetnaphang Kongreung
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Dhamodharan Bakkiyaraj
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| | - Varaporn Vuddhakul
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand
| |
Collapse
|
8
|
Characterization of tryptophanase from Vibrio cholerae. Appl Biochem Biotechnol 2014; 175:243-52. [PMID: 25253268 DOI: 10.1007/s12010-014-1263-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Tryptophanase (Trpase) is a pyridoxal phosphate (PLP)-dependent enzyme responsible for the production of indole, an important intra- and interspecies signaling molecule in bacteria. In this study, the tnaA gene of Vibrio cholerae coding for VcTrpase was cloned into the pET-20b(+) vector and expressed in Escherichia coli BL21(DE3) tn5:tnaA. Using Ni(2+)-nitrilotriacetic acid (NTA) chromatography, VcTrpase was purified, and it possessed a molecular mass of ∼49 kDa with specific absorption peaks at 330 and 435 nm and a specific activity of 3 U/mg protein. The VcTrpase had an 80 % homology to the Trpase of Haemophilus influenzae and E. coli, but only around 50 % identity to the Trpase of Proteus vulgaris and Porphyromonas gingivalis. The optimum conditions for the enzyme were at pH 9.0 and 45 °C. Recombinant VcTrpase exhibited analogous kinetic reactivity to the EcTrpase with K m and k cat values of 0.612 × 10(-3) M and 5.252 s(-1), respectively. The enzyme catalyzed S-methyl-L-cysteine and S-benzyl-L-cysteine degradation, but not L-phenylalanine and L-serine. Using a site-directed mutagenesis technique, eight residues (Thr52, Tyr74, Arg103, Asp137, Arg230, Lys269, Lys270, and His463) were conserved for maintaining enzyme catalysis. All amino acid substitutions at these sites either eliminated or remarkably diminished Trpase activity. These sites are thus potential targets for the design of drugs to control the V. cholerae Trpase and to further investigate its functions.
Collapse
|
9
|
Ewers C, Dematheis F, Singamaneni HD, Nandanwar N, Fruth A, Diehl I, Semmler T, Wieler LH. Correlation between the genomic o454-nlpD region polymorphisms, virulence gene equipment and phylogenetic group of extraintestinal Escherichia coli (ExPEC) enables pathotyping irrespective of host, disease and source of isolation. Gut Pathog 2014; 6:37. [PMID: 25349632 PMCID: PMC4209514 DOI: 10.1186/s13099-014-0037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The mutS-rpoS intergenic region in E. coli displays a mosaic structure which revealed pathotype specific patterns. To assess the importance of this region as a surrogate marker for the identification of highly virulent extraintestinal pathogenic E. coli (ExPEC) strains we aimed to: (i) characterize the genetic diversity of the mutS gene and the o454-nlpD genomic region among 510 E. coli strains from animals and humans; (ii) delineate associations between the polymorphism of this region and features such as phylogenetic background of E. coli, pathotype, host species, clinical condition, serogroup and virulence associated genes (VAG)s; and (iii) identify the most important VAGs for classification of the o454-nlpD region. METHODS Size variation in the o454-nlpD region was investigated by PCR amplification and sequencing. Phylogenetic relationships were assessed by Ecor- and Multilocus sequence- typing (MLST), and a comparative analysis between mutS gene phylogenetic tree obtained with RAxML and the MLST grouping method was performed. Correlation between o454-nlpD patterns and the features described above were analysed. In addition, the importance of 47 PCR-amplified ExPEC-related VAGs for classification of o454-nlpD patterns was investigated by means of Random Forest algorithm. RESULTS Four main structures (patterns I-IV) of the o454-nlpD region among ExPEC and commensal E. coli strains were identified. Statistical analysis showed a positive and exclusive association between pattern III and the ExPEC strains. A strong association between pattern III and either the Ecor group B2 or the sequence type complexes known to represent the phylogenetic background of highly virulent ExPEC strains (such as STC95, STC73 and STC131) was found as well. RF analyses determined five genes (csgA, malX, chuA, sit, and vat) to be suitable to predict pattern III strains. CONCLUSION The significant association between pattern III and group B2 strains suggested the o454-nlpD region to be of great value in identifying highly virulent strains among the mixed population of E. coli promising to be the basis of a future typing tool for ExPEC and their gut reservoir. Furthermore, top-ranked VAGs for classification and prediction of pattern III were identified. These data are most valuable for defining ExPEC pathotype in future in vivo assays.
Collapse
Affiliation(s)
- Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-Universität Giessen, Frankfurter Str. 85-89, Giessen, 35392, Germany
| | - Flavia Dematheis
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Haritha Devi Singamaneni
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Nishant Nandanwar
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany ; Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, Gachibowli, India
| | - Angelika Fruth
- National Reference Centre for Salmonella and Other Enteric Pathogens, Robert Koch Institute, Burgstr. 37, Wernigerode, 38855, Germany
| | - Ines Diehl
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Torsten Semmler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Lothar H Wieler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| |
Collapse
|
10
|
Faleev NG, Zakomirdina LN, Vorob'ev MM, Tsvetikova MA, Gogoleva OI, Demidkina TV, Phillips RS. A straightforward kinetic evidence for coexistence of "induced fit" and "selected fit" in the reaction mechanism of a mutant tryptophan indole lyase Y72F from Proteus vulgaris. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1860-7. [PMID: 25084024 DOI: 10.1016/j.bbapap.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 11/25/2022]
Abstract
The interaction of the mutant tryptophan indole-lyase (TIL) from Proteus vulgaris Y72F with the transition state analogue, oxindolyl-l-alanine (OIA), with the natural substrate, l-tryptophan, and with a substrate S-ethyl-l-cysteine was examined. In the case of wild-type enzyme these reactions are described by the same kinetic scheme where binding of holoenzyme with an amino acid, leading to reversible formation of an external aldimine, proceeds very fast, while following transformations, leading finally to reversible formation of a quinonoid intermediate proceed with measureable rates. Principally the same scheme ("induced fit") is realized in the case of mutant Y72F enzyme reaction with OIA. For the reaction of mutant enzyme with l-Trp at lower concentrations of the latter a principally different kinetic scheme is observed. This scheme suggests that binding of the substrate and formation of the quinonoid intermediate are at fast equilibrium, while preceding conformational changes of the holoenzyme proceed with measureable rates ("selected fit"). For the reaction with S-ethyl-l-cysteine the observed concentration dependence of kobs agrees with the realization of both kinetic schemes, the "selected fit" becoming predominant at lower concentrations of substrate, the "induced fit"- at higher ones. In the reaction with S-ethyl-l-cysteine the formation of the quinonoid intermediate proceeds slower than does catalytic α,β-elimination of ethylthiol from S-ethyl-l-cysteine, and consequently does not play a considerable role in the catalysis, which may be effected by a concerted E2 mechanism.
Collapse
Affiliation(s)
- Nicolai G Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Lyudmila N Zakomirdina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail M Vorob'ev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Marina A Tsvetikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga I Gogoleva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Su YC, Resman F, Hörhold F, Riesbeck K. Comparative genomic analysis reveals distinct genotypic features of the emerging pathogen Haemophilus influenzae type f. BMC Genomics 2014; 15:38. [PMID: 24438474 PMCID: PMC3928620 DOI: 10.1186/1471-2164-15-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif. RESULTS The Hif KR494 genome exhibited large regions of synteny with other H. influenzae, but also distinct genome rearrangements. A predicted Hif core genome of 1390 genes was shared with the reference strains, and 6 unique genomic regions comprising half of the 191 unique coding sequences were revealed. The majority of these regions were inserted genetic fragments, most likely derived from the closely-related Haemophilus spp. including H. aegyptius, H. haemolyticus and H. parainfluenzae. Importantly, the KR494 genome possessed several putative virulence genes that were distinct from non-type f strains. These included the sap2 operon, aef3 fimbriae, and genes for kanamycin nucleotidyltranserase, iron-utilization proteins, and putative YadA-like trimeric autotransporters that may increase the bacterial virulence. Furthermore, Hif KR494 lacked a hisABCDEFGH operon for de novo histidine biosynthesis, hmg locus for lipooligosaccharide biosynthesis and biofilm formation, the Haemophilus antibiotic resistance island and a Haemophilus secondary molybdate transport system. We confirmed the histidine auxotrophy and kanamycin resistance in Hif by functional experiments. Moreover, the pattern of unique or missing genes of Hif KR494 was similar in 20 Hif clinical isolates obtained from different years and geographical areas. A cross-species comparison revealed that the Hif genome shared more characteristics with H. aegyptius than Hid and NTHi. CONCLUSIONS The genomic comparative analyses facilitated identification of genotypic characteristics that may be related to the specific virulence of Hif. In relation to non-type f H. influenzae strains, the Hif genome contains differences in components involved in metabolism and survival that may contribute to its invasiveness.
Collapse
Affiliation(s)
| | | | | | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| |
Collapse
|
12
|
Harris AP, Phillips RS. Benzimidazole analogs of (L)-tryptophan are substrates and inhibitors of tryptophan indole lyase from Escherichia coli. FEBS J 2013; 280:1807-17. [PMID: 23438036 DOI: 10.1111/febs.12205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/08/2023]
Abstract
Tryptophan indole lyase (TIL), an enzyme found in Escherichia coli and related enterobacteria, produces indole from l-tryptophan (l-Trp). Indole is a signaling molecule in bacteria, affecting biofilm formation, pathogenicity and antibiotic resistance. β-(Benzimidazol-1-yl)-l-alanine (BZI-Ala), 2-amino-4-(benzimidazol-1-yl)butyric acid (homo-BZI-Ala) and 2-amino-5-(benzimidazol-1-yl)pentanoic acid (bishomo-BZI-Ala) were synthesized and tested as substrates and inhibitors of TIL. BZI-Ala is a good substrate of TIL, with Km = 300 μm, kcat = 5.6 s(-1) and kcat /Km = 1.9 × 10(4) , similar to l-Trp. BZI-Ala is also a good substrate for H463F mutant TIL, which has very low activity with l-Trp. In contrast, homo-BZI-Ala was found to be a potent competitive inhibitor of TIL, with a Ki of 13.4 μm. However, the higher homolog, bishomo-BZI-Ala, was inactive as an inhibitor of TIL at a concentration of 600 μm, and is thus a much weaker inhibitor. The reaction of TIL with BZI-Ala was too fast to be observed in the stopped-flow spectrophotometer, and shows an aldimine intermediate in the steady state. However, H463F TIL shows equilibrating mixtures of aldimine and quinonoid complexes in the steady state. The spectra of the reaction of TIL with homo-BZI-Ala show a rapidly formed intermediate absorbing at 340 nm, probably a gem-diamine, that decays slowly to form a quinonoid complex absorbing at 494 nm. The potent binding of homo-BZI-Ala may be due to it being a 'bi-product' analog of the indole-α-aminoacrylate complex. These results demonstrate that an amino acid substrate may be converted to a potent inhibitor of TIL simply by homologation, which may be useful in the design of other potent TIL inhibitors.
Collapse
Affiliation(s)
- Austin P Harris
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
13
|
Thorn RMS, Greenman J. Microbial volatile compounds in health and disease conditions. J Breath Res 2012; 6:024001. [PMID: 22556190 PMCID: PMC7106765 DOI: 10.1088/1752-7155/6/2/024001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/12/2012] [Indexed: 12/24/2022]
Abstract
Microbial cultures and/or microbial associated diseases often have a characteristic smell. Volatile organic compounds (VOCs) are produced by all microorganisms as part of their normal metabolism. The types and classes of VOC produced is wide, including fatty acids and their derivatives (e.g. hydrocarbons, aliphatic alcohols and ketones), aromatic compounds, nitrogen containing compounds, and volatile sulfur compounds. A diversity of ecological niches exist in the human body which can support a polymicrobial community, with the exact VOC profile of a given anatomical site being dependent on that produced by both the host component and the microbial species present. The detection of VOCs is of interest to various disciplines, hence numerous analytical approaches have been developed to accurately characterize and measure VOCs in the laboratory, often from patient derived samples. Using these technological advancements it is evident that VOCs are indicative of both health and disease states. Many of these techniques are still largely confined to the research laboratory, but it is envisaged that in future bedside 'VOC profiling' will enable rapid characterization of microbial associated disease, providing vital information to healthcare practitioners.
Collapse
Affiliation(s)
- Robin Michael Statham Thorn
- Centre for Research in Biomedicine, Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, BS16 1QY, UK
| | - John Greenman
- Centre for Research in Biomedicine, Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, BS16 1QY, UK
| |
Collapse
|
14
|
Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones. Genomics 2010; 96:290-302. [PMID: 20654709 DOI: 10.1016/j.ygeno.2010.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 11/22/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants.
Collapse
|
15
|
Production of indole from L-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl Environ Microbiol 2010; 76:4260-8. [PMID: 20472741 DOI: 10.1128/aem.00166-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The l-tryptophan degradation product indole is a purported extracellular signaling molecule that influences biofilm formation in various bacteria. Here we analyzed the mechanisms of indole production in Fusobacterium nucleatum and the effects of tryptophan and indole on F. nucleatum planktonic and biofilm cells. The amino acid sequence deduced from the fn1943 gene in F. nucleatum ATCC 25586 was 28% identical to that deduced from tnaA in Escherichia coli, which encodes tryptophanase catalyzing the beta-elimination of l-tryptophan to produce indole. The fn1943 gene was cotranscribed with the downstream gene fn1944, which is a homolog of tnaB encoding low-affinity tryptophan permease. The transcript started at position -68 or -153 from the first nucleotide of the fn1943 translation initiation codon. Real-time quantitative PCR showed that much more F. nucleatum fn1943 transcripts were obtained from log-phase cells than from stationary-phase cells. Indole production by the purified recombinant protein encoded by fn1943 was examined using high-performance liquid chromatography. The K(m) and k(cat) of the enzyme were 0.26 +/- 0.03 mM and 0.74 +/- 0.04 s(-1), respectively. F. nucleatum biofilm formation and the biofilm supernatant concentration of indole increased dose dependently with increasing tryptophan concentrations. Exogenous indole also increased F. nucleatum biofilm formation in a dose-dependent manner. Even at very high concentrations, tryptophan did not affect fn1943 expression, whereas similar indole concentrations decreased expression. Thus, exogenous tryptophan and indole were suggested to increase F. nucleatum biofilms.
Collapse
|
16
|
Abstract
Bacteria can utilize signal molecules to coordinate their behavior to survive in dynamic multispecies communities. Indole is widespread in the natural environment, as a variety of both Gram-positive and Gram-negative bacteria (to date, 85 species) produce large quantities of indole. Although it has been known for over 100 years that many bacteria produce indole, the real biological roles of this molecule are only now beginning to be unveiled. As an intercellular signal molecule, indole controls diverse aspects of bacterial physiology, such as spore formation, plasmid stability, drug resistance, biofilm formation, and virulence in indole-producing bacteria. In contrast, many non-indole-producing bacteria, plants and animals produce diverse oxygenases which may interfere with indole signaling. It appears indole plays an important role in bacterial physiology, ecological balance, and possibly human health. Here we discuss our current knowledge and perspectives on indole signaling.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Display & Chemical Engineering, Yeungnam University, Gyeongsan, Korea
| | | |
Collapse
|
17
|
Yoshida Y, Sasaki T, Ito S, Tamura H, Kunimatsu K, Kato H. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2009; 155:968-978. [PMID: 19246767 DOI: 10.1099/mic.0.024174-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Indole produced via the beta-elimination reaction of l-tryptophan by pyridoxal 5'-phosphate-dependent tryptophanase (EC 4.1.99.1) has recently been shown to be an extracellular and intercellular signalling molecule in bacteria, and controls bacterial biofilm formation and virulence factors. In the present study, we determined the molecular basis of indole production in the periodontopathogenic bacterium Porphyromonas gingivalis. A database search showed that the amino acid sequence deduced from pg1401 of P. gingivalis W83 is 45 % identical with that from tnaA of Escherichia coli K-12, which encodes tryptophanase. Replacement of the pg1401 gene in the chromosomal DNA with the chloramphenicol-resistance gene abolished indole production. The production of indole was restored by the introduction of pg1401, demonstrating that the gene is functionally equivalent to tnaA. However, RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends analyses showed that, unlike E. coli tnaA, pg1401 is expressed alone in P. gingivalis and that the nucleotide sequence of the transcription start site is different, suggesting that the expression of P. gingivalis tnaA is controlled by a unique mechanism. Purified recombinant P. gingivalis tryptophanase exhibited the Michaelis-Menten kinetics values K(m)=0.20+/-0.01 mM and k(cat)=1.37+/-0.06 s(-1) in potassium phosphate buffer, but in sodium phosphate buffer, the enzyme showed lower activity. However, the cation in the buffer, K(+) or Na(+), did not appear to affect the quaternary structure of the enzyme or the binding of pyridoxal 5'-phosphate to the enzyme. The enzyme also degraded S-ethyl-l-cysteine and S-methyl-l-cysteine, but not l-alanine, l-serine or l-cysteine.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Takako Sasaki
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Shuntaro Ito
- Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Haruki Tamura
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Kazushi Kunimatsu
- Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Hirohisa Kato
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| |
Collapse
|
18
|
Fitzpatrick DA. Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 2009; 68:171-85. [PMID: 19189039 DOI: 10.1007/s00239-009-9198-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/06/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Phenazines are secondary metabolites with broad-spectrum antibiotic activity against bacteria, fungi, and eukaryotes. In pseudomonad species, a conserved seven-gene phenazine operon (phzABCDEFG) is required for the conversion of chorismic acid to the broad-spectrum antibiotic phenazine-1-carboxylate. Previous analyses of genes involved in phenazine production from nonpseudomonad species uncovered a high degree of sequence similarity to pseudomonad homologues. The analyses undertaken in this study wished to eluciadate the evolutionary history of genes involved in the production of phenazines. Furthermore, I wanted to determine if the phenazine operon has been transferred through horizontal gene transfer. Analyses of GC content, codon usage patterns, frequency of 3:1 dinucleotides, sequence similarities, and phylogenetic reconstructions were undertaken to map the evolutionary history of phenazine genes from multiple bacterial species. Patchy phyletic distribution, high sequence similarities, and phylogenetic evidence infer that pseudomonad, Streptomyces cinnamonensis, Pantoea agglomerans, Burkholderia cepacia, Pectobacterium atrosepticum, Brevibacterium linens, and Mycobacterium abscessus species all contain a phenazine operon which has most likely been transferred among these species through horizontal gene transfer. The acquisition of an antibiotic-associated operon is significant, as it may increase the relative fitness of the recipient species.
Collapse
Affiliation(s)
- David A Fitzpatrick
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
19
|
Association of IS1016 with the hia adhesin gene and biotypes V and I in invasive nontypeable Haemophilus influenzae. Infect Immun 2008; 76:5221-7. [PMID: 18794287 DOI: 10.1128/iai.00672-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A subset of invasive nontypeable Haemophilus influenzae (NTHI) strains has evidence of IS1016, an insertion element associated with division I H. influenzae capsule serotypes. We examined IS1016-positive invasive NTHI isolates collected as part of Active Bacterial Core Surveillance within the Georgia Emerging Infections Program for the presence or absence of hmw1 and hmw2 (two related adhesin genes that are common in NTHI but absent in encapsulated H. influenzae) and hia (homologue of hsf, an encapsulated H. influenzae adhesin gene). Isolates were serotyped using slide agglutination, confirmed as NTHI strains using PCR capsule typing, and biotyped. Two hundred twenty-nine invasive NTHI isolates collected between August 1998 and December 2006 were screened for IS1016; 22/229 (9.6%) were positive. Nineteen of 201 previously identified IS1016-positive invasive NTHI isolates collected between January 1989 and July 1998 were also examined. Forty-one IS1016-positive and 56 randomly selected IS1016-negative invasive NTHI strains were examined. The hia adhesin was present in 39 of 41 (95%) IS1016-positive NTHI strains and 1 of 56 (1.8%) IS1016-negative NTHI strains tested; hmw (hmw1, hmw2, or both) was present in 50 of 56 (89%) IS1016-negative NTHI isolates but in only 5 of 41 (12%; all hmw2) IS1016-positive NTHI isolates. IS1016-positive NTHI strains were more often biotype V (P < 0.001) or biotype I (P = 0.04) than IS1016-negative NTHI strains, which were most often biotype II. Pulsed-field gel electrophoresis revealed the expected genetic diversity of NTHI with some clustering based on IS1016, hmw or hia, and biotypes. A significant association of IS1016 with biotypes V and I and the presence of hia adhesins was found among invasive NTHI. IS1016-positive NTHI strains may represent a unique subset of NTHI strains, with characteristics more closely resembling those of encapsulated H. influenzae.
Collapse
|
20
|
Hatoum A, Roberts J. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation. Mol Microbiol 2008; 68:17-28. [PMID: 18333883 DOI: 10.1111/j.1365-2958.2008.06138.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA polymerase (RNAP) trapped in intermediate stages of promoter escape, as well as RNAP paused at promoter-proximal sigma(70)-dependent pause sites, gives rise to stable, transcriptionally engaged stalled complexes that can limit promoter function and present potential sites for transcription regulation. To investigate the prevalence of such intermediates, we screened 118 Escherichia coli candidate promoters for RNAP stalling at or near the promoter, using in vivo KMnO(4) mapping of RNAP on chromosomal DNA. Of 34 active promoters, the seven preceding lacZ, tnaA, cspA, cspD, rplK, rpsA and rpsU harboured stalled RNAP in vivo; this finding suggests that RNAP stalling after initiation is widespread in E. coli. Consistent with the characteristics of both abortive and promoter-proximal sigma(70)-dependent paused complexes, RNAP trapping at most of the newly identified stall sites was eliminated by the rpoDL402Fsigma(70) mutational alteration and by site mutations, and was enhanced by GreA deficiency. In addition to promoter-proximal RNAP trapping, we observed transcription-dependent DNA modifications spanning the tnaA and cspA leader regions up to 100 bp downstream of the transcription start site.
Collapse
Affiliation(s)
- Asma Hatoum
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
21
|
Fitzpatrick DA, Logue ME, Butler G. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol Biol 2008; 8:181. [PMID: 18577206 PMCID: PMC2459174 DOI: 10.1186/1471-2148-8-181] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/24/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND To date very few incidences of interdomain gene transfer into fungi have been identified. Here, we used the emerging genome sequences of Candida albicans WO-1, Candida tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus to identify recent interdomain HGT events. We refer to these as CTG species because they translate the CTG codon as serine rather than leucine, and share a recent common ancestor. RESULTS Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from bacterial sources. One encodes a putative proline racemase (PR). Phylogenetic analysis also infers that there were independent transfers of bacterial PR enzymes into members of the Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F (PhzF) superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests that the CTG homolog originated from an ancient HGT event, from a member of the proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT. CONCLUSION Our search revealed two instances of well-supported HGT from bacteria into the CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient gene transfers, and we may have underestimated the global extent of HGT into CTG species.
Collapse
Affiliation(s)
- David A Fitzpatrick
- School of Biomolecular and Biomedical Science, Conway Institute, University College, Dublin, Belfield, Dublin 4, Ireland
| | - Mary E Logue
- School of Biomolecular and Biomedical Science, Conway Institute, University College, Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College, Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Erwin AL, Sandstedt SA, Bonthuis PJ, Geelhood JL, Nelson KL, Unrath WCT, Diggle MA, Theodore MJ, Pleatman CR, Mothershed EA, Sacchi CT, Mayer LW, Gilsdorf JR, Smith AL. Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol 2008; 190:1473-83. [PMID: 18065541 PMCID: PMC2238191 DOI: 10.1128/jb.01207-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/26/2007] [Indexed: 12/13/2022] Open
Abstract
The gram-negative bacterium Haemophilus influenzae is a human-restricted commensal of the nasopharynx that can also be associated with disease. The majority of H. influenzae respiratory isolates lack the genes for capsule production and are nontypeable (NTHI). Whereas encapsulated strains are known to belong to serotype-specific phylogenetic groups, the structure of the NTHI population has not been previously described. A total of 656 H. influenzae strains, including 322 NTHI strains, have been typed by multilocus sequence typing and found to have 359 sequence types (ST). We performed maximum-parsimony analysis of the 359 sequences and calculated the majority-rule consensus of 4,545 resulting equally most parsimonious trees. Eleven clades were identified, consisting of six or more ST on a branch that was present in 100% of trees. Two additional clades were defined by branches present in 91% and 82% of trees, respectively. Of these 13 clades, 8 consisted predominantly of NTHI strains, three were serotype specific, and 2 contained distinct NTHI-specific and serotype-specific clusters of strains. Sixty percent of NTHI strains have ST within one of the 13 clades, and eBURST analysis identified an additional phylogenetic group that contained 20% of NTHI strains. There was concordant clustering of certain metabolic reactions and putative virulence loci but not of disease source or geographic origin. We conclude that well-defined phylogenetic groups of NTHI strains exist and that these groups differ in genetic content. These observations will provide a framework for further study of the effect of genetic diversity on the interaction of NTHI with the host.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Syed SS, Gilsdorf JR. Prevalence ofhicAB,lav,traA, andhifBCamongHaemophilus influenzaemiddle ear and throat strains. FEMS Microbiol Lett 2007; 274:180-3. [PMID: 17608697 DOI: 10.1111/j.1574-6968.2007.00822.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important cause of illness among children. To further understand the role of laterally transferred genes in NTHi colonization and otitis media, the prevalence of hicAB, lav, tnaA, and hifBC was determined among 44 middle ear and 35 throat NTHi isolates by dot-blot hybridization.
Collapse
Affiliation(s)
- Salma S Syed
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
24
|
Takahata S, Ida T, Senju N, Sanbongi Y, Miyata A, Maebashi K, Hoshiko S. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae. Antimicrob Agents Chemother 2007; 51:1589-95. [PMID: 17325223 PMCID: PMC1855551 DOI: 10.1128/aac.01545-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer has been identified in only a small number of genes in Haemophilus influenzae, an organism which is naturally competent for transformation. This report provides evidence for the genetic transfer of the ftsI gene, which encodes penicillin-binding protein 3, in H. influenzae. Mosaic structures of the ftsI gene were found in several clinical isolates of H. influenzae. To identify the origin of the mosaic sequence, complete sequences of the corresponding gene from seven type strains of Haemophilus species were determined. Comparison of these sequences with mosaic regions identified a homologous recombination of the ftsI gene between H. influenzae and Haemophilus haemolyticus. Subsequently, ampicillin-resistant H. influenzae strains harboring identical ftsI sequences were genotyped by pulsed-field gel electrophoresis (PFGE). Divergent PFGE patterns among beta-lactamase-nonproducing ampicillin-resistant (BLNAR) strains from different hospitals indicated the potential for the genetic transfer of the mutated ftsI gene between these isolates. Moreover, transfer of the ftsI gene from BLNAR strains to beta-lactamase-nonproducing ampicillin-susceptible (BLNAS) H. influenzae strains was evaluated in vitro. Coincubation of a BLNAS strain (a rifampin-resistant mutant of strain Rd) and BLNAR strains resulted in the emergence of rifampin- and cefdinir-resistant clones at frequencies of 5.1 x 10(-7) to 1.5 x 10(-6). Characterization of these doubly resistant mutants by DNA sequencing of the ftsI gene, susceptibility testing, and genotyping by PFGE revealed that the ftsI genes of BLNAR strains had transferred to BLNAS strains during coincubation. In conclusion, horizontal transfer of the ftsI gene in H. influenzae can occur in an intraspecies and an interspecies manner.
Collapse
Affiliation(s)
- Sho Takahata
- Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kobayashi A, Hirakawa H, Hirata T, Nishino K, Yamaguchi A. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 2006; 188:5693-703. [PMID: 16885437 PMCID: PMC1540079 DOI: 10.1128/jb.00217-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug exporters contribute to the intrinsic drug resistance in many organisms. Although there are at least 20 exporter genes in Escherichia coli, most of them apparently do not confer drug resistance in complex laboratory media except for the AcrAB, EmrE, and MdfA efflux systems. In this study, we comprehensively investigated the growth phase-dependent expression of drug exporter genes. The expression of acrAB, emrAB, emrD, emrE, emrKY, mdfA, and ydgFE is stable at moderate levels during any growth phase, whereas mdtEF promoter activity greatly increased with cell growth and reached the maximum level at the late stationary phase. The growth phase-dependent increase in mdtEF expression was also observed on quantitative reverse transcription-PCR analysis. As expected from the transporter expression, the stationary-phase cells actually showed MdtEF-dependent tolerance to drugs and toxic dyes. Growth phase-dependent elevation of mdtEF expression was found to be mediated by the stationary-phase sigma factor rpoS and the RpoS-dependent signaling pathway, Hfq, GadY, and GadX. The induction level was decreased by tnaAB deletion, suggesting that indole sensing stimulates this process.
Collapse
Affiliation(s)
- Asuka Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
26
|
Erwin AL, Bonthuis PJ, Geelhood JL, Nelson KL, McCrea KW, Gilsdorf JR, Smith AL. Heterogeneity in tandem octanucleotides within Haemophilus influenzae lipopolysaccharide biosynthetic gene losA affects serum resistance. Infect Immun 2006; 74:3408-14. [PMID: 16714571 PMCID: PMC1479228 DOI: 10.1128/iai.01540-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is subject to phase variation mediated by changes in the length of simple sequence repeat regions within several genes, most of which encode either surface proteins or enzymes involved in the synthesis of lipopolysaccharides (LPS). The translational repeat regions that have been described thus far all consist of tandemly repeated tetranucleotides. We describe an octanucleotide repeat region within a putative LPS biosynthetic gene, losA. Approximately 20 percent of nontypeable H. influenzae strains contain copies of losA and losB in a genetic locus flanked by infA and ksgA. Of 30 strains containing losA at this site, 24 contained 2 tandem copies of the octanucleotide CGAGCATA, allowing full-length translation of losA (on), and 6 strains contained 3, 4, 6, or 10 tandem copies (losA off). For a serum-sensitive strain, R3063, with losA off (10 repeat units), selection for serum-resistant variants yielded a heterogeneous population in which colonies with increased serum resistance had losA on (2, 8, or 11 repeat units), and colonies with unchanged sensitivity to serum had 10 repeats. Inactivation of losA in strains R3063 and R2846 (strain 12) by insertion of the cat gene decreased the serum resistance of these strains compared to losA-on variants and altered the electrophoretic mobility of LPS. We conclude that expression of losA, a gene that contributes to LPS structure and affects serum resistance, is determined by octanucleotide repeat variation.
Collapse
Affiliation(s)
- Alice L Erwin
- Bacterial Pathogenesis Program, Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kulikova VV, Zakomirdina LN, Dementieva IS, Phillips RS, Gollnick PD, Demidkina TV, Faleev NG. Tryptophanase from Proteus vulgaris: The conformational rearrangement in the active site, induced by the mutation of Tyrosine 72 to Phenylalanine, and its mechanistic consequences. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:750-7. [PMID: 16455316 DOI: 10.1016/j.bbapap.2005.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.
Collapse
Affiliation(s)
- Vitalia V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Erwin AL, Nelson KL, Mhlanga-Mutangadura T, Bonthuis PJ, Geelhood JL, Morlin G, Unrath WCT, Campos J, Crook DW, Farley MM, Henderson FW, Jacobs RF, Mühlemann K, Satola SW, van Alphen L, Golomb M, Smith AL. Characterization of genetic and phenotypic diversity of invasive nontypeable Haemophilus influenzae. Infect Immun 2005; 73:5853-63. [PMID: 16113304 PMCID: PMC1231076 DOI: 10.1128/iai.73.9.5853-5863.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of unencapsulated (nontypeable) Haemophilus influenzae (NTHi) to cause systemic disease in healthy children has been recognized only in the past decade. To determine the extent of similarity among invasive nontypeable isolates, we compared strain R2866 with 16 additional NTHi isolates from blood and spinal fluid, 17 nasopharyngeal or throat isolates from healthy children, and 19 isolates from middle ear aspirates. The strains were evaluated for the presence of several genetic loci that affect bacterial surface structures and for biochemical reactions that are known to differ among H. influenzae strains. Eight strains, including four blood isolates, shared several properties with R2866: they were biotype V (indole and ornithine decarboxylase positive, urease negative), contained sequence from the adhesin gene hia, and lacked a genetic island flanked by the infA and ksgA genes. Multilocus sequence typing showed that most biotype V isolates belonged to the same phylogenetic cluster as strain R2866. When present, the infA-ksgA island contains lipopolysaccharide biosynthetic genes, either lic2B and lic2C or homologs of the losA and losB genes described for Haemophilus ducreyi. The island was found in most nasopharyngeal and otitis isolates but was absent from 40% of invasive isolates. Overall, the 33 hmw-negative isolates were much more likely than hmw-containing isolates to have tryptophanase, ornithine decarboxylase, or lysine decarboxylase activity or to contain the hif genes. We conclude (i) that invasive isolates are genetically and phenotypically diverse and (ii) that certain genetic loci of NTHi are frequently found in association among NTHi strains.
Collapse
Affiliation(s)
- Alice L Erwin
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fitzpatrick DA, Creevey CJ, McInerney JO. Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol Biol Evol 2005; 23:74-85. [PMID: 16151187 DOI: 10.1093/molbev/msj009] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Placement of the mitochondrial branch on the tree of life has been problematic. Sparse sampling, the uncertainty of how lateral gene transfer might overwrite phylogenetic signals, and the uncertainty of phylogenetic inference have all contributed to the issue. Here we address this issue using a supertree approach and completed genomic sequences. We first determine that a sensible alpha-proteobacterial phylogenetic tree exists and that it can confidently be inferred using orthologous genes. We show that congruence across these orthologous gene trees is significantly better than might be expected by random chance. There is some evidence of horizontal gene transfer within the alpha-proteobacteria, but it appears to be restricted to a minority of genes ( approximately 23%) most of whom ( approximately 74%) can be categorized as operational. This means that placement of the mitochondrion should not be excessively hampered by interspecies gene transfer. We then show that there is a consistently strong signal for placement of the mitochondrion on this tree and that this placement is relatively insensitive to methodological approach or data set. A concatenated alignment was created consisting of 15 mitochondrion-encoded proteins that are unlikely to have undergone any lateral gene transfer in the timeline under consideration. This alignment infers that the sister group of the mitochondria, for the taxa that have been sampled, is the order Rickettsiales.
Collapse
Affiliation(s)
- David A Fitzpatrick
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | |
Collapse
|
30
|
Calteau A, Gouy M, Perrière G. Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 2005; 60:557-65. [PMID: 15983865 DOI: 10.1007/s00239-004-0094-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 11/19/2004] [Indexed: 11/27/2022]
Abstract
Using a phylogenetic approach, we discovered three putative horizontal transfers between bacterial and archaeal species involving large clusters of genes. One transfer involves an operon of 13 genes, called mbx, which probably was transferred into the genome of Thermotoga maritima from a species belonging or close to the Pyrococcus genus. The two others implied an operon of six genes, called ech, transferred independently to the genomes of Thermoanaerobacter tengcongensis and Desulfovibrio gigas, from a species belonging or close to the Methanosarcina genus. All these transfers affected operons coding for multisubunit membrane-bound (NiFe) hydrogenases involved in the energy metabolism of the donor genomes. The functionality of the transferred operons has not been experimentally demonstrated for T. maritima, whereas in D. gigas and T. tengcongensis the encoded multisubunit hydrogenase could have a role in energy conservation. This report adds several cases of horizontal gene transfers among hydrogenases already described.
Collapse
Affiliation(s)
- Alexandra Calteau
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard--Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
31
|
Ohkusu K, Nash KA, Inderlied CB. Molecular characterisation of Haemophilus influenzae type a and untypeable strains isolated simultaneously from cerebrospinal fluid and blood: novel use of quantitative real-time PCR based on the cap copy number to determine virulence. Clin Microbiol Infect 2005; 11:637-43. [PMID: 16008616 DOI: 10.1111/j.1469-0691.2005.01203.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the genetic structure of the cap region of an isolate of Haemophilus influenzae serotype a (Hia) from the cerebrospinal fluid (CSF) of a child with meningitis. In addition, the genetic structure of the cap region of a non-serotypeable H. influenzae isolate, obtained simultaneously from the blood of the same patient, was determined. According to restriction fragment length polymorphism analysis, the CSF and blood isolates were identical, with the exception of a single band shift of c. 35 kb. PCR analyses suggested that the CSF isolate possessed the IS1016-bexA gene and cap region II, whereas the blood isolate only had the IS1016 element. Furthermore, Southern analysis of DNA from both isolates showed that the CSF isolate carried the cap gene(s), while the blood isolate did not. Using a novel quantitative real-time PCR approach for determining the cap copy number, it was demonstrated that the CSF isolate had two intact tandem repeats of the cap gene containing three copies of IS1016, whereas the blood isolate had only one copy of IS1016. This study provided evidence that H. influenzae serotypes other than serotype b can cause serious disease, and that the virulence of these non-serotype b strains relates primarily to the cap gene copy number and the structure of the cap locus. Therefore, the quantitative real-time PCR assay described in this study should be useful for the rapid and definitive identification of strains of H. influenzae type a that represent a risk for serious disease.
Collapse
Affiliation(s)
- K Ohkusu
- Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | |
Collapse
|
32
|
Gladitz J, Shen K, Antalis P, Hu FZ, Post JC, Ehrlich GD. Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae. Nucleic Acids Res 2005; 33:3644-58. [PMID: 15983137 PMCID: PMC1160521 DOI: 10.1093/nar/gki670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A similarity statistic for codon usage was developed and used to compare novel gene sequences found in clinical isolates of Haemophilus influenzae with a reference set of 80 prokaryotic, eukaryotic and viral genomes. These analyses were performed to obtain an indication as to whether individual genes were Haemophilus-like in nature, or if they probably had more recently entered the H.influenzae gene pool via horizontal gene transfer from other species. The average and SD values were calculated for the similarity statistics from a study of the set of all genes in the H.influenzae Rd reference genome that encoded proteins of 100 amino acids or longer. Approximately 80% of Rd genes gave a statistic indicating that they were most like other Rd genes. Genes displaying codon usage statistics >1 SD above this range were either considered part of the highly expressed group of H.influenzae genes, or were considered of foreign origin. An alternative determinant for identifying genes of foreign origin was when the similarity statistics produced a value that was much closer to a non-H.influenzae reference organism than to any of the Haemophilus species contained in the reference set. Approximately 65% of the novel sequences identified in the H.influenzae clinical isolates displayed codon usages most similar to Haemophilus sp. The remaining novel sequences produced similarity statistics closer to one of the other reference genomes thereby suggesting that these sequences may have entered the H.influenzae gene pool more recently via horizontal transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Garth D. Ehrlich
- To whom correspondence should be addressed. Tel: +1 412 359 4228; Fax: +1 412 359 6995;
| |
Collapse
|
33
|
Shen K, Antalis P, Gladitz J, Sayeed S, Ahmed A, Yu S, Hayes J, Johnson S, Dice B, Dopico R, Keefe R, Janto B, Chong W, Goodwin J, Wadowsky RM, Erdos G, Post JC, Ehrlich GD, Hu FZ. Identification, distribution, and expression of novel genes in 10 clinical isolates of nontypeable Haemophilus influenzae. Infect Immun 2005; 73:3479-91. [PMID: 15908377 PMCID: PMC1111819 DOI: 10.1128/iai.73.6.3479-3491.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We hypothesize that Haemophilus influenzae, as a species, possesses a much greater number of genes than that found in any single H. influenzae genome. This supragenome is distributed throughout naturally occurring infectious populations, and new strains arise through autocompetence and autotransformation systems. The effect is that H. influenzae populations can readily adapt to environmental stressors. The supragenome hypothesis predicts that significant differences exist between and among the genomes of individual infectious strains of nontypeable H. influenzae (NTHi). To test this prediction, we obtained 10 low-passage NTHi clinical isolates from the middle ear effusions of patients with chronic otitis media. DNA sequencing was performed with 771 clones chosen at random from a pooled genomic library. Homology searching demonstrated that approximately 10% of these clones were novel compared to the H. influenzae Rd KW20 genome, and most of them did not match any DNA sequence in GenBank. Amino acid homology searches using hypothetical translations of the open reading frames revealed homologies to a variety of proteins, including bacterial virulence factors not previously identified in the NTHi isolates. The distribution and expression of 53 of these genes among the 10 strains were determined by PCR- and reverse transcription PCR-based analyses. These unique genes were nonuniformly distributed among the 10 isolates, and transcription of these genes in planktonic cultures was detected in 50% (177 of 352) of the occurrences. All of the novel sequences were transcribed in one or more of the NTHi isolates. Seventeen percent (9 of 53) of the novel genes were identified in all 10 NTHi strains, with each of the remaining 44 being present in only a subset of the strains. These genic distribution analyses were more effective as a strain discrimination tool than either multilocus sequence typing or 23S ribosomal gene typing methods.
Collapse
Affiliation(s)
- Kai Shen
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Ave., 11th Floor South Tower, Pittsburgh, PA 15212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 2005; 55:1113-26. [PMID: 15686558 DOI: 10.1111/j.1365-2958.2004.04449.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our comprehensive expression cloning studies previously revealed that 20 intrinsic xenobiotic exporter systems are encoded in the Escherichia coli chromosome, but most of them are not expressed under normal conditions. In this study, we investigated the compounds that induce the expression of these xenobiotic exporter genes, and found that indole induces a variety of xenobiotic exporter genes including acrD, acrE, cusB, emrK, mdtA, mdtE and yceL. Indole treatment of E. coli cells confers rhodamine 6G and SDS resistance through the induction of mdtEF and acrD gene expression respectively. The induction of mdtE by indole is independent of the EvgSA two-component signal transduction system that regulates the mdtE gene, but mediated by GadX. On the other hand, the induction of acrD and mdtA was mediated by BaeSR and CpxAR, two-component systems. Interestingly, CpxAR system-mediated induction required intrinsic baeSR genes, whereas BaeSR-mediated induction was observed in the cpxAR gene-deletion mutant. BaeR and CpxR directly bound to different sequences of the acrD and mdtA promoter regions. These observations indicate that BaeR is a primary regulator, and CpxR enhances the effect of BaeR.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
35
|
Watson ME, Burns JL, Smith AL. Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. MICROBIOLOGY-SGM 2005; 150:2947-2958. [PMID: 15347753 DOI: 10.1099/mic.0.27230-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypermutable bacterial pathogens exist at surprisingly high prevalence and benefit bacterial populations by promoting adaptation to selective environments, including resistance to antibiotics. Five hundred Haemophilus influenzae isolates were screened for an increased frequency of mutation to resistance to rifampicin, nalidixic acid and spectinomycin: of the 14 hypermutable isolates identified, 12 were isolated from cystic fibrosis (CF) sputum. Analysis by enterobacterial repetitive intergenic consensus (ERIC)-PCR and ribotyping identified eight distinct genetic fingerprints. The hypermutable phenotype of seven of the eight unique isolates was associated with polymorphisms in conserved sites of mutS. Four of the mutant mutS alleles were cloned and failed to complement the mutator phenotype of a mutS : : TSTE mutant of H. influenzae strain Rd KW20. Antibiotic susceptibility testing of the hypermutators identified one beta-lactamase-negative ampicillin-resistant (BLNAR) isolate with two isolates producing beta-lactamase. Six isolates from the same patient with CF, with the same genetic fingerprint, were clonal by multilocus sequence typing (MLST). In this clone, there was an evolution to higher MIC values for the antibiotics administered to the patient during the period in which the strains were isolated. Hypermutable H. influenzae with mutations in mutS are prevalent, particularly in the CF lung environment, and may be selected for and maintained by antibiotic pressure.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/physiology
- Ampicillin Resistance
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Cloning, Molecular
- Cystic Fibrosis/microbiology
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Intergenic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drug Resistance, Bacterial/genetics
- Genes, Bacterial
- Genetic Complementation Test
- Haemophilus influenzae/drug effects
- Haemophilus influenzae/genetics
- Haemophilus influenzae/isolation & purification
- Humans
- Molecular Sequence Data
- MutS DNA Mismatch-Binding Protein
- Mutation
- Nalidixic Acid/pharmacology
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid
- Ribotyping
- Rifampin/pharmacology
- Selection, Genetic
- Sequence Analysis, DNA
- Spectinomycin/pharmacology
- Sputum/microbiology
- beta-Lactamases/analysis
Collapse
Affiliation(s)
- Michael E Watson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Jane L Burns
- Division of Infectious Diseases, Children's Hospital and Regional Medical Center, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Arnold L Smith
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
36
|
Munson RS, Harrison A, Gillaspy A, Ray WC, Carson M, Armbruster D, Gipson J, Gipson M, Johnson L, Lewis L, Dyer DW, Bakaletz LO. Partial analysis of the genomes of two nontypeable Haemophilus influenzae otitis media isolates. Infect Immun 2004; 72:3002-10. [PMID: 15102813 PMCID: PMC387840 DOI: 10.1128/iai.72.5.3002-3010.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1995, The Institute for Genomic Research completed the genomic sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. This sequence, though extremely useful in understanding the basic biology of H. influenzae, has yet to provide significant insight into our understanding of disease caused by nontypeable H. influenzae (NTHI), because serotype d strains are not generally pathogens. In contrast, NTHI strains are frequently mucosal pathogens and are the primary pathogens of chronic otitis media as well as a significant cause of acute otitis media in children. Thus, it is of great importance to further understand their biology. We used a DNA-based microarray approach to identify genes present in a clinical isolate of NTHI that were absent from strain Rd. We also sequenced the genome of a second NTHI isolate from a child with chronic otitis media to threefold coverage and then used an array of bioinformatics tools to identify genes present in this NTHI strain but absent from strain Rd. These methods were complementary in approach and results. We identified, in both strains, homologues of H. influenzae lav, an autotransported protein of unknown function; tnaA, which encodes tryptophanase; as well as a homologue of Pasteurella multocida tsaA, which encodes an alkyl peroxidase that may play a role in protection against reactive oxygen species. We also identified a number of putative restriction-modification systems, bacteriophage genes and transposon-related genes. These data provide new insight that complements and extends our ongoing analysis of NTHI virulence determinants.
Collapse
Affiliation(s)
- Robert S Munson
- Center for Microbial Pathogenesis, Columbus Children's Research Institute and The Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gilsdorf JR, Marrs CF, Foxman B. Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun 2004; 72:2457-61. [PMID: 15102751 PMCID: PMC387884 DOI: 10.1128/iai.72.5.2457-2461.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Janet R Gilsdorf
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
38
|
Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 2004; 49:443-9. [PMID: 14569285 DOI: 10.1139/w03-056] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that genetic inactivation of tryptophanase is responsible for a dramatic decrease in biofilm formation in the laboratory strain Escherichia coli S17-1. In the present study, we tested whether the biochemical inhibition of tryptophanase, with the competitive inhibitor oxindolyl-L-alanine, could affect polystyrene colonization by E. coli and other indole-producing bacteria. Oxindolyl-L-alanine inhibits, in a dose-dependent manner, indole production and biofilm formation by strain S17-1 grown in Luria-Bertani (LB) medium. Supplementation with indole at physiologically relevant concentrations restores biofilm formation by strain S17-1 in the presence of oxindolyl-L-alanine and by mutant strain E. coli 3714 (S17-1 tnaA::Tn5) in LB medium. Oxindolyl-L-alanine also inhibits the adherence of S17-1 cells to polystyrene for a 3-h incubation time, but mutant strain 3714 cells are unaffected. At 0.5 mg/mL, oxindolyl-L-alanine exhibits inhibitory activity against biofilm formation in LB medium and in synthetic urine for several clinical isolates of E. coli, Klebsiella oxytoca, Citrobacter koseri, Providencia stuartii, and Morganella morganii but has no affect on indole-negative Klebsiella pneumoniae strains. In conclusion, these data suggest that indole, produced by the action of tryptophanase, is involved in polystyrene colonization by several indole-producing bacterial species. Indole may act as a signalling molecule to regulate the expression of adhesion and biofilm-promoting factors.
Collapse
Affiliation(s)
- P Di Martino
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, Pontoise, France.
| | | | | | | | | |
Collapse
|
39
|
Li Y, Altman S. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci U S A 2003; 100:13213-8. [PMID: 14585931 PMCID: PMC263755 DOI: 10.1073/pnas.2235589100] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rnpA mutation, A49, in Escherichia coli reduces the level of RNase P at 43 degrees C because of a temperature-sensitive mutation in C5 protein, the protein subunit of the enzyme. Microarray analysis reveals the expression of several noncoding intergenic regions that are increased at 43 degrees C compared with 30 degrees C. These regions are substrates for RNase P, and they are cleaved less efficiently than, for example, tRNA precursors. An analysis of the tna, secG, rbs, and his operons, all of which contain RNase P cleavage sites, indicates that RNase P affects gene expression for regions downstream of its cleavage sites.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
40
|
Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD, Phillips RS. Role of Aspartate-133 and Histidine-458 in the Mechanism of Tryptophan Indole-Lyase from Proteus vulgaris. Biochemistry 2003; 42:11161-9. [PMID: 14503866 DOI: 10.1021/bi034348t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tryptophan indole-lyase (Trpase) from Proteus vulgaris is a pyridoxal 5'-phosphate dependent enzyme that catalyzes the reversible hydrolytic cleavage of L-Trp to yield indole and ammonium pyruvate. Asp-133 and His-458 are strictly conserved in all sequences of Trpase, and they are located in the proposed substrate-binding region of Trpase. These residues were mutated to alanine to probe their role in substrate binding and catalysis. D133A mutant Trpase has no measurable activity with L-Trp as substrate, but still retains activity with S-(o-nitrophenyl)-L-cysteine, S-alkyl-L-cysteines, and beta-chloro-L-alanine. H458A mutant Trpase has 1.6% of wild-type Trpase activity with L-Trp, and high activity with S-(o-nitrophenyl)-L-cysteine, S-alkyl-L-cysteines, and beta-chloro-L-alanine. H458A mutant Trpase does not exhibit the pK(a) of 5.3 seen in the pH dependence of k(cat)/K(m) of L-Trp for wild-type Trpase. Both mutant enzymes are inhibited by L-Ala, L-Met, and L-Phe, with K(i) values similar to those of wild-type Trpase, but oxindolyl-L-alanine and beta-phenyl-DL-serine show much weaker binding to the mutant enzymes, suggesting that Asp-133 and His-458 are involved in the binding of these ligands. D133A and H458A mutant Trpase exhibit absorption and CD spectra in the presence of substrates and inhibitors that are similar to wild-type Trpase, with peaks at about 420 and 500 nm. The rate constants for formation of the 500 nm bands for the mutant enzymes are equal to or greater than those of wild-type Trpase, indicating that Asp-133 and His-458 do not play a role in the formation of quinonoid intermediates. In constrast to wild-type and H458A mutant Trpase, D133A mutant Trpase forms an intermediate from S-ethyl-L-Cys that absorbs at 345 nm, and is likely to be an alpha-aminoacrylate. Crystals of D133A and H458A mutant Trpase bind amino acids with similar affinity as the proteins in solution, except for L-Ala, which binds to D133A mutant Trpase crystals about 20-fold stronger than in solution. These results suggest that Asp-133 and His-458 play an important role in the elimination reaction of L-Trp. Asp-133 likely forms a hydrogen bond directly to the indole NH of the substrate, while His-458 probably is hydrogen bonded to Asp-133.
Collapse
Affiliation(s)
- Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gogoleva OI, Zakomirdina LN, Demidkina TV, Phillips RS, Faleev NG. Tryptophanase in aqueous methanol: the solvent effects and a probable mechanism of the hydrophobic control of substrate specificity. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Androutsellis-Theotokis A, Goldberg NR, Ueda K, Beppu T, Beckman ML, Das S, Javitch JA, Rudnick G. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem 2003; 278:12703-9. [PMID: 12569103 DOI: 10.1074/jbc.m206563200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tnaT gene of Symbiobacterium thermophilum encodes a protein homologous to sodium-dependent neurotransmitter transporters. Expression of the tnaT gene product in Escherichia coli conferred the ability to accumulate tryptophan from the medium and the ability to grow on tryptophan as a sole source of carbon. Transport was Na(+)-dependent and highly selective. The K(m) for tryptophan was approximately 145 nm, and tryptophan transport was unchanged in the presence of 100 microM concentrations of other amino acids. Tryptamine and serotonin were weak inhibitors with K(I) values of 200 and 440 microM, respectively. By using a T7 promoter-based system, TnaT with an N-terminal His(6) tag was expressed at high levels in the membrane and was purified to near-homogeneity in high yield.
Collapse
|
43
|
Daines DA, Cohn LA, Coleman HN, Kim KS, Smith AL. Haemophilus influenzae Rd KW20 has virulence properties. J Med Microbiol 2003; 52:277-282. [PMID: 12676864 DOI: 10.1099/jmm.0.05025-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is a human-adapted commensal and pathogen that can cause mucosal infections such as sinusitis, otitis media and bronchitis. Certain strains also cause bacteraemia and meningitis. Clinical isolates are genetically heterogeneous and are often recalcitrant to standard genetic manipulation. H. influenzae strain Rd KW20 has traditionally been considered avirulent, since it does not survive in the bloodstream of animals, is readily killed by normal adult human sera and cannot colonize the nasopharynx of infant rats. The purpose of this study was to determine whether Rd KW20 could be used in certain infection models. It is shown here that strain Rd KW20 can invade certain human epithelial cell lines grown either as monolayers or as differentiated epithelium at the air-liquid interface. In addition, Rd KW20 can invade a monolayer of immortalized human brain microvascular endothelial cells. Finally, this strain can replicate and survive in human bronchial xenografts for up to 3 weeks. The complete genomic sequence of Rd KW20 is available and it is readily amenable to genetic manipulation. These properties and the results reported here indicate that this strain is a viable alternative to the use of clinical isolates for the investigation of H. influenzae virulence.
Collapse
Affiliation(s)
- Dayle A Daines
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leah A Cohn
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hannah N Coleman
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kwang Sik Kim
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arnold L Smith
- Seattle Biomedical Research Institute, Four Nickerson Street, Suite 200, Seattle, WA 98109, USA 2Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA 3Division of Infectious Disease, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Bergman NH, Akerley BJ. Position-based scanning for comparative genomics and identification of genetic islands in Haemophilus influenzae type b. Infect Immun 2003; 71:1098-108. [PMID: 12595420 PMCID: PMC148883 DOI: 10.1128/iai.71.3.1098-1108.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria exhibit extensive genetic heterogeneity within species. In many cases, these differences account for virulence properties unique to specific strains. Several such loci have been discovered in the genome of the type b serotype of Haemophilus influenzae, a human pathogen able to cause meningitis, pneumonia, and septicemia. Here we report application of a PCR-based scanning procedure to compare the genome of a virulent type b (Hib) strain with that of the laboratory-passaged Rd KW20 strain for which a complete genome sequence is available. We have identified seven DNA segments or H. influenzae genetic islands (HiGIs) present in the type b genome and absent from the Rd genome. These segments vary in size and content and show signs of horizontal gene transfer in that their percent G+C content differs from that of the rest of the H. influenzae genome, they contain genes similar to those found on phages or other mobile elements, or they are flanked by DNA repeats. Several of these loci represent potential pathogenicity islands, because they contain genes likely to mediate interactions with the host. These newly identified genetic islands provide areas of investigation into both the evolution and pathogenesis of H. influenzae. In addition, the genome scanning approach developed to identify these islands provides a rapid means to compare the genomes of phenotypically diverse bacterial strains once the genome sequence of one representative strain has been determined.
Collapse
Affiliation(s)
- Nicholas H Bergman
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
45
|
Kotewicz ML, Li B, Levy DD, LeClerc JE, Shifflet AW, Cebula TA. Evolution of multi-gene segments in the mutS-rpoS intergenic region of Salmonella enterica serovar Typhimurium LT2. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2531-2540. [PMID: 12177346 DOI: 10.1099/00221287-148-8-2531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequence of the 12.6 kb region between the mutS and rpoS genes of Salmonella enterica serovar Typhimurium LT2 (S. typhimurium) was compared to other enteric bacterial mutS-rpoS intergenic regions. The mutS-rpoS region is composed of three distinct segments, designated HK, O and S, as defined by sequence similarities to contiguous ORFs in other bacteria. Inverted chromosomal orientations of each of these segments are found between the mutS and rpoS genes in related ENTEROBACTERIACEAE: The HK segment is distantly related to a cluster of seven ORFs found in Haemophilus influenzae and a cluster of five ORFs found between the mutS and rpoS genes in Escherichia coli K-12. The O segment is related to the mutS-rpoS intergenic region found in E. coli O157:H7 and Shigella dysenteriae type 1. The third segment, S, is common to diverse Salmonella species, but is absent from E. coli. Despite the extensive collinearity and conservation of the overall genetic maps of S. typhimurium and E. coli K-12, the insertions, deletions and inversions in the mutS-rpoS region provide evidence that this region of the chromosome is an active site for horizontal gene transfer and rearrangement.
Collapse
Affiliation(s)
- Michael L Kotewicz
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel MD 20708, USA1
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel MD 20708, USA1
| | - Dan D Levy
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel MD 20708, USA1
| | - J Eugene LeClerc
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel MD 20708, USA1
| | - Andrew W Shifflet
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel MD 20708, USA1
| | - Thomas A Cebula
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel MD 20708, USA1
| |
Collapse
|
46
|
Phillips RS, Johnson N, Kamath AV. Formation in vitro of hybrid dimers of H463F and Y74F mutant Escherichia coli tryptophan indole-lyase rescues activity with L-tryptophan. Biochemistry 2002; 41:4012-9. [PMID: 11900544 DOI: 10.1021/bi015838t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Y74F and H463F mutant forms of Escherichia coli tryptophan indole-lyase (Trpase) have been prepared. These mutant proteins have very low activity with L-Trp as substrate (kcat and kcat/Km values less than 0.1% of wild-type Trpase). In contrast, these mutant enzymes exhibit much higher activity with S-(o-nitrophenyl)-L-cysteine and S-ethyl-L-cysteine (kcat/Km values about 1-50% of wild-type Trpase). Thus, Tyr-74 and His-463 are important for the substrate specificity of Trpase for L-Trp. H463F Trpase is not inhibited by a potent inhibitor of wild-type Trpase, oxindolyl-L-alanine, and does not exhibit the pK(a) of 6.0 seen in previous pH dependence studies [Kiick, D. M., and Phillips, R. S. (1988) Biochemistry 27, 7333]. These results suggest that His-463 may be the catalytic base with a pK(a) of 6.0 and Tyr-74 may be a general acid catalyst for the elimination step, as we found previously with tyrosine phenol-lyase [Chen, H., Demidkina, T. V., and Phillips, R. S. (1995) Biochemistry 34, 12776]. H463F Trpase reacts with L-Trp and S-ethyl-L-cysteine in rapid-scanning stopped-flow experiments to form equilibrating mixtures of external aldimine and quinonoid intermediates, similar to those observed with wild-type Trpase. In contrast to the results with wild-type Trpase, the addition of benzimidazole to reactions of H463F Trpase with L-Trp does not result in the formation of an aminoacrylate intermediate. However, addition of benzimidazole with S-ethyl-L-cysteine results in the formation of an aminoacrylate intermediate, with lambda(max) at 345 nm, as was seen previously with wild-type Trpase [Phillips, R. S. (1991) Biochemistry 30, 5927]. This suggests that His-463 plays a specific role in the elimination step of the reaction of L-Trp. Refolding of equimolar mixtures of H463F and Y74F Trpase after unfolding in 4 M guanidine hydrochloride results in a dramatic increase in activity with L-Trp, indicating the formation of a hybrid H463F/Y74F dimer with one normal active site.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | | | |
Collapse
|
47
|
Davis J, Smith AL, Hughes WR, Golomb M. Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria. J Bacteriol 2001; 183:4626-35. [PMID: 11443098 PMCID: PMC95358 DOI: 10.1128/jb.183.15.000-000.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of pathogenic Haemophilus influenzae strains are larger than that of Rd KW20 (Rd), the nonpathogenic laboratory strain whose genome has been sequenced. To identify potential virulence genes, we examined genes possessed by Int1, an invasive nonencapsulated isolate from a meningitis patient, but absent from Rd. Int1 was found to have a novel gene termed lav, predicted to encode a member of the AIDA-I/VirG/PerT family of virulence-associated autotransporters (ATs). Associated with lav are multiple repeats of the tetranucleotide GCAA, implicated in translational phase variation of surface molecules. Laterally acquired by H. influenzae, lav is restricted in distribution to a few pathogenic strains, including H. influenzae biotype aegyptius and Brazilian purpuric fever isolates. The DNA sequence of lav is surprisingly similar to that of a gene previously described for Neisseria meningitidis. Sequence comparisons suggest that lav was transferred relatively recently from Haemophilus to Neisseria, shortly before the divergence of N. meningitidis and Neisseria gonorrhoeae. Segments of lav predicted to encode passenger and beta-domains differ sharply in G+C base content, supporting the idea that AT genes have evolved by fusing domains which originated in different genomes. Homology and base sequence comparisons suggest that a novel biotype aegyptius AT arose by swapping an unrelated sequence for the passenger domain of lav. The unusually mobile lav locus joins a growing list of genes transferred from H. influenzae to Neisseria. Frequent gene exchange suggests a common pool of hypervariable contingency genes and may help to explain the origin of invasiveness in certain respiratory pathogens.
Collapse
Affiliation(s)
- J Davis
- Division of Biological Sciences and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
48
|
Read TD, Satola SW, Farley MM. Nucleotide sequence analysis of hypervariable junctions of Haemophilus influenzae pilus gene clusters. Infect Immun 2000; 68:6896-902. [PMID: 11083811 PMCID: PMC97796 DOI: 10.1128/iai.68.12.6896-6902.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae pili are surface structures that promote attachment to human epithelial cells. The five genes that encode pili, hifABCDE, are found inserted in genomes either between pmbA and hpt (hif-1) or between purE and pepN (hif-2). We determined the sequence between the ends of the pilus clusters and bordering genes in a number of H. influenzae strains. The junctions of the hif-1 cluster (limited to biogroup aegyptius isolates) are structurally simple. In contrast, hif-2 junctions are highly diverse, complex assemblies of conserved intergenic sequences (including genes hicA and hicB) with evidence of frequent recombination. Variation at hif-2 junctions seems to be tied to multiple copies of a 23-bp Haemophilus intergenic dyad sequence. The hif-1 cluster appears to have originated in biogroup aegyptius strains from invasion of the hpt-pmbA region by a DNA template containing the hif-2 genes with termini in the hairpin loop of flanking intergenic dyad sequences. The pilus gene clusters are an interesting model of a mobile "pathogenicity island" not associated with a phage, transposon, or insertion element.
Collapse
Affiliation(s)
- T D Read
- Atlanta Veterans Affairs Medical Center and Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
49
|
Konan KV, Yanofsky C. Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site. J Bacteriol 2000; 182:3981-8. [PMID: 10869076 PMCID: PMC94583 DOI: 10.1128/jb.182.14.3981-3988.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination. Tryptophan induction prevents Rho-dependent transcription termination in the leader region of the operon. Induction requires translation of a 24-residue leader peptide-coding region, tnaC, containing a single, crucial Trp codon. Studies with a lacZ reporter construct lacking the tnaC-tnaA spacer region suggest that, in the presence of excess tryptophan, the TnaC leader peptide acts in cis on the ribosome translating tnaC to inhibit its release. The stalled ribosome is thought to block Rho's access to the transcript. In this paper we examine the roles of the boxA sequence and the rut site in Rho-dependent termination. Deleting six nucleotides (CGC CCT) of boxA or introducing specific point mutations in boxA results in high-level constitutive expression. Some constitutive changes introduced in boxA do not change the TnaC peptide sequence. We confirm that deletion of the rut site results in constitutive expression. We also demonstrate that, in each constitutive construct, replacement of the tnaC start codon by a UAG stop codon reduces expression significantly, suggesting that constitutive expression requires translation of the tnaC coding sequence. Addition of bicyclomycin, an inhibitor of Rho, to these UAG constructs increases expression, demonstrating that reduced expression is due to Rho action. Combining a boxA point mutation with rut site deletion results in constitutive expression comparable to that of a maximally induced operon. These results support the hypothesis that in the presence of tryptophan the ribosome translating tnaC blocks Rho's access to the boxA and rut sites, thereby preventing transcription termination.
Collapse
Affiliation(s)
- K V Konan
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | |
Collapse
|
50
|
Chang CC, Gilsdorf JR, DiRita VJ, Marrs CF. Identification and genetic characterization of Haemophilus influenzae genetic island 1. Infect Immun 2000; 68:2630-7. [PMID: 10768954 PMCID: PMC97469 DOI: 10.1128/iai.68.5.2630-2637.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 02/07/2000] [Indexed: 11/20/2022] Open
Abstract
The type b capsule of pathogenic Haemophilus influenzae is a critical factor for H. influenzae survival in the blood and the establishment of invasive infections. Other pathogenic factors associated with type b strains may also play a role in invasion and sustained bacteremia, leading to the seeding of deep tissues. The gene encoding haemocin is the only noncapsular gene found to be specific to type b strains until now. Here we report the discovery of an approximately 16-kb genetic locus, HiGI1, that is present primarily in type b strains. Pulsed-field gel electrophoresis and Southern hybridization were used to map this new locus between secG (HI0445) and fruA (HI0446), which are contiguous in Rd, a nonpathogenic derivative of a serotype d strain. It is inserted at the 3' end of tRNA(4)(Leu) and has regions whose G+C content differs from the average genomic G+C content of H. influenzae. An integrase gene, which encodes a CP4-57 like integrase, is located downstream of tRNA(4)(Leu). Hybridization probes based on the sequences within the HiGI1 locus have been used to screen 61 H. influenzae strains (2 type a, 22 type b, 2 type c, 1 type d, 3 type e, 7 type f, and 21 nontypeable H. influenzae [NTHi]) from our collection. This HiGI1 locus exists in all 22 type b strains and two NTHi strains and is likely to have been acquired by an ancestral type b strain.
Collapse
Affiliation(s)
- C C Chang
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|