1
|
Rodriguez-Valverde D, Leon-Montes N, Belmont-Monroy L, Ruiz-Perez F, Santiago AE. Lipoprotein Lpp and L, D-transpeptidases regulate the master regulator of virulence AggR in EAEC. Sci Rep 2025; 15:13988. [PMID: 40263412 PMCID: PMC12015436 DOI: 10.1038/s41598-025-96373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a diarrheagenic pathotype associated with traveler's diarrhea, foodborne outbreaks, and sporadic diarrhea in industrialized and developing countries. Regulation of virulence factors in EAEC is mediated by the master regulator AggR, an AraC/XylS family member controlling the expression of more than 44 genes associated with metabolism and virulence. Although the AggR regulon is well-characterized, the mechanism and upstream signaling cascades that regulate its activation are poorly understood. This study demonstrates that Lpp (Braun's lipoprotein) and L, D-transpeptidases are required for AggR activation. We found that deletion lpp in EAEC resulted in the downregulation of more than 100 genes involved in transport, metabolism, and virulence. Among the genes, fourteen transcriptional factors, including AggR, were differentially expressed in 042Δlpp. Our findings also showed that Lpp anchoring to the peptidoglycan is a requisite for AggR-activation. Hence, chemical inhibition or genetic deletion of L, D-transpeptidases encoding genes involved in the crosslink of Lpp to the peptidoglycan abolished AggR activation. Moreover, the 042Δlpp mutant exhibited reduced biofilm formation on abiotic surfaces and reduced colonization of human intestinal colonoids. This is the first study to demonstrate the tight regulation of the AraC/XylS transcriptional regulator AggR, essential in EAEC virulence and intestinal colonization by components of the bacterial cell envelope.
Collapse
Affiliation(s)
- Diana Rodriguez-Valverde
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA
| | - Nancy Leon-Montes
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA
| | - Laura Belmont-Monroy
- Laboratorio de Microbiología Molecular, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Fernando Ruiz-Perez
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA
| | - Araceli E Santiago
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA.
| |
Collapse
|
2
|
Park J, Lee SM, Ebrahim A, Scott-Nevros Z, Kim J, Yang L, Sastry A, Seo S, Palsson BO, Kim D. Model-driven experimental design workflow expands understanding of regulatory role of Nac in Escherichia coli. NAR Genom Bioinform 2023; 5:lqad006. [PMID: 36685725 PMCID: PMC9853098 DOI: 10.1093/nargab/lqad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The establishment of experimental conditions for transcriptional regulator network (TRN) reconstruction in bacteria continues to be impeded by the limited knowledge of activating conditions for transcription factors (TFs). Here, we present a novel genome-scale model-driven workflow for designing experimental conditions, which optimally activate specific TFs. Our model-driven workflow was applied to elucidate transcriptional regulation under nitrogen limitation by Nac and NtrC, in Escherichia coli. We comprehensively predict alternative nitrogen sources, including cytosine and cytidine, which trigger differential activation of Nac using a model-driven workflow. In accordance with the prediction, genome-wide measurements with ChIP-exo and RNA-seq were performed. Integrative data analysis reveals that the Nac and NtrC regulons consist of 97 and 43 genes under alternative nitrogen conditions, respectively. Functional analysis of Nac at the transcriptional level showed that Nac directly down-regulates amino acid biosynthesis and restores expression of tricarboxylic acid (TCA) cycle genes to alleviate nitrogen-limiting stress. We also demonstrate that both TFs coherently modulate α-ketoglutarate accumulation stress due to nitrogen limitation by co-activating amino acid and diamine degradation pathways. A systems-biology approach provided a detailed and quantitative understanding of both TF's roles and how nitrogen and carbon metabolic networks respond complementarily to nitrogen-limiting stress.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ali Ebrahim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zoe K Scott-Nevros
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Laurence Yang
- Department of Chemical Engineering, Queen's University, Kingston, Canada
| | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, and Interdisciplinary Program in Bioengineering, and Institute of Chemical Processes, and Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- The Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 6 Kogle Alle, Hørsholm, Denmark
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
3
|
Alkim C, Farias D, Fredonnet J, Serrano-Bataille H, Herviou P, Picot M, Slama N, Dejean S, Morin N, Enjalbert B, François JM. Toxic effect and inability of L-homoserine to be a nitrogen source for growth of Escherichia coli resolved by a combination of in vivo evolution engineering and omics analyses. Front Microbiol 2022; 13:1051425. [PMID: 36583047 PMCID: PMC9792984 DOI: 10.3389/fmicb.2022.1051425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
L-homoserine is a pivotal intermediate in the carbon and nitrogen metabolism of E. coli. However, this non-canonical amino acid cannot be used as a nitrogen source for growth. Furthermore, growth of this bacterium in a synthetic media is potently inhibited by L-homoserine. To understand this dual effect, an adapted laboratory evolution (ALE) was applied, which allowed the isolation of a strain able to grow with L-homoserine as the nitrogen source and was, at the same time, desensitized to growth inhibition by this amino acid. Sequencing of this evolved strain identified only four genomic modifications, including a 49 bp truncation starting from the stop codon of thrL. This mutation resulted in a modified thrL locus carrying a thrL* allele encoding a polypeptide 9 amino acids longer than the thrL encoded leader peptide. Remarkably, the replacement of thrL with thrL* in the original strain MG1655 alleviated L-homoserine inhibition to the same extent as strain 4E, but did not allow growth with this amino acid as a nitrogen source. The loss of L-homoserine toxic effect could be explained by the rapid conversion of L-homoserine into threonine via the thrL*-dependent transcriptional activation of the threonine operon thrABC. On the other hand, the growth of E. coli on a mineral medium with L-homoserine required an activation of the threonine degradation pathway II and glycine cleavage system, resulting in the release of ammonium ions that were likely recaptured by NAD(P)-dependent glutamate dehydrogenase. To infer about the direct molecular targets of L-homoserine toxicity, a transcriptomic analysis of wild-type MG1655 in the presence of 10 mM L-homoserine was performed, which notably identified a potent repression of locomotion-motility-chemotaxis process and of branched-chain amino acids synthesis. Since the magnitude of these effects was lower in a ΔthrL mutant, concomitant with a twofold lower sensitivity of this mutant to L-homoserine, it could be argued that growth inhibition by L-homoserine is due to the repression of these biological processes. In addition, L-homoserine induced a strong upregulation of genes in the sulfate reductive assimilation pathway, including those encoding its transport. How this non-canonical amino acid triggers these transcriptomic changes is discussed.
Collapse
Affiliation(s)
- Ceren Alkim
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Daniele Farias
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Fredonnet
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Pauline Herviou
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Marc Picot
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Nawel Slama
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Nicolas Morin
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Brice Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France,*Correspondence: Jean M. François,
| |
Collapse
|
4
|
Tariq R, Hussain A, Tariq A, Khalid MHB, Khan I, Basim H, Ingvarsson PK. Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses. BMC PLANT BIOLOGY 2022; 22:343. [PMID: 35836131 PMCID: PMC9284730 DOI: 10.1186/s12870-022-03716-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. RESULTS In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. CONCLUSIONS This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions.
Collapse
Affiliation(s)
- Rezwan Tariq
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey
| | - Ammara Hussain
- Department of Biotechnology, University of Okara, Punjab, 56300, Pakistan
| | - Arslan Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Hayder Bin Khalid
- College of agronomy, Sichuan Agricultural University, Ya'an, China
- National Research Center of intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystem, Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou, 730020, China
| | - Huseyin Basim
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey.
| | - Pär K Ingvarsson
- Linnean Centre for Plan Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden.
| |
Collapse
|
5
|
Bartholomew HP, Reynoso G, Thomas BJ, Mullins CM, Smith C, Gentzel IN, Giese LA, Mackey D, Stevens AM. The Transcription Factor Lrp of Pantoea stewartii subsp. stewartii Controls Capsule Production, Motility, and Virulence Important for in planta Growth. Front Microbiol 2022; 12:806504. [PMID: 35237242 PMCID: PMC8882988 DOI: 10.3389/fmicb.2021.806504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial phytopathogen Pantoea stewartii subsp. stewartii causes leaf blight and Stewart's wilt disease in susceptible corn varieties. A previous RNA-Seq study examined P. stewartii gene expression patterns during late-stage infection in the xylem, and a Tn-Seq study using a P. stewartii mutant library revealed genes essential for colonization of the xylem. Based on these findings, strains with in-frame chromosomal deletions in the genes encoding seven transcription factors (NsrR, IscR, Nac, Lrp, DSJ_00125, DSJ_03645, and DSJ_18135) and one hypothetical protein (DSJ_21690) were constructed to further evaluate the role of the encoded gene products during in vitro and in planta growth. Assays for capsule production and motility indicate that Lrp plays a role in regulating these two key physiological outputs in vitro. Single infections of each deletion strain into the xylem of corn seedlings determined that Lrp plays a significant role in P. stewartii virulence. In planta xylem competition assays between co-inoculated deletion and the corresponding complementation or wild-type strains as well as in vitro growth curves determined that Lrp controls functions important for P. stewartii colonization and growth in corn plants, whereas IscR may have a more generalized impact on growth. Defining the role of essential transcription factors, such as Lrp, during in planta growth will enable modeling of key components of the P. stewartii regulatory network utilized during growth in corn plants.
Collapse
Affiliation(s)
| | - Guadalupe Reynoso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Brandi J. Thomas
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chase M. Mullins
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chastyn Smith
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Irene N. Gentzel
- Department of Horticulture & Crop Science, The Ohio State University, Columbus, OH, United States
| | - Laura A. Giese
- Department of Horticulture & Crop Science, The Ohio State University, Columbus, OH, United States
| | - David Mackey
- Department of Horticulture & Crop Science, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Miyakoshi M, Morita T, Kobayashi A, Berger A, Takahashi H, Gotoh Y, Hayashi T, Tanaka K. Glutamine synthetase mRNA releases sRNA from its 3'UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae. eLife 2022; 11:82411. [PMID: 36440827 PMCID: PMC9731577 DOI: 10.7554/elife.82411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and Escherichia coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3'UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukubaJapan,Transborder Medical Research Center, University of TsukubaTsukubaJapan,International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio UniversityTsuruokaJapan,Graduate School of Media and Governance, Keio UniversityFujisawaJapan
| | - Asaki Kobayashi
- Transborder Medical Research Center, University of TsukubaTsukubaJapan
| | - Anna Berger
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | | | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
7
|
Wan X, Brynildsen MP. Robustness of nitric oxide detoxification to nitrogen starvation in Escherichia coli requires RelA. Free Radic Biol Med 2021; 176:286-297. [PMID: 34624482 DOI: 10.1016/j.freeradbiomed.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
Reactive nitrogen species and nutrient deprivation are two elements of the immune response used to eliminate pathogens within phagosomes. Concomitantly, pathogenic bacteria have evolved defense systems to cope with phagosomal stressors, which include enzymes that detoxify nitric oxide (•NO) and respond to nutrient scarcity. A deeper understanding of how those defense systems are deployed under adverse conditions that contain key elements of phagosomes will facilitate targeting of those systems for therapeutic purposes. Here we investigated how Escherichia coli detoxifies •NO in the absence of useable nitrogen, because nitrogen availability is limited in phagosomes due to the removal of nitrogenous compounds (e.g., amino acids). We hypothesized that nitrogen starvation would impair •NO detoxification by E. coli because it depresses translation rates and the main E. coli defense enzyme, Hmp, is synthesized in response to •NO. However, we found that E. coli detoxifies •NO at the same rate regardless of whether useable nitrogen was present. We confirmed that the nitrogen in •NO and its autoxidation products could not be used by E. coli under our experimental conditions, and discovered that •NO eliminated differences in carbon and oxygen consumption between nitrogen-replete and nitrogen-starved cultures. Interestingly, E. coli does not consume measurable extracellular nitrogen during •NO stress despite the need to translate defense enzymes. Further, we found that RelA, which responds to uncharged tRNA, was required to observe the robustness of •NO detoxification to nitrogen starvation. These data demonstrate that E. coli is well poised to detoxify •NO in the absence of useable nitrogen and suggest that the stringent response could be a useful target to potentiate the antibacterial activity of •NO.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
8
|
Zhu K, Li G, Wei R, Mao Y, Zhao Y, He A, Bai Z, Deng Y. Systematic analysis of the effects of different nitrogen source and ICDH knockout on glycolate synthesis in Escherichia coli. J Biol Eng 2019; 13:30. [PMID: 30988698 PMCID: PMC6449901 DOI: 10.1186/s13036-019-0159-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Glycolate is an important α-hydroxy carboxylic acid widely used in industrial and consumer applications. The production of glycolate from glucose in Escherichia coli is generally carried out by glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. Glycolate accumulation was significantly affected by nitrogen sources and isocitrate dehydrogenase (ICDH), which influenced carbon flux distribution between the tricarboxylic acid (TCA) cycle and the glyoxylate shunt, however, the mechanism was unclear. RESULTS Herein, we used RNA-Seq to explore the effects of nitrogen sources and ICDH knockout on glycolate production. The Mgly534 strain and the Mgly624 strain (with the ICDH deletion in Mgly534), displaying different phenotypes on organic nitrogen sources, were also adopted for the exploration. Though the growth of Mgly534 was improved on organic nitrogen sources, glycolate production decreased and acetate accumulated, while Mgly624 achieved a balance between cell growth and glycolate production, reaching 0.81 g glycolate/OD (2.6-fold higher than Mgly534). To further study Mgly624, the significant changed genes related to N-regulation, oxidative stress response and iron transport were analyzed. Glutamate and serine were found to increase the biomass and productivity respectively. Meanwhile, overexpressing the arginine transport gene argT accelerated the cell growth rate and increased the biomass. Further, the presence of Fe2+ also speeded up the cells growth and compensated for the lack of reducing equivalents. CONCLUSION Our studies identified that ICDH knockout strain was more suitable for glycolate production. RNA-Seq provided a better understanding of the ICDH knockout on cellular physiology and glycolate production.
Collapse
Affiliation(s)
- Kangjia Zhu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ren Wei
- Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103 Leipzig, Germany
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, 223300 China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, 223300 China
| |
Collapse
|
9
|
Maeda T, Horinouchi T, Sakata N, Sakai A, Furusawa C. High-throughput identification of the sensitivities of an Escherichia coli ΔrecA mutant strain to various chemical compounds. J Antibiot (Tokyo) 2019; 72:566-573. [DOI: 10.1038/s41429-019-0160-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
|
10
|
Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli. J Bacteriol 2019; 201:JB.00622-18. [PMID: 30420451 DOI: 10.1128/jb.00622-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 01/23/2023] Open
Abstract
To cope with fluctuations in their environment, bacteria have evolved multiple adaptive stress responses. One such response is the nitrogen regulation stress response, which allows bacteria, such as Escherichia coli, to cope with and overcome conditions of nitrogen limitation. This response is directed by the two-component system NtrBC, where NtrC acts as the major transcriptional regulator to activate the expression of genes to mount the response. Recently, my colleagues and I showed that NtrC directly regulates the expression of the relA gene, the major (p)ppGpp synthetase in E. coli, coupling the nitrogen regulation stress and stringent responses. As elevated levels of (p)ppGpp have been implicated in the formation of persister cells, here, I investigated whether nitrogen starvation promotes their formation and whether the NtrC-RelA regulatory cascade plays a role. The results reveal that nitrogen-starved E. coli synthesizes (p)ppGpp and forms a higher percentage of persister cells than nonstarved cells and that both NtrC and RelA are important for these processes. This study provides novel insights into how the formation of persisters can be promoted in response to a nutritional stress.IMPORTANCE Bacteria often reside in environments where nutrient availability is scarce; therefore, they have evolved adaptive responses to rapidly cope with conditions of feast and famine. Understanding the mechanisms that underpin the regulation of how bacteria cope with this stress is a fundamentally important question in the wider context of understanding the biology of the bacterial cell and bacterial pathogenesis. Two major adaptive mechanisms to cope with starvation are the nitrogen regulation (ntr) stress and stringent responses. Here, I describe how these bacterial stress responses are coordinated under conditions of nitrogen starvation to promote the formation of antibiotic-tolerant persister cells by elevating levels of the secondary messenger (p)ppGpp.
Collapse
|
11
|
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018; 9:3796. [PMID: 30228271 PMCID: PMC6143558 DOI: 10.1038/s41467-018-06219-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Biological regulatory network architectures are multi-scale in their function and can adaptively acquire new functions. Gene knockout (KO) experiments provide an established experimental approach not just for studying gene function, but also for unraveling regulatory networks in which a gene and its gene product are involved. Here we study the regulatory architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE) to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema describing the process of adaptation whereby perturbations in metabolite concentrations lead regulatory networks to produce suboptimal states, whose function is subsequently altered and re-optimized through acquisition of mutations during ALE. These results indicate that metabolite levels, through metabolite-transcription factor interactions, have a dominant role in determining the function of a multi-scale regulatory architecture that has been molded by evolution. The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function.
Collapse
|
12
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
13
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
14
|
Transcriptome Analysis of Escherichia coli during dGTP Starvation. J Bacteriol 2016; 198:1631-44. [PMID: 27002130 DOI: 10.1128/jb.00218-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Our laboratory recently discovered that Escherichia coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses of actively growing optA1 gpt cells subjected to hypoxanthine deprivation for increasing periods. The data show that upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to derepress the de novo purine biosynthesis genes, likely due to internal guanine accumulation. The impairment in fully inducing the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS response was observed, supporting the concept of replication stress as a final cause of death. No evidence was observed in the starved cells for the participation of other stress responses, including the rpoS-mediated global stress response, reinforcing the lack of feedback of replication stress to the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient was observed for expression of genes located near the replication origin relative to those located toward the replication terminus. IMPORTANCE Control of the supply of the building blocks (deoxynucleoside triphosphates [dNTPs]) for DNA replication is important for ensuring genome integrity and cell viability. When cells are starved specifically for one of the four dNTPs, dGTP, the process of DNA replication is disturbed in a manner that can lead to eventual death. In the present study, we investigated the transcriptional changes in the bacterium E. coli during dGTP starvation. The results show increasing DNA replication stress with an increased time of starvation, as evidenced by induction of the bacterial SOS system, as well as a notable lack of induction of other stress responses that could have saved the cells from cell death by slowing down cell growth.
Collapse
|
15
|
Lundgren BR, Connolly MP, Choudhary P, Brookins-Little TS, Chatterjee S, Raina R, Nomura CT. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000. PLoS One 2015; 10:e0144852. [PMID: 26659655 PMCID: PMC4676750 DOI: 10.1371/journal.pone.0144852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.
Collapse
Affiliation(s)
- Benjamin R. Lundgren
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Morgan P. Connolly
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Pratibha Choudhary
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Tiffany S. Brookins-Little
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Snigdha Chatterjee
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Center for Applied Microbiology, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
17
|
Bonocora RP, Smith C, Lapierre P, Wade JT. Genome-Scale Mapping of Escherichia coli σ54 Reveals Widespread, Conserved Intragenic Binding. PLoS Genet 2015; 11:e1005552. [PMID: 26425847 PMCID: PMC4591121 DOI: 10.1371/journal.pgen.1005552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial RNA polymerases must associate with a σ factor to bind promoter DNA and initiate transcription. There are two families of σ factor: the σ70 family and the σ54 family. Members of the σ54 family are distinct in their ability to bind promoter DNA sequences, in the context of RNA polymerase holoenzyme, in a transcriptionally inactive state. Here, we map the genome-wide association of Escherichia coli σ54, the archetypal member of the σ54 family. Thus, we vastly expand the list of known σ54 binding sites to 135. Moreover, we estimate that there are more than 250 σ54 sites in total. Strikingly, the majority of σ54 binding sites are located inside genes. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this assertion, we identify three conserved, intragenic σ54 promoters that drive transcription of mRNAs with unusually long 5ʹ UTRs. Bacterial RNA polymerases must associate with a σ factor to bind to promoter DNA sequences upstream of genes and initiate transcription. There are two families of σ factor: σ70 and σ54. Members of the σ54 family are distinct from members of the σ70 family in their ability to bind promoter DNA sequences, in association with RNA polymerase, in a transcriptionally inactive state. We have determined positions in the Escherichia coli genome that are bound by σ54, the archetypal member of the σ54 family. Surprisingly, we identified 135 binding sites for σ54, a huge increase over the number of previously described sites. Our data suggest that there are more than 250 σ54 sites in total. Strikingly, most σ54 binding sites are located inside genes, whereas only one intragenic σ54 binding site has previously been described. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved in other bacterial species. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this notion, we identify three σ54 promoters in E. coli that are located inside genes but drive transcription of unusual mRNAs for the neighboring genes.
Collapse
Affiliation(s)
- Richard P. Bonocora
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
19
|
Ma Q, Yin Y, Schell MA, Zhang H, Li G, Xu Y. Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions. Nucleic Acids Res 2013; 41:5594-603. [PMID: 23599001 PMCID: PMC3675479 DOI: 10.1093/nar/gkt261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The circular chromosome of Escherichia coli has been suggested to fold into a collection of sequentially consecutive domains, genes in each of which tend to be co-expressed. It has also been suggested that such domains, forming a partition of the genome, are dynamic with respect to the physiological conditions. However, little is known about which DNA segments of the E. coli genome form these domains and what determines the boundaries of these domain segments. We present a computational model here to partition the circular genome into consecutive segments, theoretically suggestive of the physically folded supercoiled domains, along with a method for predicting such domains under specified conditions. Our model is based on a hypothesis that the genome of E. coli is partitioned into a set of folding domains so that the total number of unfoldings of these domains in the folded chromosome is minimized, where a domain is unfolded when a biological pathway, consisting of genes encoded in this DNA segment, is being activated transcriptionally. Based on this hypothesis, we have predicted seven distinct sets of such domains along the E. coli genome for seven physiological conditions, namely exponential growth, stationary growth, anaerobiosis, heat shock, oxidative stress, nitrogen limitation and SOS responses. These predicted folding domains are highly stable statistically and are generally consistent with the experimental data of DNA binding sites of the nucleoid-associated proteins that assist the folding of these domains, as well as genome-scale protein occupancy profiles, hence supporting our proposed model. Our study established for the first time a strong link between a folded E. coli chromosomal structure and the encoded biological pathways and their activation frequencies.
Collapse
Affiliation(s)
- Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
20
|
Schneider BL, Hernandez VJ, Reitzer L. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol Microbiol 2013; 88:537-50. [PMID: 23531166 DOI: 10.1111/mmi.12207] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2013] [Indexed: 12/12/2022]
Abstract
Genes whose products degrade arginine and ornithine, precursors of putrescine synthesis, are activated by either regulators of the nitrogen-regulated (Ntr) response or σ(S) -RNA polymerase. To determine if dual control regulates a complete putrescine catabolic pathway, we examined expression of patA and patD, which specify the first two enzymes of one putrescine catabolic pathway. Assays of PatA (putrescine transaminase) activity and β-galactosidase from cells with patA-lacZ transcriptional and translational fusions indicate dual control of patA transcription and putrescine-stimulated patA translation. Similar assays for PatD indicate that patD transcription required σ(S) -RNA polymerase, and Nac, an Ntr regulator, enhanced the σ(S) -dependent transcription. Since Nac activation via σ(S) -RNA polymerase is without precedent, transcription with purified components was examined and the results confirmed this conclusion. This result indicates that the Ntr regulon can intrude into the σ(S) regulon. Strains lacking both polyamine catabolic pathways have defective responses to oxidative stress, high temperature and a sublethal concentration of an antibiotic. These defects and the σ(S) -dependent expression indicate that polyamine catabolism is a core metabolic response to stress.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | |
Collapse
|
21
|
Abstract
The ability to degrade the amino acid histidine to ammonia, glutamate, and a one-carbon compound (formate or formamide) is a property that is widely distributed among bacteria. The four or five enzymatic steps of the pathway are highly conserved, and the chemistry of the reactions displays several unusual features, including the rearrangement of a portion of the histidase polypeptide chain to yield an unusual imidazole structure at the active site and the use of a tightly bound NAD molecule as an electrophile rather than a redox-active element in urocanase. Given the importance of this amino acid, it is not surprising that the degradation of histidine is tightly regulated. The study of that regulation led to three central paradigms in bacterial regulation: catabolite repression by glucose and other carbon sources, nitrogen regulation and two-component regulators in general, and autoregulation of bacterial regulators. This review focuses on three groups of organisms for which studies are most complete: the enteric bacteria, for which the regulation is best understood; the pseudomonads, for which the chemistry is best characterized; and Bacillus subtilis, for which the regulatory mechanisms are very different from those of the Gram-negative bacteria. The Hut pathway is fundamentally a catabolic pathway that allows cells to use histidine as a source of carbon, energy, and nitrogen, but other roles for the pathway are also considered briefly here.
Collapse
|
22
|
Genetic analysis of the nitrogen assimilation control protein from Klebsiella pneumoniae. J Bacteriol 2010; 192:4834-46. [PMID: 20693327 DOI: 10.1128/jb.01114-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.
Collapse
|
23
|
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol 2010; 192:4801-11. [PMID: 20675498 DOI: 10.1128/jb.00266-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.
Collapse
|
24
|
AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD, Woodward MJ, Anjum MF. Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 2009; 284:29480-8. [PMID: 19690172 PMCID: PMC2785581 DOI: 10.1074/jbc.m109.005868] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/21/2009] [Indexed: 01/10/2023] Open
Abstract
Salmonella are closely related to commensal Escherichia coli but have gained virulence factors enabling them to behave as enteric pathogens. Less well studied are the similarities and differences that exist between the metabolic properties of these organisms that may contribute toward niche adaptation of Salmonella pathogens. To address this, we have constructed a genome scale Salmonella metabolic model (iMA945). The model comprises 945 open reading frames or genes, 1964 reactions, and 1036 metabolites. There was significant overlap with genes present in E. coli MG1655 model iAF1260. In silico growth predictions were simulated using the model on different carbon, nitrogen, phosphorous, and sulfur sources. These were compared with substrate utilization data gathered from high throughput phenotyping microarrays revealing good agreement. Of the compounds tested, the majority were utilizable by both Salmonella and E. coli. Nevertheless a number of differences were identified both between Salmonella and E. coli and also within the Salmonella strains included. These differences provide valuable insight into differences between a commensal and a closely related pathogen and within different pathogenic strains opening new avenues for future explorations.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Food and Environmental Safety, Veterinary Laboratories Agency (Weybridge), Addlestone, Surrey KT153NB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mutations at pipX suppress lethality of PII-deficient mutants of Synechococcus elongatus PCC 7942. J Bacteriol 2009; 191:4863-9. [PMID: 19482921 DOI: 10.1128/jb.00557-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) proteins are found in all three domains of life as key integrators of signals reflecting the balance of nitrogen and carbon. Genetic inactivation of P(II) proteins is typically associated with severe growth defects or death. However, the molecular basis of these defects depends on the specific functions of the proteins with which P(II) proteins interact to regulate nitrogen metabolism in different organisms. In Synechococcus elongatus PCC 7942, where P(II) forms complexes with the NtcA coactivator PipX, attempts to engineer P(II)-deficient strains failed in a wild-type background but were successful in pipX null mutants. Consistent with the idea that P(II) is essential to counteract the activity of PipX, four different spontaneous mutations in the pipX gene were found in cultures in which glnB had been genetically inactivated.
Collapse
|
26
|
Gusso CL, de Souza EM, Rigo LU, de Oliveira Pedrosa F, Yates M, de M Rego FG, Klassen G. Effect of anntrCmutation on amino acid or urea utilization and on nitrogenase switch-off inHerbaspirillum seropedicae. Can J Microbiol 2008; 54:235-9. [DOI: 10.1139/w07-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with l-alanine, l-serine, l-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol·L–1ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol·L–1urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.
Collapse
Affiliation(s)
- Claudio L. Gusso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Liu Un Rigo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - M.G. Yates
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fabiane G. de M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Giseli Klassen
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| |
Collapse
|
27
|
Abstract
The central nitrogen metabolic circuit in enteric bacteria consists of three enzymes: glutamine synthetase, glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). With the carbon skeleton provided by 2-oxoglutarate, ammonia/ammonium (NH(4)(+)) is assimilated into two central nitrogen intermediates, glutamate and glutamine. Although both serve as nitrogen donors for all biosynthetic needs, glutamate and glutamine play different roles. Internal glutamine serves as a sensor of external nitrogen availability, and its pool concentration decreases upon nitrogen limitation. A high glutamate pool concentration is required to maintain the internal K(+) pool. The configuration of high glutamate and low glutamine pools was disrupted in GOGAT(-) mutants under low NH(4)(+) conditions: the glutamate pool was low, the difference between glutamate and glutamine was diminished, and growth was defective. When a GOGAT(-) mutant was cultured in an NH(4)(+)-limited chemostat, two sequential spontaneous mutations occurred. Each resulted in a suppressor mutant that outgrew its predecessor in the chemostat. The first suppressor overexpressed GDH, and the second also had a partially impaired glutamine synthetase. The result was a triple mutant in which NH(4)(+) was assimilated by two enzymes instead of the normal three and yet glutamate and glutamine pools and growth were essentially normal. The results indicate preference for the usual ratio of glutamate and glutamine and the resilient and compensatory nature of the circuit on pool control. Analysis of other suppressor mutants selected on solid medium suggests that increased GDH expression is the key for rescue of the growth defect of GOGAT(-) mutants under low NH(4)(+) conditions.
Collapse
Affiliation(s)
- Dalai Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| |
Collapse
|
28
|
Mao XJ, Huo YX, Buck M, Kolb A, Wang YP. Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucleic Acids Res 2007; 35:1432-40. [PMID: 17284458 PMCID: PMC1865078 DOI: 10.1093/nar/gkl1142] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, utilization of carbon sources is regulated by the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which modulates the intracellular levels of cAMP. The cAMP receptor protein (CRP) controls the transcription of many catabolic genes. The availability of nitrogen is sensed by the PII protein at the level of intracellular glutamine. Glutamine is transported mainly by GlnHPQ, and synthesized by glutamine synthetase (GS) encoded by glnA. Previous studies suggest that CRP affects nitrogen assimilation. Here we showed that at least two mechanisms are involved. First, CRP activates glnHp1 via synergistic binding with sigma 70 RNA polymerase (Eσ70) and represses glnHp2. As a consequence, in the presence of glutamine, the overall enhancement of glnHPQ expression alters GlnB signalling and de-activates glnAp2. Second, in vitro studies show that CRP can be recruited by sigma 54 holoenzyme (Eσ54) to a site centred at −51.5 upstream of glnAp2. CRP-induced DNA-bending prevents the nitrogen regulation protein C (NtrC) activator from approaching the activator-accessible face of the promoter-bound Eσ54 closed complex, and inhibits glnAp2. Therefore, as the major transcriptional effector of the ‘glucose effect’, CRP affects both the signal transduction pathway and the overall geometry of the transcriptional machinery of components of the nitrogen regulon.
Collapse
Affiliation(s)
- Xian-Jun Mao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Department of Biological Science, Imperial College of Science, Technology and Medicine, London SW72AZ, UK and Unité des Régulations Transcriptionnelles, URA-CNRS 2172, Institut Pasteur, 75724 Paris, France
| | - Yi-Xin Huo
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Department of Biological Science, Imperial College of Science, Technology and Medicine, London SW72AZ, UK and Unité des Régulations Transcriptionnelles, URA-CNRS 2172, Institut Pasteur, 75724 Paris, France
| | - Martin Buck
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Department of Biological Science, Imperial College of Science, Technology and Medicine, London SW72AZ, UK and Unité des Régulations Transcriptionnelles, URA-CNRS 2172, Institut Pasteur, 75724 Paris, France
| | - Annie Kolb
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Department of Biological Science, Imperial College of Science, Technology and Medicine, London SW72AZ, UK and Unité des Régulations Transcriptionnelles, URA-CNRS 2172, Institut Pasteur, 75724 Paris, France
| | - Yi-Ping Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Department of Biological Science, Imperial College of Science, Technology and Medicine, London SW72AZ, UK and Unité des Régulations Transcriptionnelles, URA-CNRS 2172, Institut Pasteur, 75724 Paris, France
- *To whom correspondence should be addressed. +86 10 6275 8490+86 10 6275 6325
| |
Collapse
|
29
|
Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol 2007; 7:2. [PMID: 17233899 PMCID: PMC1784095 DOI: 10.1186/1471-2180-7-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/18/2007] [Indexed: 11/10/2022] Open
Abstract
Background The glutamate synthase operon (gltBDF) contributes to one of the two main pathways of ammonia assimilation in Escherichia coli. Of the seven most-global regulators, together affecting expression of about half of all E. coli genes, two were previously shown to exert direct, positive control on gltBDF transcription: Lrp and IHF. The involvement of Lrp is unusual in two respects: first, it is insensitive to the usual coregulator leucine, and second, Lrp binds more than 150 bp upstream of the transcription starting point. There was indirect evidence for involvement of a third global regulator, Crp. Given the physiological importance of gltBDF, and the potential opportunity to learn about integration of global regulatory signals, a combination of in vivo and in vitro approaches was used to investigate the involvement of additional regulatory proteins, and to determine their relative binding positions and potential interactions with one another and with RNA polymerase (RNAP). Results Crp and a more local regulator, ArgR, directly control gltBDF transcription, both acting negatively. Crp-cAMP binds a sequence centered at -65.5 relative to the transcript start. Mutation of conserved nucleotides in the Crp binding site abolishes the Crp-dependent repression. ArgR also binds to the gltBDF promoter region, upstream of the Lrp binding sites, and decreases transcription. RNAP only yields a defined DNAse I footprint under two tested conditions: in the presence of both Lrp and IHF, or in the presence of Crp-cAMP. The DNAse I footprint of RNAP in the presence of Lrp and IHF is altered by ArgR. Conclusion The involvement of nearly half of E. coli's most-global regulatory proteins in the control of gltBDF transcription is striking, but seems consistent with the central metabolic role of this operon. Determining the mechanisms of activation and repression for gltBDF was beyond the scope of this study. However the results are consistent with a model in which IHF bends the DNA to allow stabilizing contacts between Lrp and RNAP, ArgR interferes with such contacts, and Crp introduces an interfering bend in the DNA and/or stabilizes RNAP in a poised but inactive state.
Collapse
|
30
|
Zhang Y, Pohlmann EL, Conrad MC, Roberts GP. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Mol Microbiol 2006; 61:497-510. [PMID: 16762025 DOI: 10.1111/j.1365-2958.2006.05251.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The P(II) family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking P(II) proteins. These suppressors map to nifR3, ntrB, ntrC, amtB(1) and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking P(II) proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking P(II) and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology, Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
31
|
Mesa S, Ucurum Z, Hennecke H, Fischer HM. Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2. J Bacteriol 2005; 187:3329-38. [PMID: 15866917 PMCID: PMC1112000 DOI: 10.1128/jb.187.10.3329-3338.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bradyrhizobium japonicum, the N2-fixing root nodule endosymbiont of soybean, a group of genes required for microaerobic, anaerobic, or symbiotic growth is controlled by FixK2, a key regulator that is part of the FixLJ-FixK2 cascade. FixK2 belongs to the family of cyclic AMP receptor protein/fumarate and nitrate reductase (CRP/FNR) transcription factors that recognize a palindromic DNA motif (CRP/FNR box) associated with the regulated promoters. Here, we report on a biochemical analysis of FixK2 and its transcription activation activity in vitro. FixK2 was expressed in Escherichia coli and purified as a soluble N-terminally histidine-tagged protein. Gel filtration experiments revealed that increasing the protein concentration shifts the monomer-dimer equilibrium toward the dimer. Purified FixK2 productively interacted with the B. japonicum sigma80-RNA polymerase holoenzyme, but not with E. coli sigma70-RNA polymerase holoenzyme, to activate transcription from the B. japonicum fixNOQP, fixGHIS, and hemN2 promoters in vitro. Furthermore, FixK2 activated transcription from the E. coli FF(-41.5) model promoter, again only in concert with B. japonicum RNA polymerase. All of these promoters are so-called class II CRP/FNR-type promoters. We showed by specific mutagenesis that the FixK2 box at nucleotide position -40.5 in the hemN2 promoter, but not that at -78.5, is crucial for activation both in vivo and in vitro, which argues against recognition of a potential class III promoter. Given the lack of any evidence for the presence of a cofactor in purified FixK2, we surmise that FixK2 alone is sufficient to activate in vitro transcription to at least a basal level. This contrasts with all well-studied CRP/FNR-type proteins, which do require coregulators.
Collapse
Affiliation(s)
- Socorro Mesa
- Institute of Microbiology, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
32
|
Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S. Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 2005; 187:1074-90. [PMID: 15659685 PMCID: PMC545709 DOI: 10.1128/jb.187.3.1074-1090.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined global transcriptional responses of Escherichia coli K-12 to sulfur (S)- or nitrogen (N)-limited growth in adapted batch cultures and cultures subjected to nutrient shifts. Using two limitations helped to distinguish between nutrient-specific changes in mRNA levels and common changes related to the growth rate. Both homeostatic and slow growth responses were amplified upon shifts. This made detection of these responses more reliable and increased the number of genes that were differentially expressed. We analyzed microarray data in several ways: by determining expression changes after use of a statistical normalization algorithm, by hierarchical and k-means clustering, and by visual inspection of aligned genome images. Using these tools, we confirmed known homeostatic responses to global S limitation, which are controlled by the activators CysB and Cbl, and found that S limitation propagated into methionine metabolism, synthesis of FeS clusters, and oxidative stress. In addition, we identified several open reading frames likely to respond specifically to S availability. As predicted from the fact that the ddp operon is activated by NtrC, synthesis of cross-links between diaminopimelate residues in the murein layer was increased under N-limiting conditions, as was the proportion of tripeptides. Both of these effects may allow increased scavenging of N from the dipeptide D-alanine-D-alanine, the substrate of the Ddp system.
Collapse
Affiliation(s)
- Prasad Gyaneshwar
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 2004; 280:4602-8. [PMID: 15590624 DOI: 10.1074/jbc.m411114200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel bacterial putrescine utilization pathway was discovered. Seven genes, the functions of whose products were not known, are involved in this novel pathway. Five of them encode enzymes that catabolize putrescine; one encodes a putrescine importer, and the other encodes a transcriptional regulator. This novel pathway involves six sequential steps as follows: 1) import of putrescine; 2) ATP-dependent gamma-glutamylation of putrescine; 3) oxidization of gamma-glutamylputrescine; 4) dehydrogenation of gamma-glutamyl-gamma-aminobutyraldehyde; 5) hydrolysis of the gamma-glutamyl linkage of gamma-glutamyl-gamma-aminobutyrate; and 6) transamination of gamma-aminobutyrate to form the final product of this pathway, succinate semialdehyde, which is the precursor of succinate.
Collapse
Affiliation(s)
- Shin Kurihara
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
35
|
Hua Q, Yang C, Oshima T, Mori H, Shimizu K. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl Environ Microbiol 2004; 70:2354-66. [PMID: 15066832 PMCID: PMC383082 DOI: 10.1128/aem.70.4.2354-2366.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies of steady-state metabolic fluxes in Escherichia coli grown in nutrient-limited chemostat cultures suggest remarkable flux alterations in response to changes of growth-limiting nutrient in the medium (Hua et al., J. Bacteriol. 185:7053-7067, 2003). To elucidate the physiological adaptation of cells to the nutrient condition through the flux change and understand the molecular mechanisms underlying the change in the flux, information on gene expression is of great importance. DNA microarray analysis was performed to investigate the global transcriptional responses of steady-state cells grown in chemostat cultures with limited glucose or ammonia while other environmental conditions and the growth rate were kept constant. In slow-growing cells (specific growth rate of 0.10 h(-1)), 9.8% of a total of 4,071 genes investigated, especially those involved in amino acid metabolism, central carbon and energy metabolism, transport system and cell envelope, were observed to be differentially expressed between the two nutrient-limited cultures. One important characteristic of E. coli grown under nutrient limitation was its capacity to scavenge carbon or nitrogen from the medium through elevating the expression of the corresponding transport and assimilation genes. The number of differentially expressed genes in faster-growing cells (specific growth rate of 0.55 h(-1)), however, decreased to below half of that in slow-growing cells, which could be explained by diverse transcriptional responses to the growth rate under different nutrient limitations. Independent of the growth rate, 92 genes were identified as being differentially expressed. Genes tightly related to the culture conditions were highlighted, some of which may be used to characterize nutrient-limited growth.
Collapse
Affiliation(s)
- Qiang Hua
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | | | | | | | | |
Collapse
|
36
|
Lewis JA, Horswill AR, Schwem BE, Escalante-Semerena JC. The Tricarballylate utilization (tcuRABC) genes of Salmonella enterica serovar Typhimurium LT2. J Bacteriol 2004; 186:1629-37. [PMID: 14996793 PMCID: PMC355976 DOI: 10.1128/jb.186.6.1629-1637.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes of Salmonella enterica serovar Typhimurium LT2 encoding functions needed for the utilization of tricarballylate as a carbon and energy source were identified and their locations in the chromosome were established. Three of the tricarballylate utilization (tcu) genes, tcuABC, are organized as an operon; a fourth gene, tcuR, is located immediately 5' to the tcuABC operon. The tcuABC operon and tcuR gene share the same direction of transcription but are independently transcribed. The tcuRABC genes are missing in the Escherichia coli K-12 chromosome. The tcuR gene is proposed to encode a regulatory protein needed for the expression of tcuABC. The tcuC gene is proposed to encode an integral membrane protein whose role is to transport tricarballylate across the cell membrane. tcuC function was sufficient to allow E. coli K-12 to grow on citrate (a tricarballylate analog) but not to allow growth of this bacterium on tricarballylate. E. coli K-12 carrying a plasmid with wild-type alleles of tcuABC grew on tricarballylate, suggesting that the functions of the TcuABC proteins were the only ones unique to S. enterica needed to catabolize tricarballylate. Analyses of the predicted amino acid sequences of the TcuAB proteins suggest that TcuA is a flavoprotein, and TcuB is likely anchored to the cell membrane and probably contains one or more Fe-S centers. The TcuB protein is proposed to work in concert with TcuA to oxidize tricarballylate to cis-aconitate, which is further catabolized via the Krebs cycle. The glyoxylate shunt is not required for growth of S. enterica on tricarballylate. A model for tricarballylate catabolism in S. enterica is proposed.
Collapse
Affiliation(s)
- Jeffrey A Lewis
- Department of Bacteriology, University of Wisconsin--Madison, 53726-4087, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Nitrogen limitation in Escherichia coli controls the expression of about 100 genes of the nitrogen regulated (Ntr) response, including the ammonia-assimilating glutamine synthetase. Low intracellular glutamine controls the Ntr response through several regulators, whose activities are modulated by a variety of metabolites. Ntr proteins assimilate ammonia, scavenge nitrogen-containing compounds, and appear to integrate ammonia assimilation with other aspects of metabolism, such as polyamine metabolism and glutamate synthesis. The leucine-responsive regulatory protein (Lrp) controls the synthesis of glutamate synthase, which controls the Ntr response, presumably through its effect on intracellular glutamine. Some Ntr proteins inhibit the expression of some Lrp-activated genes. Guanosine tetraphosphate appears to control Lrp synthesis. In summary, a network of interacting global regulators that senses different aspects of metabolism integrates nitrogen assimilation with other metabolic processes.
Collapse
Affiliation(s)
- Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-0688, USA.
| |
Collapse
|
38
|
Zhou L, Lei XH, Bochner BR, Wanner BL. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185:4956-72. [PMID: 12897016 PMCID: PMC166450 DOI: 10.1128/jb.185.16.4956-4972.2003] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Escherichia coli AmtB is a member of the MEP/Amt family of ammonia transporters found in archaea, eubacteria, fungi, plants and animals. In prokaryotes, AmtB homologues are co-transcribed with a PII paralogue, GlnK, in response to nitrogen limitation. Here, we show that AmtB antagonizes PII signalling through NRII and that co-expression of GlnK with AmtB overcomes this antagonism. In cells lacking GlnK, expression of AmtB during nitrogen starvation prevented deinduction of Ntr gene expression when a nitrogen source became available. The absence of AmtB in cells lacking GlnK allowed rapid reduction of Ntr gene expression during this transition, indicating that one function of GlnK is to prevent AmtB-mediated antagonism of PII signalling after nitrogen starvation. Other roles of GlnK in controlling Ntr gene expression and maintaining viability during nitrogen starvation were unaffected by AmtB. Expression of AmtB from a constitutive promoter under nitrogen-rich conditions induced full expression of glnALG and elevated expression of glnK in wild-type and glnK cells; thus, the ability of AmtB to raise Ntr gene expression did not require a factor found only in nitrogen-starved cells. Experiments with intact cells showed that AmtB acted downstream of a uridylyl transferase uridylyl-removing enzyme (UTase/UR) and upstream of NRII, suggesting that the target was PII. AmtB also slowed the deuridylylation of PII approximately UMP upon ammonia addition, showing that multiple PII interactions were affected by AmtB. Our data are consistent with a hypothesis that AmtB interacts with PII and GlnK, and that co-transcription of glnK and amtB prevents titration of PII when AmtB is highly expressed.
Collapse
Affiliation(s)
- Timothy A Blauwkamp
- Department of Biological Chemistry, University of Michigan Medical School, 1301 E Catherine, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
40
|
Muse WB, Rosario CJ, Bender RA. Nitrogen regulation of the codBA (cytosine deaminase) operon from Escherichia coli by the nitrogen assimilation control protein, NAC. J Bacteriol 2003; 185:2920-6. [PMID: 12700271 PMCID: PMC154391 DOI: 10.1128/jb.185.9.2920-2926.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the cytosine deaminase (codBA) operon of Escherichia coli is regulated by nitrogen, with about three times more codBA expression in cells grown in nitrogen-limiting medium than in nitrogen-excess medium. Beta-galactosidase expression from codBp-lacZ operon fusions showed that the nitrogen assimilation control protein NAC was necessary for this regulation. In vitro transcription from the codBA promoter with purified RNA polymerase was stimulated by the addition of purified NAC, confirming that no other factors are required. Gel mobility shifts and DNase I footprints showed that NAC binds to a site centered at position -59 relative to the start site of transcription and that mutants that cannot bind NAC there cannot activate transcription. When a longer promoter region (positions -120 to +67) was used, a double footprint was seen with a second 26-bp footprint separated from the first by a hypersensitive site. When a shorter fragment was used (positions -83 to +67), only the primary footprint was seen. Nevertheless, both the shorter and longer fragments showed NAC-mediated regulation in vivo. Cytosine deaminase expression in Klebsiella pneumoniae was also regulated by nitrogen in a NAC-dependent manner. K. pneumoniae differs from E. coli in having two cytosine deaminase genes, an intervening open reading frame between the codB and codA orthologs, and a different response to hypoxanthine which increased cod expression in K. pneumoniae but decreased it in E. coli.
Collapse
Affiliation(s)
- Wilson B Muse
- Department of Molecular Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | |
Collapse
|
41
|
Janes BK, Rosario CJ, Bender RA. Isolation of a negative control mutant of the nitrogen assimilation control protein, NAC, in Klebsiella aerogenes. J Bacteriol 2003; 185:688-92. [PMID: 12511519 PMCID: PMC145345 DOI: 10.1128/jb.185.2.688-692.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A negative control mutant of the nitrogen assimilation control protein, NAC, has been isolated. Mutants with the leucine at position 111 changed to a nonhydrophobic residue activate transcription from hut and ure promoters, but fail to repress gdhA expression. This failure does not result from failure to bind to either of the two sites required for gdhA repression, but the binding at those sites is altered in the mutant. It appears that the NAC negative control mutants fail to form the complex structures (probably tetramers) formed by wild-type NAC at the gdhA promoter.
Collapse
Affiliation(s)
- Brian K Janes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
42
|
Rintoul MR, Cusa E, Baldomà L, Badia J, Reitzer L, Aguilar J. Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllS. J Mol Biol 2002; 324:599-610. [PMID: 12460564 DOI: 10.1016/s0022-2836(02)01134-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The allantoin regulon of Escherichia coli, formed by three operons expressed from promoters allA(P), gcl(P) and allD(P), is involved in the anaerobic utilization of allantoin as nitrogen source. The expression of these operons is under the control of the repressor AllR. The hyperinduction of one of these promoters (allD(P)) by allantoin in an AllR defective mutant suggested the action of another regulator, presumably of activator type. In this work we have identified ybbS (proposed gene name allS), divergently transcribed from allA, as the gene encoding this activator. Analysis of the expression of the three structural operons in DeltaallS mutant showed that the expression from allD(P) was abolished, suggesting that AllS is essential for the expression of the corresponding operon. In a wild-type strain expression of allS takes place mainly anaerobically and is hyperinduced when the nitrogen source limits growth. However, expression of allS is independent of regulators of the Ntr response, NtrC or Nac. Band shift experiments showed that AllR binds to DNA containing the allS-allA intergenic region and the gcl(P) promoter and its binding is abolished by glyoxylate. Both DNA fragments contain a highly conserved inverted repeat, which after site-directed mutagenesis, has been proven to be the AllR-binding site. This site displays similarity with the IclR family recognized consensus. Interaction of AllR with the single operator present in the allS-allA intergenic region prevented binding of RNA polymerase to either of the two divergent promoters. The regulator AllS interacts only with allD(P) even in the absence of allantoin. Analysis of this promoter allowed us to identify an inverted repeat as a motif for AllS binding. We propose a model for the coordinate control of the allantoin regulon by AllR and AllS.
Collapse
Affiliation(s)
- Maria R Rintoul
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Goss TJ, Janes BK, Bender RA. Repression of glutamate dehydrogenase formation in Klebsiella aerogenes requires two binding sites for the nitrogen assimilation control protein, NAC. J Bacteriol 2002; 184:6966-75. [PMID: 12446647 PMCID: PMC135459 DOI: 10.1128/jb.184.24.6966-6975.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Klebsiella aerogenes, the gdhA gene codes for glutamate dehydrogenase, one of the enzymes responsible for assimilating ammonia into glutamate. Expression of a gdhAp-lacZ transcriptional fusion was strongly repressed by the nitrogen assimilation control protein, NAC. This strong repression (>50-fold under conditions of severe nitrogen limitation) required the presence of two separate NAC binding sites centered at -89 and +57 relative to the start of gdhA transcription. Mutants lacking either or both of these sites lost the strong repression. The distance between the two sites was less important than the face of the helix on which they lay. Insertion or deletion of 10 bp between the sites had little effect on the strong repression, but insertion of 5 bp or deletion of either 5 or 15 bp decreased the repression significantly. We propose that the strong repression of gdhAp-lacZ expression requires an interaction between the NAC molecules bound at the two sites. A weaker repression of gdhAp-lacZ expression (about threefold) required only the NAC site centered at -89. This weaker repression appears to result from NAC's ability to prevent the action of a positive effector the target of which overlaps the NAC binding site centered at -89. Point mutations and deletions of this region result in the same threefold reduction in gdhAp-lacZ expression as the presence of NAC at this site.
Collapse
Affiliation(s)
- Thomas J Goss
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
44
|
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J Bacteriol 2002; 184:6976-86. [PMID: 12446648 PMCID: PMC135471 DOI: 10.1128/jb.184.24.6976-6986.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation induces the nitrogen-regulated (Ntr) response, which includes proteins that assimilate ammonia and scavenge nitrogen. Nitrogen limitation also induces catabolic pathways that degrade four metabolically related compounds: putrescine, arginine, ornithine, and gamma-aminobutyrate (GABA). We analyzed the structure, function, and regulation of the gab operon, whose products degrade GABA, a proposed intermediate in putrescine catabolism. We showed that the gabDTPC gene cluster constitutes an operon based partially on coregulation of GabT and GabD activities and the polarity of an insertion in gabT on gabC. A DeltagabDT mutant grew normally on all of the nitrogen sources tested except GABA. The unexpected growth with putrescine resulted from specific induction of gab-independent enzymes. Nac was required for gab transcription in vivo and in vitro. Ntr induction did not require GABA, but various nitrogen sources did not induce enzyme activity equally. A gabC (formerly ygaE) mutant grew faster with GABA and had elevated levels of gab operon products, which suggests that GabC is a repressor. GabC is proposed to reduce nitrogen source-specific modulation of expression. Unlike a wild-type strain, a gabC mutant utilized GABA as a carbon source and such growth required sigma(S). Previous studies showing sigma(S)-dependent gab expression in stationary phase involved gabC mutants, which suggests that such expression does not occur in wild-type strains. The seemingly narrow catabolic function of the gab operon is contrasted with the nonspecific (nitrogen source-independent) induction. We propose that the gab operon and the Ntr response itself contribute to putrescine and polyamine homeostasis.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Escherichia coli and related bacteria contain two paralogous PII-like proteins involved in nitrogen regulation, the glnB product, PII, and the glnK product, GlnK. Previous studies have shown that cells lacking both PII and GlnK have a severe growth defect on minimal media, resulting from elevated expression of the Ntr regulon. Here, we show that this growth defect is caused by activity of the nac product, Nac, a LysR-type transcription factor that is part of the Ntr regulon. Cells with elevated Ntr expression that also contain a null mutation in nac displayed growth rates on minimal medium similar to the wild type. When expressed from high-copy plasmids, Nac imparts a growth defect to wild-type cells in an expression level-dependent manner. Neither expression of Nac nor lack thereof significantly affected Ntr gene expression, suggesting that the activity of Nac at one or more promoters outside the Ntr regulon was responsible for its effects. The growth defect of cells lacking both PII and GlnK was also eliminated upon supplementation of minimal medium with serine or glycine for solid medium or with serine or glycine and glutamine for liquid medium. These observations suggest that high Nac expression results in a reduction in serine biosynthesis. beta-Galactosidase activity expressed from a Mu d1 insertion in serA was reduced approximately 10-fold in cells with high Nac expression. We hypothesize that one role of Nac is to limit serine biosynthesis as part of a cellular mechanism to reduce metabolism in a co-ordinated manner when cells become starved for nitrogen.
Collapse
Affiliation(s)
- Timothy A Blauwkamp
- Department of Biological Chemistry, University of Michigan Medical School, 1301 E. Catherine, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
46
|
Poggio S, Domeinzain C, Osorio A, Camarena L. The nitrogen assimilation control (Nac) protein represses asnC and asnA transcription in Escherichia coli. FEMS Microbiol Lett 2002; 206:151-6. [PMID: 11814655 DOI: 10.1111/j.1574-6968.2002.tb11001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this work, we show that the expression of the asnA and asnC genes is regulated by the availability of ammonium in the growth medium. Our results suggest that, under nitrogen-limiting growth conditions, the nitrogen assimilation control (Nac) protein is involved in the repression of the asnC gene, whose product is required to activate the transcription of asnA. We also show that asparagine negatively affects the expression of asnA, independently of the presence of Nac. These results allow us to conclude that asnA transcription is regulated by two different mechanisms that respond to different effectors: nitrogen and asparagine availability.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, 04510, México, D.F., Mexico
| | | | | | | |
Collapse
|
47
|
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 2001; 183:6159-68. [PMID: 11591658 PMCID: PMC100091 DOI: 10.1128/jb.183.21.6159-6168.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GlnB (P(II)) protein, the product of glnB, has been characterized previously in the photosynthetic bacterium Rhodospirillum rubrum. Here we describe identification of two other P(II) homologs in this organism, GlnK and GlnJ. Although the sequences of these three homologs are very similar, the molecules have both distinct and overlapping functions in the cell. While GlnB is required for activation of NifA activity in R. rubrum, GlnK and GlnJ do not appear to be involved in this process. In contrast, either GlnB or GlnJ can serve as a critical element in regulation of the reversible ADP ribosylation of dinitrogenase reductase catalyzed by the dinitrogenase reductase ADP-ribosyl transferase (DRAT)/dinitrogenase reductase-activating glycohydrolase (DRAG) regulatory system. Similarly, either GlnB or GlnJ is necessary for normal growth on a variety of minimal and rich media, and any of the proteins is sufficient for normal posttranslational regulation of glutamine synthetase. Surprisingly, in their regulation of the DRAT/DRAG system, GlnB and GlnJ appeared to be responsive not only to changes in nitrogen status but also to changes in energy status, revealing a new role for this family of regulators in central metabolic regulation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
48
|
Goss TJ, Perez-Matos A, Bender RA. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J Bacteriol 2001; 183:6607-19. [PMID: 11673431 PMCID: PMC95492 DOI: 10.1128/jb.183.22.6607-6619.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Escherichia coli and Klebsiella aerogenes that are deficient in glutamate synthase (glutamate-oxoglutarate amidotransferase [GOGAT]) activity have difficulty growing with nitrogen sources other than ammonia. Two models have been proposed to account for this inability to grow. One model postulated an imbalance between glutamine synthesis and glutamine degradation that led to a repression of the Ntr system and the subsequent failure to activate transcription of genes required for the use of alternative nitrogen sources. The other model postulated that mutations in gltB or gltD (which encode the subunits of GOGAT) were polar on a downstream gene, gltF, which is necessary for proper activation of gene expression by the Ntr system. The data reported here show that the gltF model is incorrect for three reasons: first, a nonpolar gltB and a polar gltD mutation of K. aerogenes both show the same phenotype; second, K. aerogenes and several other enteric bacteria lack a gene homologous to gltF; and third, mutants of E. coli whose gltF gene has been deleted show no defect in nitrogen metabolism. The argument that accumulated glutamine represses the Ntr system in gltB or gltD mutants is also incorrect, because these mutants can derepress the Ntr system normally so long as sufficient glutamate is supplied. Thus, we conclude that gltB or gltD mutants grow slowly on many poor nitrogen sources because they are starved for glutamate. Much of the glutamate formed by catabolism of alternative nitrogen sources is converted to glutamine, which cannot be efficiently converted to glutamate in the absence of GOGAT activity. Finally, GOGAT-deficient E. coli cells growing with glutamine as the sole nitrogen source increase their synthesis of the other glutamate-forming enzyme, glutamate dehydrogenase, severalfold, but this is still insufficient to allow rapid growth under these conditions.
Collapse
Affiliation(s)
- T J Goss
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
49
|
Reitzer L, Schneider BL. Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 2001; 65:422-44, table of contents. [PMID: 11528004 PMCID: PMC99035 DOI: 10.1128/mmbr.65.3.422-444.2001] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sigma(54) has several features that distinguish it from other sigma factors in Escherichia coli: it is not homologous to other sigma subunits, sigma(54)-dependent expression absolutely requires an activator, and the activator binding sites can be far from the transcription start site. A rationale for these properties has not been readily apparent, in part because of an inability to assign a common physiological function for sigma(54)-dependent genes. Surveys of sigma(54)-dependent genes from a variety of organisms suggest that the products of these genes are often involved in nitrogen assimilation; however, many are not. Such broad surveys inevitably remove the sigma(54)-dependent genes from a potentially coherent metabolic context. To address this concern, we consider the function and metabolic context of sigma(54)-dependent genes primarily from a single organism, Escherichia coli, in which a reasonably complete list of sigma(54)-dependent genes has been identified by computer analysis combined with a DNA microarray analysis of nitrogen limitation-induced genes. E. coli appears to have approximately 30 sigma(54)-dependent operons, and about half are involved in nitrogen assimilation and metabolism. A possible physiological relationship between sigma(54)-dependent genes may be based on the fact that nitrogen assimilation consumes energy and intermediates of central metabolism. The products of the sigma(54)-dependent genes that are not involved in nitrogen metabolism may prevent depletion of metabolites and energy resources in certain environments or partially neutralize adverse conditions. Such a relationship may limit the number of physiological themes of sigma(54)-dependent genes within a single organism and may partially account for the unique features of sigma(54) and sigma(54)-dependent gene expression.
Collapse
Affiliation(s)
- L Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|
50
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|