1
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster EG, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. Genes Dev 2025; 39:gad.352535.124. [PMID: 40086876 PMCID: PMC11960778 DOI: 10.1101/gad.352535.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the "cell within a cell" structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni and colleagues demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and enhances spore resistance to the oxidant hypochlorite.
Collapse
Affiliation(s)
- Eammon P Riley
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Jelani A Lyda
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Joseph Sugie
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Iqra R Kasu
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Sumedha Ravishankar
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London WC2R 2LS, United Kingdom
| | - Amy H Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | | | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
2
|
Biermann L, Tadele LR, Benatto Perino EH, Nicholson R, Lilge L, Hausmann R. Recombinant Production of Bovine α S1-Casein in Genome-Reduced Bacillus subtilis Strain IIG-Bs-20-5-1. Microorganisms 2025; 13:60. [PMID: 39858828 PMCID: PMC11767299 DOI: 10.3390/microorganisms13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cow's milk represents an important protein source. Here, especially casein proteins are important components, which might be a promising source of alternative protein production by microbial expression systems. Nevertheless, caseins are difficult-to-produce proteins, making heterologous production challenging. However, the potential of genome-reduced Bacillus subtilis was applied for the recombinant production of bovine αS1-casein protein. METHODS A plasmid-based gene expression system was established in B. subtilis allowing the production of his-tagged codon-optimized bovine αS1-casein. Upscaling in a fed-batch bioreactor system for high cell-density fermentation processes allowed for efficient recombinant αS1-casein production. After increasing the molecular abundance of the recombinant αS1-casein protein using immobilized metal affinity chromatography, zeta potential and particle size distribution were determined in comparison to native bovine αS1-casein. RESULTS Non-sporulating B. subtilis strain BMV9 and genome-reduced B. subtilis strain IIG-Bs-20-5-1 were applied for recombinant αS1-casein production. Casein was detectable only in the insoluble protein fraction of the genome-reduced B. subtilis strain. Subsequent high cell-density fed-batch bioreactor cultivations using strain IIG-Bs-20-5-1 resulted in a volumetric casein titer of 56.9 mg/L and a yield of 1.6 mgcasein/gCDW after reducing the B. subtilis protein content. Comparative analyses of zeta potential and particle size between pre-cleaned recombinant and native αS1-casein showed pH-mediated differences in aggregation behavior. CONCLUSIONS The study demonstrates the potential of B. subtilis for the recombinant production of bovine αS1-casein and underlines the potential of genome reduction for the bioproduction of difficult-to-produce proteins.
Collapse
Affiliation(s)
- Lennart Biermann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Lea Rahel Tadele
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Elvio Henrique Benatto Perino
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Reed Nicholson
- Motif FoodWorks, Inc., 27 Drydock Ave, Boston, MA 02210, USA;
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| |
Collapse
|
3
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625531. [PMID: 39651166 PMCID: PMC11623654 DOI: 10.1101/2024.11.26.625531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the cell-within-a-cell structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother-cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore-formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni, Evans and collaborators demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally-regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and is required to produce spores resistant to the oxidant hypochlorite.
Collapse
|
4
|
Magome TG, Ochai SO, Hassim A, Bezuidenhout CC, van Heerden H, Lekota KE. A genome-based investigation of the Priestia species isolated from anthrax endemic regions in Kruger National Park. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105649. [PMID: 39059732 DOI: 10.1016/j.meegid.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Priestia is a genus that was renamed from the genus Bacillus based on the conserved signature indels (CSIs) in protein sequences that separate Priestia species from Bacillus, with the latter only including species closely related to B. subtilis and B. cereus. Diagnosis of anthrax, a zoonotic disease, is implicated by tripartite anthrax virulence genes (lef, pagA, and cya) and poly-γ-D-glutamic acid capsular genes cap-ABCDE of Bacillus anthracis. Due to the amplification of anthrax virulence genes in Priestia isolates, the search for homologous anthrax virulence genes within the Priestia genomes (n = 9) isolated from animal blood smears was embarked upon through whole genome sequencing. In silico taxonomic identification of the isolates was conducted using genome taxonomy database (GTDB), average nucleotide identity (ANI), and multi-locus sequence typing (MLST), which identified the genomes as P. aryabhattai (n = 5), P. endophytica (n = 2) and P. megaterium (n = 2). A pan-genome analysis was further conducted on the Priestia genomes, including the screening of virulence, antibiotic resistance genes and mobile genetic elements on the sequenced genomes. The oligoribonuclease NrnB protein sequences showed that Priestia spp. possess a unique CSI that is absent in other Bacillus species. Furthermore, the CSI in P. endophytica is unique from other Priestia spp. Pan-genomic analysis indicates that P. endophytica clusters separately from P. aryabhattai and P. megaterium. In silico BLASTn genome analysis using the SYBR primers, Taqman probes and primers that target the chromosomal marker (Ba-1), protective antigen (pagA), and lethal factor (lef) on B. anthracis, showed partial binding to Priestia regions encoding for hypothetical proteins, pyridoxine biosynthesis, hydrolase, and inhibitory proteins. The antibiotic resistance genes (ARG) profile of Priestia spp. showed that the genomes contained no more than two ARGs. This included genes conferring resistance to rifamycin and fosfomycin on P. endophytica, as well as clindamycin on P. aryabhattai and P. megaterium. Priestia genomes lacked B. anthracis plasmids and consisted of plasmid replicon types with unknown functions. Furthermore, the amplification of Priestia strains may result in false positives when qPCR is used to detect the virulence genes of B. anthracis in soil, blood smears, and/or environmental samples.
Collapse
Affiliation(s)
- Thuto Gomolemo Magome
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom, South Africa.
| | - Sunday Ochonu Ochai
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; International Centre for Antimicrobial Resistance Solutions, Copenhagen S, 2300, Denmark; Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayesha Hassim
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Nguyen HA, Tran P T, Dam HT, Nguyen HV, Le TH, Ho PH, Lan Huong N. Whole genome sequence analysis of Bacillus amyloliquefaciens strain S2.5 as a potential probiotic for feed supplement in livestock production. J Genet Eng Biotechnol 2024; 22:100404. [PMID: 39179321 PMCID: PMC11338101 DOI: 10.1016/j.jgeb.2024.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Supplementing probiotics in livestock feed is increasing due to concerns over the potential harm caused by antibiotics and other chemical growth promoters. Several Bacillus sp. have been used as probiotic supplements for livestock. In this study, Bacillus amyloliquefaciens S2.5 was isolated from freshwater and its potential probiotic characteristics were evaluated in vitro. The whole genome of strain S2.5 was sequenced, and its probiotic traits were annotated using bioinformatic tools. RESULTS Both vegetative cells and spores of strain S2.5 remained stable throughout the 1.5 h of gastric juice and 48 h of intestine simulation. The strain S2.5 harbored the ability to produce glucoamylase, carboxymethyl cellulase, protease, and chitinase. It is also susceptible to all six tested antibiotics. The complete genome sequence shows genes related to acid-bile tolerance, environmental stress resistance, hydrolases, and adhesion to gut mucosa, confirming probiotic traits in the in vitro experiments. CONCLUSIONS B. amyloliquefaciens S2.5 demonstrated potential probiotic characteristics and its genetic profile in the in vitro experiments. Further in vivo assessments of B. amyloliquefaciens S2.5 on livestock and poultry should be performed to assess its practical application.
Collapse
Affiliation(s)
- Ha-Anh Nguyen
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Thao Tran P
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Hang Thuy Dam
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Hai Van Nguyen
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Thanh Ha Le
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Phu-Ha Ho
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Nguyen Lan Huong
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Kumari S, Dhara A, Kumar M. Leptospira ClpP mutant variants in association with the ClpX, acyldepsipeptide, and the trigger factor displays unprecedented gain-of-function. Int J Biol Macromol 2024; 254:127753. [PMID: 38287595 DOI: 10.1016/j.ijbiomac.2023.127753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
The functionally active ClpP (LinClpP) of Leptospira interrogans is composed of two different isoforms (LinClpP1 and LinClpP2). In this study, five mutants of LinClpP (LinClpP1E170D, LinClpP1N172D, LinClpP2IG_del, LinClpP2S40AK41N, LinClpP2Y62A) targeting its critical hotspot residues were generated. The functional activity of pure LinClpP mutant variants or its heterocomplex and its effect when associated with a chaperone (LinClpX)/antibiotic acyldepsipeptide (ADEP1)/trigger factor (LinTF) was examined. The two mutants (LinClpP2S40AK41N and LinClpP2Y62A) displayed gain-of-function (GOF) in peptidase activity. The ADEP1-bound heterocomplex (LinClpP1P2S40AK41N and LinClpP1P2Y62A) measured 1.7 and 1.5-fold higher protease activity than ADEP-bound LinClpP1P2. The dynamic light scattering analysis of ADEP1-bound GOF mutants displayed increased hydrodynamic diameter. In the presence of LinTF, the heterocomplex (LinClpP1P2S40AK41N and LinClpP1P2Y62A) exhibited a 3-fold surge in peptidase activity. The deletion mutant (LinClpP2IG_del) or its heterocomplex (LinClpP1P2IG_del) displayed no activity. Similarly, the pure LinClpP1E170D and LinClpP1N172D could not cleave a model dipeptide. However, its heterocomplex (LinClpP1E170DP2 and LinClpP1N172DP2) showed 0.5-fold lower peptidase activity than the LinClpP1P2. Collectively, two mutants (LinClpP2S40AK41N and LinClpP2Y62A) have GOF and can degrade model dipeptide substrate without the aid of LinClpP1 isoform and thus provide new insights into unprecedented LinClpP activation.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anusua Dhara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Robinson TS, Osman MA. An Emerging Role for Sigma Receptor 1 in Personalized Treatment of Breast Cancer. Cancers (Basel) 2023; 15:3464. [PMID: 37444574 PMCID: PMC10340381 DOI: 10.3390/cancers15133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear and hinders clinical utility. SigmaR1 is widely expressed in organ tissues and localized to various sub-cellular compartments, particularly the endoplasmic reticulum (ER), the mitochondrial-associated membranes (MAMs) and the nuclear envelope. As such, it involves diverse cellular functions, including protein quality control/ER stress, calcium signaling, cholesterol homeostasis, mitochondrial integrity and energy metabolism. Consequently, SigmaR1 has been implicated in a number of cancers and degenerative diseases and thus has been intensively pursued as a therapeutic target. Because SigmaR1 binds a number of structurally unrelated ligands, it presents an excellent context-dependent therapeutic target. Here, we review its role in breast cancer and the current therapies that have been considered based on its known functions. As SigmaR1 is not classified as an oncoprotein, we propose a model in which it serves as an oligomerization adaptor in key cellular pathways, which may help illuminate its association with variable diseases and pave the way for clinical utility in personalized medicine.
Collapse
Affiliation(s)
| | - Mahasin A. Osman
- Department of Medicine, Division of Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
8
|
Fichant A, Felten A, Gallet A, Firmesse O, Bonis M. Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods 2022; 11:foods11233924. [PMID: 36496733 PMCID: PMC9739007 DOI: 10.3390/foods11233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Arnaud Felten
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
9
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
11
|
Abstract
Regulated proteolysis is where AAA+ ATPases (ClpX, ClpC, and ClpE) are coupled to a protease subunit (ClpP) to facilitate degradation of misfolded and native regulatory proteins in the cell. The process is intricately linked to protein quality control and homeostasis and modulates several biological processes. In streptococci, regulated proteolysis is vital to various functions, including virulence expression, competence development, bacteriocin production, biofilm formation, and stress responses. Among the various Clp ATPases, ClpX is the major one that recognizes specific amino acid residues in its substrates and delivers them to the ClpP proteolytic chamber for degradation. While multiple ClpX substrates have been identified in Escherichia coli and other bacteria, little is known about the identity of these substrates in streptococci. Here, we used a preliminary proteomic analysis to identify putative ClpX substrates using Streptococcus mutans as a model organism. SMU.961 is one such putative substrate where we identified the Glu-Lue-Gln (ELQ) motif at the C terminus that is recognized by ClpX/P. We identified several other proteins, including MecA, which also harbor ELQ and are degraded by ClpX/P. This is surprising since MecA is known to be degraded by ClpC/P in Bacillus subtilis; however, ClpX/P-mediated MecA degradation is unknown. We also identified Glu and Gln as the crucial residues for ClpX recognition. Our data indicate a species and perhaps strain-specific recognition of ELQ by streptococcal ClpX/P. At present, we do not know whether this species-dependent degradation by ClpX/P is unique to S. mutans, and we are currently examining the phenomenon in other pathogenic streptococci. IMPORTANCE ClpX/P is a major intracellular proteolytic complex that is responsible for protein quality control in the cell. ClpX, an AAA+ ATPase, distinguishes the potential substrates by recognizing short motifs at the C-terminal end of proteins and delivers the substrates for degradation by ClpP protease. The identity of these ClpX substrates, which varies greatly among bacteria, is known only for a few well-studied species. Here, we used Streptococcus mutans as a model organism to identify ClpX substrates. We found that a short motif of three residues is successfully recognized by ClpX/P. Interestingly, the motif is not present at the ultimate C-terminal end; rather it is present close to the end. This result suggests that streptococcal ClpX ATPase can recognize internal motifs.
Collapse
|
12
|
Labana P, Dornan MH, Lafrenière M, Czarny TL, Brown ED, Pezacki JP, Boddy CN. Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chem Biol 2021; 28:1703-1715.e11. [PMID: 34293284 DOI: 10.1016/j.chembiol.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023]
Abstract
Multi-drug-resistant bacteria present an urgent threat to modern medicine, creating a desperate need for antibiotics with new modes of action. As natural products remain an unsurpassed source for clinically viable antibiotic compounds, we investigate the mechanism of action of armeniaspirol. The armeniaspirols are a structurally unique class of Gram-positive antibiotic discovered from Streptomyces armeniacus for which resistance cannot be readily obtained. We show that armeniaspirol inhibits the ATP-dependent proteases ClpXP and ClpYQ in vitro and in the model Gram-positive Bacillus subtilis. This inhibition dysregulates the divisome and elongasome supported by an upregulation of key proteins FtsZ, DivIVA, and MreB inducing cell division arrest. The inhibition of ClpXP and ClpYQ to dysregulate cell division represents a unique antibiotic mechanism of action and armeniaspirol is the only known natural product inhibitor of the coveted anti-virulence target ClpP. Thus, armeniaspirol possesses a promising lead scaffold for antibiotic development with unique pharmacology.
Collapse
Affiliation(s)
- Puneet Labana
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mark H Dornan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Matthew Lafrenière
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tomasz L Czarny
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - John P Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
13
|
Genomics and transcriptomics analyses provide insights into the cold adaptation strategies of an Antarctic bacterium, Cryobacterium sp. SO1. Polar Biol 2021. [DOI: 10.1007/s00300-021-02883-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
15
|
ClpC-Mediated Sporulation Regulation at Engulfment Stage in Bacillus anthracis. Indian J Microbiol 2021; 61:170-179. [PMID: 33927458 DOI: 10.1007/s12088-021-00927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial sporulation is a conserved process utilized by members of Bacillus genus and Clostridium in response to stress such as nutrient or temperature. Sporulation initiation is triggered by stress signals perceived by bacterial cell that leads to shutdown of metabolic pathways of bacterial cells. The mechanism of sporulation involves a complex network that is regulated at various checkpoints to form the viable bacterial spore. Engulfment is one such check point that drives the required cellular rearrangement necessary for the spore assembly and is mediated by bacterial proteolytic machinery that involves association of various Clp ATPases and ClpP protease. The present study highlights the importance of degradation of an anti-sigma factor F, SpoIIAB by ClpCP proteolytic machinery playing a crucial role in culmination of engulfment process during the sporulation in Bacillus anthracis.
Collapse
|
16
|
Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G. Microbial single-cell RNA sequencing by split-pool barcoding. Science 2020; 371:science.aba5257. [PMID: 33335020 DOI: 10.1126/science.aba5257] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.
Collapse
Affiliation(s)
- Anna Kuchina
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Leandra M Brettner
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Luana Paleologu
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Alberto Carignano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Kibler
- Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Matthew Hirano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - R William DePaolo
- Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA. .,Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Springstein BL, Weissenbach J, Koch R, Stücker F, Stucken K. The role of the cytoskeletal proteins MreB and FtsZ in multicellular cyanobacteria. FEBS Open Bio 2020; 10:2510-2531. [PMID: 33112491 PMCID: PMC7714070 DOI: 10.1002/2211-5463.13016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
Multiseriate and true‐branching cyanobacteria are at the peak of prokaryotic morphological complexity. However, little is known about the mechanisms governing multiplanar cell division and morphogenesis. Here, we study the function of the prokaryotic cytoskeletal proteins, MreB and FtsZ in Fischerella muscicola PCC 7414 and Chlorogloeopsis fritschii PCC 6912. Vancomycin and HADA labeling revealed a mixed apical, septal, and lateral trichome growth mode in F. muscicola, whereas C. fritschii exhibits septal growth. In all morphotypes from both species, MreB forms either linear filaments or filamentous strings and can interact with FtsZ. Furthermore, multiplanar cell division in F. muscicola likely depends on FtsZ dosage. Our results lay the groundwork for future studies on cytoskeletal proteins in morphologically complex cyanobacteria.
Collapse
Affiliation(s)
| | - Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Robin Koch
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Fenna Stücker
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
18
|
Abstract
Species belonging to the family Lactobacillaceae are found in highly diverse environments and play an important role in fermented foods and probiotic products. Many of these species have been individually reported to harbour plasmids that encode important genes. In this study, we performed comparative genomic analysis of publicly available data for 512 plasmids from 282 strains represented by 51 species of this family and correlated the genomic features of plasmids with the ecological niches in which these species are found. Two-thirds of the species had at least one plasmid-harbouring strain. Plasmid abundance and GC content were significantly lower in vertebrate-adapted species as compared to nomadic and free-living species. Hierarchical clustering highlighted the distinct nature of plasmids from the nomadic and free-living species than those from the vertebrate-adapted species. EggNOG-assisted functional annotation revealed that genes associated with transposition, conjugation, DNA repair and recombination, exopolysaccharide production, metal ion transport, toxin–antitoxin system, and stress tolerance were significantly enriched on the plasmids of the nomadic and in some cases nomadic and free-living species. On the other hand, genes related to anaerobic metabolism, ABC transporters and the major facilitator superfamily were overrepresented on the plasmids of the vertebrate-adapted species. These genomic signatures correlate with the comparatively nutrient-depleted, stressful and dynamic environments of nomadic and free-living species and nutrient-rich and anaerobic environments of vertebrate-adapted species. Thus, these results indicate the contribution of the plasmids in the adaptation of lactobacilli to their respective habitats. This study also underlines the potential application of these plasmids in improving the technological and probiotic properties of lactic acid bacteria.
Collapse
Affiliation(s)
- Dimple Davray
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Dipti Deo
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| |
Collapse
|
19
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
20
|
Schäfer H, Beckert B, Frese CK, Steinchen W, Nuss AM, Beckstette M, Hantke I, Driller K, Sudzinová P, Krásný L, Kaever V, Dersch P, Bange G, Wilson DN, Turgay K. The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis. PLoS Genet 2020; 16:e1008275. [PMID: 32176689 PMCID: PMC7098656 DOI: 10.1371/journal.pgen.1008275] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/26/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022] Open
Abstract
Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
Collapse
Affiliation(s)
- Heinrich Schäfer
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Aaron M. Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Hantke
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | | - Petra Sudzinová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Volkhard Kaever
- Hannover Medical School, Research Core Unit Metabolomics, Hannover, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
21
|
A Gene Cluster That Encodes Histone Deacetylase Inhibitors Contributes to Bacterial Persistence and Antibiotic Tolerance in Burkholderia thailandensis. mSystems 2020; 5:5/1/e00609-19. [PMID: 32047060 PMCID: PMC7018527 DOI: 10.1128/msystems.00609-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The discovery of antibiotics such as penicillin and streptomycin marked a historic milestone in the 1940s and heralded a new era of antimicrobial therapy as the modern standard for medical treatment. Yet, even in those early days of discovery, it was noted that a small subset of cells (∼1 in 105) survived antibiotic treatment and continued to persist, leading to recurrence of chronic infection. These persisters are phenotypic variants that have modified their physiology to survive environmental stress. In this study, we have performed three transcriptomic screens to identify persistence genes that are common between three different stressor conditions. In particular, we identified genes that function in the synthesis of secondary metabolites, small molecules, and complex lipids, which are likely required to maintain the persistence state. Targeting universal persistence genes can lead to the development of clinically relevant antipersistence therapeutics for infectious disease management. Persister cells are genetically identical variants in a bacterial population that have phenotypically modified their physiology to survive environmental stress. In bacterial pathogens, persisters are able to survive antibiotic treatment and reinfect patients in a frustrating cycle of chronic infection. To better define core persistence mechanisms for therapeutics development, we performed transcriptomics analyses of Burkholderia thailandensis populations enriched for persisters via three methods: flow sorting for low proton motive force, meropenem treatment, and culture aging. Although the three persister-enriched populations generally displayed divergent gene expression profiles that reflect the multimechanistic nature of stress adaptations, there were several common gene pathways activated in two or all three populations. These include polyketide and nonribosomal peptide synthesis, Clp proteases, mobile elements, enzymes involved in lipid metabolism, and ATP-binding cassette (ABC) transporter systems. In particular, identification of genes that encode polyketide synthases (PKSs) and fatty acid catabolism factors indicates that generation of secondary metabolites, natural products, and complex lipids could be part of the metabolic program that governs the persistence state. We also found that loss-of-function mutations in the PKS-encoding gene locus BTH_I2366, which plays a role in biosynthesis of histone deacetylase (HDAC) inhibitors, resulted in increased sensitivity to antibiotics targeting DNA replication. Furthermore, treatment of multiple bacterial pathogens with a fatty acid synthesis inhibitor, CP-640186, potentiated the efficacy of meropenem against the persister populations. Altogether, our results suggest that bacterial persisters may exhibit an outwardly dormant physiology but maintain active metabolic processes that are required to maintain persistence. IMPORTANCE The discovery of antibiotics such as penicillin and streptomycin marked a historic milestone in the 1940s and heralded a new era of antimicrobial therapy as the modern standard for medical treatment. Yet, even in those early days of discovery, it was noted that a small subset of cells (∼1 in 105) survived antibiotic treatment and continued to persist, leading to recurrence of chronic infection. These persisters are phenotypic variants that have modified their physiology to survive environmental stress. In this study, we have performed three transcriptomic screens to identify persistence genes that are common between three different stressor conditions. In particular, we identified genes that function in the synthesis of secondary metabolites, small molecules, and complex lipids, which are likely required to maintain the persistence state. Targeting universal persistence genes can lead to the development of clinically relevant antipersistence therapeutics for infectious disease management.
Collapse
|
22
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|
23
|
Roy S, Zhu Y, Ma J, Roy AC, Zhang Y, Zhong X, Pan Z, Yao H. Role of ClpX and ClpP in Streptococcus suis serotype 2 stress tolerance and virulence. Microbiol Res 2019; 223-225:99-109. [PMID: 31178057 DOI: 10.1016/j.micres.2019.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
Streptococcus suis has received increasing attention for its involvement in severe infections in pigs and humans; however, their pathogenesis remains unclear. ClpX and ClpP, two subunits of the ATP-dependent caseinolytic protease Clp, play key roles in bacterial adaptation to various environmental stresses. In this study, a virulent S. suis serotype 2 strain, ZY05719, was employed to construct clpX and clpP deletion mutants (ΔclpX and ΔclpP, respectively) and their complementation strains. Both ΔclpX and ΔclpP displayed significantly reduced adaptability compared with the wild-type strain, evident through several altered phenotypes: formation of long cell chains, tendency to aggregate in culture, and reduced growth under acidic pH and H2O2-induced oxidative stress. ClpP and ClpX were required for the optimal growth during heat and cold stress, respectively. An in vitro experiment on RAW264.7 macrophage cells showed significantly increased sensitivity of ΔclpX and ΔclpP to phagocytosis compared with the wild-type strain. Mouse infection assays verified the deletion of clpX and clpP led to not only fewer clinical symptoms and lower mortality but also to a marked attenuation in bacterial colonization. These virulence-related phenotypes were restored by genetic complementation. Furthermore, the deletion of clpX or clpP caused a significant decrease in the expression of sodA, tpx, and apuA compared with the wild-type strain, suggesting that these genes may be regulated by ClpX and ClpP as downstream response factors to facilitate the bacterial tolerance against various environmental stresses. Taken together, these results suggest that ClpX and ClpP play important roles in stress tolerance for achieving the full virulence of S. suis serotype 2 during infection.
Collapse
Affiliation(s)
- Shipra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Animesh Chandra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| |
Collapse
|
24
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
25
|
Sharma A, Schmidt M, Kiesel B, Mahato NK, Cralle L, Singh Y, Richnow HH, Gilbert JA, Arnold W, Lal R. Bacterial and Archaeal Viruses of Himalayan Hot Springs at Manikaran Modulate Host Genomes. Front Microbiol 2018; 9:3095. [PMID: 30619174 PMCID: PMC6302217 DOI: 10.3389/fmicb.2018.03095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022] Open
Abstract
Hot spring-associated viruses, particularly the archaeal viruses, remain under-examined compared to bacteriophages. Previous metagenomic studies of the Manikaran hot springs in India suggested an abundance of viral DNA, which prompted us to examine the virus–host (bacterial and archaeal) interactions in sediment and microbial mat samples collected from the thermal discharges. Here, we characterize the viruses (both bacterial and archaeal) from this Himalayan hot spring using both metagenomics assembly and electron microscopy. We utilized four shotgun samples from sediment (78–98°C) and two from microbial mats (50°C) to reconstruct 65 bacteriophage genomes (24–200 kb). We also identified 59 archaeal viruses that were notably abundant across the sediment samples. Whole-genome analyses of the reconstructed bacteriophage genomes revealed greater genomic conservation in sediments (65%) compared to microbial mats (49%). However, a minimal phage genome was still maintained across both sediment and microbial mats suggesting a common origin. To complement the metagenomic data, scanning-electron and helium-ion microscopy were used to reveal diverse morphotypes of Caudovirales and archaeal viruses. The genome level annotations provide further evidence for gene-level exchange between virus and host in these hot springs, and augments our knowledgebase for bacteriophages, archaeal viruses and Clustered Regularly Interspaced Short Palindromic Repeat cassettes, which provide a critical resource for studying viromes in extreme natural environments.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Zoology, University of Delhi, New Delhi, India.,Biosciences Division, Argonne National Laboratory, Lemont, IL, United States.,Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Bärbel Kiesel
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nitish K Mahato
- Department of Zoology, University of Delhi, New Delhi, India
| | - Lauren Cralle
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States.,Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jack A Gilbert
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States.,Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Wyatt Arnold
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
26
|
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front Microbiol 2018; 9:2700. [PMID: 30555426 PMCID: PMC6282059 DOI: 10.3389/fmicb.2018.02700] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | | | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
27
|
Vinaiphat A, Thongboonkerd V. Chaperonomics in leptospirosis. Expert Rev Proteomics 2018; 15:569-579. [PMID: 30004813 DOI: 10.1080/14789450.2018.1500901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Knowledge of the function of molecular chaperones is required for a better understanding of cellular proteostasis. Nevertheless, such information is currently dispersed as most of previous studies investigated chaperones on a single-angle basis. Recently, a new subdiscipline of chaperonology, namely 'chaperonomics' (defined as 'systematic analysis of chaperone genes, transcripts, proteins, or their interaction networks using omics technologies'), has been emerging to better understand biological, physiological, and pathological roles of chaperones. Areas covered: This review provides broad overviews of bacterial chaperones, heat shock proteins (HSPs), and leptospirosis, and then focuses on recent progress of chaperonomics applied to define roles of HSPs in various pathogenic and saprophytic leptospiral species and serovars. Expert commentary: Comprehensive analysis of leptospiral chaperones/HSPs using a chaperonomics approach holds great promise for better understanding of functional roles of chaperones/HSPs in bacterial survival and disease pathogenesis. Moreover, this new approach may also lead to further development of chaperones/HSPs-based diagnostics and/or vaccine discovery for leptospirosis.
Collapse
Affiliation(s)
- Arada Vinaiphat
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Visith Thongboonkerd
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
28
|
Kiran MD, Bala S, Hirshberg M, Balaban N. YhgC protects Bacillus anthracis from oxidative stress. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bacillus anthracis can cause lethal inhalational anthrax and can be used as a bioweapon due to its ability to form spores and to survive under various environmental stress conditions. YhgC in bacilli are structural homologues of TRAP, a protein involved in stress response in staphylococci. To test the role of YhgC in B. anthracis, YhgC gene was deleted in B. anthracis strain Sterne and parent and mutant strains tested. Immunolocalization studies indicated that YhgC is clustered both on the cell surface and within the cytoplasm. Phenotypic analyses indicated that YhgC is an important factor for oxidative stress tolerance and for macrophage infection in vitro. Accordingly, transcriptomics studies indicated that yhgC has a profound effect on genes encoding for stress response regulatory proteins where it negatively regulates the expression of genes encoding for Class I and Class III stress response proteins belonging to the regulons hrcA (hrcA, grpE, dnaK, dnaJ, groEL and groES) and ctsR (ctsR, mcsA, mcsB, clpC/mecB, clpP1). Proteomics studies also indicated that YhgC positively regulates the expression of ClpP-2 and camelysin, which are proteins involved in adaptive responses and pathogenesis in various Gram-positive bacteria. Put together, these results suggest that YhgC is important for the survival of B. anthracis under oxidative stress conditions and thus inhibition of YhgC may compromise the ability of the bacteria to survive within the host.
Collapse
Affiliation(s)
- Madanahally D. Kiran
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA - USA
- IQUUM Inc, Marlborough MA - USA
| | - Shashi Bala
- University of Massachusetts Medical School, Worcester, MA - USA
| | - Miriam Hirshberg
- EMBL Outstation – Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge - United Kingdom
| | - Naomi Balaban
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA - USA
- Yale University, Department of Chemical Engineering, New Haven, CT - USA
| |
Collapse
|
29
|
Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. Proc Natl Acad Sci U S A 2017; 115:E273-E282. [PMID: 29263094 DOI: 10.1073/pnas.1712051115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AAA+ disaggregases solubilize aggregated proteins and confer heat tolerance to cells. Their disaggregation activities crucially depend on partner proteins, which target the AAA+ disaggregases to protein aggregates while concurrently stimulating their ATPase activities. Here, we report on two potent ClpG disaggregase homologs acquired through horizontal gene transfer by the species Pseudomonas aeruginosa and subsequently abundant P. aeruginosa clone C. ClpG exhibits high, stand-alone disaggregation potential without involving any partner cooperation. Specific molecular features, including high basal ATPase activity, a unique aggregate binding domain, and almost exclusive expression in stationary phase distinguish ClpG from other AAA+ disaggregases. Consequently, ClpG largely contributes to heat tolerance of P. aeruginosa primarily in stationary phase and boosts heat resistance 100-fold when expressed in Escherichia coli This qualifies ClpG as a potential persistence and virulence factor in P. aeruginosa.
Collapse
|
30
|
Schultz D, Schlüter R, Gerth U, Lalk M. Metabolic Perturbations in a Bacillus subtilis clpP Mutant during Glucose Starvation. Metabolites 2017; 7:metabo7040063. [PMID: 29186773 PMCID: PMC5746743 DOI: 10.3390/metabo7040063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022] Open
Abstract
Proteolysis is essential for all living organisms to maintain the protein homeostasis and to adapt to changing environmental conditions. ClpP is the main protease in Bacillus subtilis, and forms complexes with different Clp ATPases. These complexes play crucial roles during heat stress, but also in sporulation or cell morphology. Especially enzymes of cell wall-, amino acid-, and nucleic acid biosynthesis are known substrates of the protease ClpP during glucose starvation. The aim of this study was to analyze the influence of a clpP mutation on the metabolism in different growth phases and to search for putative new ClpP substrates. Therefore, B. subtilis 168 cells and an isogenic ∆clpP mutant were cultivated in a chemical defined medium, and the metabolome was analyzed by a combination of 1H-NMR, HPLC-MS, and GC-MS. Additionally, the cell morphology was investigated by electron microscopy. The clpP mutant showed higher levels of most glycolytic metabolites, the intermediates of the citric acid cycle, amino acids, and peptidoglycan precursors when compared to the wild-type. A strong secretion of overflow metabolites could be detected in the exo-metabolome of the clpP mutant. Furthermore, a massive increase was observed for the teichoic acid metabolite CDP-glycerol in combination with a swelling of the cell wall. Our results show a recognizable correlation between the metabolome and the corresponding proteome data of B. subtilisclpP mutant. Moreover, our results suggest an influence of ClpP on Tag proteins that are responsible for teichoic acids biosynthesis.
Collapse
Affiliation(s)
- Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, 17487 Greifswald, Germany;
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany;
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| |
Collapse
|
31
|
Carroni M, Franke KB, Maurer M, Jäger J, Hantke I, Gloge F, Linder D, Gremer S, Turgay K, Bukau B, Mogk A. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control. eLife 2017; 6. [PMID: 29165246 PMCID: PMC5699869 DOI: 10.7554/elife.30120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022] Open
Abstract
Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.
Collapse
Affiliation(s)
- Marta Carroni
- Swedish Cryo-EM Facility, Science for Life Laboratory Stockholm University, Solna, Sweden
| | - Kamila B Franke
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Maurer
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Jäger
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingo Hantke
- Institute for Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | | - Daniela Linder
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Gremer
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kürşad Turgay
- Institute for Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Bernd Bukau
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- DKFZ-ZMBH Alliance, Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
33
|
LaBreck CJ, May S, Viola MG, Conti J, Camberg JL. The Protein Chaperone ClpX Targets Native and Non-native Aggregated Substrates for Remodeling, Disassembly, and Degradation with ClpP. Front Mol Biosci 2017; 4:26. [PMID: 28523271 PMCID: PMC5415555 DOI: 10.3389/fmolb.2017.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/07/2017] [Indexed: 01/21/2023] Open
Abstract
ClpX is a member of the Clp/Hsp100 family of ATP-dependent chaperones and partners with ClpP, a compartmentalized protease, to degrade protein substrates bearing specific recognition signals. ClpX targets specific proteins for degradation directly or with substrate-specific adaptor proteins. Native substrates of ClpXP include proteins that form large oligomeric assemblies, such as MuA, FtsZ, and Dps in Escherichia coli. To remodel large oligomeric substrates, ClpX utilizes multivalent targeting strategies and discriminates between assembled and unassembled substrate conformations. Although ClpX and ClpP are known to associate with protein aggregates in E. coli, a potential role for ClpXP in disaggregation remains poorly characterized. Here, we discuss strategies utilized by ClpX to recognize native and non-native protein aggregates and the mechanisms by which ClpX alone, and with ClpP, remodels the conformations of various aggregates. We show that ClpX promotes the disassembly and reactivation of aggregated Gfp-ssrA through specific substrate remodeling. In the presence of ClpP, ClpX promotes disassembly and degradation of aggregated substrates bearing specific ClpX recognition signals, including heat-aggregated Gfp-ssrA, as well as polymeric and heat-aggregated FtsZ, which is a native ClpXP substrate in E. coli. Finally, we show that ClpX is present in insoluble aggregates and prevents the accumulation of thermal FtsZ aggregates in vivo, suggesting that ClpXP participates in the management of aggregates bearing ClpX recognition signals.
Collapse
Affiliation(s)
- Christopher J LaBreck
- Department of Cell and Molecular Biology, University of Rhode IslandKingston, RI, USA
| | - Shannon May
- Department of Cell and Molecular Biology, University of Rhode IslandKingston, RI, USA
| | - Marissa G Viola
- Department of Cell and Molecular Biology, University of Rhode IslandKingston, RI, USA
| | - Joseph Conti
- Department of Cell and Molecular Biology, University of Rhode IslandKingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode IslandKingston, RI, USA
| |
Collapse
|
34
|
Global Transcriptional Analysis of Virus-Host Interactions between Phage ϕ29 and Bacillus subtilis. J Virol 2016; 90:9293-304. [PMID: 27489274 DOI: 10.1128/jvi.01245-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The study of phage-host relationships is essential to understanding the dynamic of microbial systems. Here, we analyze genome-wide interactions of Bacillus subtilis and its lytic phage ϕ29 during the early stage of infection. Simultaneous high-resolution analysis of virus and host transcriptomes by deep RNA sequencing allowed us to identify differentially expressed bacterial genes. Phage ϕ29 induces significant transcriptional changes in about 0.9% (38/4,242) and 1.8% (76/4,242) of the host protein-coding genes after 8 and 16 min of infection, respectively. Gene ontology enrichment analysis clustered upregulated genes into several functional categories, such as nucleic acid metabolism (including DNA replication) and protein metabolism (including translation). Surprisingly, most of the transcriptional repressed genes were involved in the utilization of specific carbon sources such as ribose and inositol, and many contained promoter binding-sites for the catabolite control protein A (CcpA). Another interesting finding is the presence of previously uncharacterized antisense transcripts complementary to the well-known phage ϕ29 messenger RNAs that adds an additional layer to the viral transcriptome complexity. IMPORTANCE The specific virus-host interactions that allow phages to redirect cellular machineries and energy resources to support the viral progeny production are poorly understood. This study provides, for the first time, an insight into the genome-wide transcriptional response of the Gram-positive model Bacillus subtilis to phage ϕ29 infection.
Collapse
|
35
|
Raut MP, Couto N, Pham TK, Evans C, Noirel J, Wright PC. Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:113. [PMID: 27247624 PMCID: PMC4886415 DOI: 10.1186/s13068-016-0523-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/09/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND Clostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin-cellulose-hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone-butanol-ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome. RESULTS Our results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1 g L(-1) of lignin led to delay and decreased solvents production (ethanol; 0.47 g L(-1) for cellobiose and 0.27 g L(-1) for cellobiose plus lignin and butanol; 0.13 g L(-1) for cellobiose and 0.04 g L(-1) for cellobiose plus lignin) at 20 and 48 h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR < 1 %), 328 proteins were quantified with at least two unique peptides. Up- or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology. CONCLUSIONS This is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin.
Collapse
Affiliation(s)
- Mahendra P. Raut
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Narciso Couto
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Trong K. Pham
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Caroline Evans
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Josselin Noirel
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
- />Chaire de Bioinformatique, LGBA, Conservatoire National Des Arts Et Métiers, 75003 Paris, France
| | - Phillip C. Wright
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
- />School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| |
Collapse
|
36
|
Gene expression analysis for Listeria monocytogenes following exposure to pulsed light and continuous ultraviolet light treatments. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Lavey NP, Coker JA, Ruben EA, Duerfeldt AS. Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P. JOURNAL OF NATURAL PRODUCTS 2016; 79:1193-1197. [PMID: 26967980 PMCID: PMC4841720 DOI: 10.1021/acs.jnatprod.5b01091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.
Collapse
Affiliation(s)
- Nathan P. Lavey
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jesse A. Coker
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Eliza A. Ruben
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Protein Production Core, University of Oklahoma COBRE in Structural Biology, Norman, Oklahoma 73019, United States
| | - Adam S. Duerfeldt
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
38
|
Molière N, Hoßmann J, Schäfer H, Turgay K. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis. Front Microbiol 2016; 7:315. [PMID: 27014237 PMCID: PMC4793158 DOI: 10.3389/fmicb.2016.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022] Open
Abstract
The Hsp100/Clp protease complexes of Bacillus subtilis ClpXP and ClpCP are involved in the control of many interconnected developmental and stress response regulatory networks, including competence, redox stress response, and motility. Here we analyzed the role of regulatory proteolysis by ClpXP and ClpCP in motility development. We have demonstrated that ClpXP acts on the regulation of motility by controlling the levels of the oxidative and heat stress regulator Spx. We obtained evidence that upon oxidative stress Spx not only induces the thiol stress response, but also transiently represses the transcription of flagellar genes. Furthermore, we observed that in addition to the known impact of ClpCP via the ComK/FlgM-dependent pathway, ClpCP also affects flagellar gene expression via modulating the activity and levels of the global regulator DegU-P. This adds another layer to the intricate involvement of Clp mediated regulatory proteolysis in different gene expression programs, which may allow to integrate and coordinate different signals for a better-adjusted response to the changing environment of B. subtilis cells.
Collapse
Affiliation(s)
- Noël Molière
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| | - Jörn Hoßmann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin Berlin, Germany
| | - Heinrich Schäfer
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität Hannover Hannover, Germany
| | - Kürşad Turgay
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
39
|
Identification of proteins in susceptible and resistant Brassica oleracea responsive to Xanthomonas campestris pv. campestris infection. J Proteomics 2016; 143:278-285. [PMID: 26825537 DOI: 10.1016/j.jprot.2016.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/24/2015] [Accepted: 01/25/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Cruciferous plants are important edible vegetables widely consumed around the world, including cabbage, cauli-flower and broccoli. The main disease that affects crucifer plants is black rot, caused by Xanthomonas campestris pv. campestris (Xcc). In order to better understand this specific plant-pathogen interaction, proteins responsive to Xcc infection in resistant (União) and susceptible (Kenzan) Brassica oleracea cultivars were investigated by 2-DE followed by mass spectrometry. A total of 47 variable spots were identified and revealed that in the susceptible interaction there is a clear reduction in the abundance of proteins involved in energetic metabolism and defense. It was interesting to observe that in the resistant interaction, these proteins showed an opposite behavior. Based on our results, we conclude that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense. As a follow-up study, qRT-PCR analysis of selected genes was performed and revealed that most genes showed an up-regulation trend from 5 to 15days after inoculation (DAI), showing highest transcript levels at 15DAI. These results revealed the gradual accumulation of transcripts providing a more detailed view of the changes occurring during different stages of the plant-pathogen interaction. BIOLOGICAL SIGNIFICANCE In this study we have compared cultivars of Brassica oleracea (cabbage), susceptible and resistant to black rot, by using the classical 2-DE approach. We have found that resistance is correlated with the ability of the plant to keep sufficient photosynthesis metabolism activity to provide energy supplies necessary for an active defense.
Collapse
|
40
|
Reddy PJ, Ray S, Sathe GJ, Prasad TSK, Rapole S, Panda D, Srivastava S. Proteomics analyses of Bacillus subtilis after treatment with plumbagin, a plant-derived naphthoquinone. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:12-23. [PMID: 25562197 DOI: 10.1089/omi.2014.0099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ≥2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Powai, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Reddy PJ, Sinha S, Ray S, Sathe GJ, Chatterjee A, Prasad TSK, Dhali S, Srikanth R, Panda D, Srivastava S. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment. PLoS One 2015; 10:e0120620. [PMID: 25874956 PMCID: PMC4397091 DOI: 10.1371/journal.pone.0120620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sneha Sinha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Gajanan J. Sathe
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
- Manipal University, Madhav Nagar,Manipal, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
- Manipal University, Madhav Nagar,Manipal, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India
| | - Snigdha Dhali
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Rapole Srikanth
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
42
|
Hou X, McMillan M, Coumans JVF, Poljak A, Raftery MJ, Pereg L. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant. PLoS One 2014; 9:e114435. [PMID: 25502569 PMCID: PMC4264754 DOI: 10.1371/journal.pone.0114435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA− strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.
Collapse
Affiliation(s)
- Xingsheng Hou
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Joëlle V. F. Coumans
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- School of Rural Medicine, University of New England, Armidale, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
- The School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- * E-mail: mailto:
| |
Collapse
|
43
|
Mujahid M, Prasuna ML, Sasikala C, Ramana CV. Integrated Metabolomic and Proteomic Analysis Reveals Systemic Responses of Rubrivivax benzoatilyticus JA2 to Aniline Stress. J Proteome Res 2014; 14:711-27. [DOI: 10.1021/pr500725b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Mujahid
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - M Lakshmi Prasuna
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Ch Sasikala
- Bacterial
Discovery Laboratory, Center for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Ch Venkata Ramana
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
44
|
Engman J, von Wachenfeldt C. Regulated protein aggregation: a mechanism to control the activity of the ClpXP adaptor protein YjbH. Mol Microbiol 2014; 95:51-63. [PMID: 25353645 DOI: 10.1111/mmi.12842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacteria use stress response pathways to activate diverse target genes to react to a variety of stresses. The Bacillus subtilis Spx protein is a global transcriptional regulator that controls expression of more than 140 genes and operons in response to thiol-specific oxidative stress. Under nonstress conditions the concentration of Spx is kept low by proteolysis catalyzed by the ClpXP complex. Spx protein levels increase in response to disulfide stress and decrease when the cells cope with the stress. The cytosolic adaptor protein YjbH is required to target Spx for efficient proteolysis by ClpXP. We demonstrate that YjbH aggregates in response to disulfide stress, that is, the YjbH protein is soluble under nonstressed conditions and destabilized during stress leading to aggregation. Stress conditions (heat and ethanol) that cause severe perturbations in protein stability/folding also induced aggregation of YjbH and led to induction of Spx. By heterologous expression of a less aggregation prone YjbH homolog Spx induction was abolished. Thus we show that moderation of YjbH solubility is an important mechanism of signal transduction and represents a new mechanism of controlling the activity of adaptor proteins.
Collapse
Affiliation(s)
- Jakob Engman
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | | |
Collapse
|
45
|
Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci U S A 2014; 111:14494-9. [PMID: 25246554 DOI: 10.1073/pnas.1409800111] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alternating antibiotic therapy, in which pairs of drugs are cycled during treatment, has been suggested as a means to inhibit the evolution of de novo resistance while avoiding the toxicity associated with more traditional combination therapy. However, it remains unclear under which conditions and by what means such alternating treatments impede the evolution of resistance. Here, we tracked multistep evolution of resistance in replicate populations of Staphylococcus aureus during 22 d of continuously increasing single-, mixed-, and alternating-drug treatment. In all three tested drug pairs, the alternating treatment reduced the overall rate of resistance by slowing the acquisition of resistance to one of the two component drugs, sometimes as effectively as mixed treatment. This slower rate of evolution is reflected in the genome-wide mutational profiles; under alternating treatments, bacteria acquire mutations in different genes than under corresponding single-drug treatments. To test whether this observed constraint on adaptive paths reflects trade-offs in which resistance to one drug is accompanied by sensitivity to a second drug, we profiled many single-step mutants for cross-resistance. Indeed, the average cross-resistance of single-step mutants can help predict whether or not evolution was slower in alternating drugs. Together, these results show that despite the complex evolutionary landscape of multidrug resistance, alternating-drug therapy can slow evolution by constraining the mutational paths toward resistance.
Collapse
|
46
|
Singh LK, Dhasmana N, Sajid A, Kumar P, Bhaduri A, Bharadwaj M, Gandotra S, Kalia VC, Das TK, Goel AK, Pomerantsev AP, Misra R, Gerth U, Leppla SH, Singh Y. clpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ Microbiol 2014; 17:855-65. [PMID: 24947607 DOI: 10.1111/1462-2920.12548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
The clpC operon is known to regulate several processes such as genetic competence, protein degradation and stress survival in bacteria. Here, we describe the role of clpC operon in Bacillus anthracis. We generated knockout strains of the clpC operon genes to investigate the impact of CtsR, McsA, McsB and ClpC deletion on essential processes of B. anthracis. We observed that growth, cell division, sporulation and germination were severely affected in mcsB and clpC deleted strains, while none of deletions affected toxin secretion. Growth defect in these strains was pronounced at elevated temperature. The growth pattern gets restored on complementation of mcsB and clpC in respective mutants. Electron microscopic examination revealed that mcsB and clpC deletion also causes defect in septum formation leading to cell elongation. These vegetative cell deformities were accompanied by inability of mutant strains to generate morphologically intact spores. Higher levels of polyhydroxybutyrate granules accumulation were also observed in these deletion strains, indicating a defect in sporulation process. Our results demonstrate, for the first time, the vital role played by McsB and ClpC in physiology of B. anthracis and open up further interest on this operon, which might be of importance to success of B. anthracis as pathogen.
Collapse
Affiliation(s)
- Lalit K Singh
- CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Voigt B, Schroeter R, Jürgen B, Albrecht D, Evers S, Bongaerts J, Maurer KH, Schweder T, Hecker M. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Proteomics 2014; 13:2140-61. [PMID: 23592518 DOI: 10.1002/pmic.201200297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/22/2013] [Accepted: 03/23/2013] [Indexed: 11/11/2022]
Abstract
The heat and ethanol stress response of Bacillus licheniformis DSM13 was analyzed at the transcriptional and/or translational level. During heat shock, regulons known to be heat-induced in Bacillus subtilis 168 are upregulated in B. licheniformis, such as the HrcA, SigB, CtsR, and CssRS regulon. Upregulation of the SigY regulon and of genes controlled by other extracytoplasmic function (ECF) sigma factors indicates a cell-wall stress triggered by the heat shock. Furthermore, tryptophan synthesis enzymes were upregulated in heat stressed cells as well as regulons involved in usage of alternative carbon and nitrogen sources. Ethanol stress led to an induction of the SigB, HrcA, and CtsR regulons. As indicated by the upregulation of a SigM-dependent protein, ethanol also triggered a cell wall stress. To characterize the SigB regulon of B. licheniformis, we analyzed the heat stress response of a sigB mutant. It is shown that the B. licheniformis SigB regulon comprises additional genes, some of which do not exist in B. subtilis, such as BLi03885, encoding a hypothetical protein, the Na/solute symporter gene BLi02212, the arginase homolog-encoding gene BLi00198 and mcrA, encoding a protein with endonuclease activity.
Collapse
Affiliation(s)
- Birgit Voigt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Runde S, Molière N, Heinz A, Maisonneuve E, Janczikowski A, Elsholz AKW, Gerth U, Hecker M, Turgay K. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis. Mol Microbiol 2014; 91:1036-52. [PMID: 24417481 DOI: 10.1111/mmi.12521] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
Abstract
Using Bacillus subtilis as a model organism, we investigated thermotolerance development by analysing cell survival and in vivo protein aggregate formation in severely heat-shocked cells primed by a mild heat shock. We observed an increased survival during severe heat stress, accompanied by a strong reduction of heat-induced cellular protein aggregates in cells lacking the ClpXP protease. We could demonstrate that the transcription factor Spx, a regulatory substrate of ClpXP, is critical for the prevention of protein aggregate formation because its regulon encodes redox chaperones, such as thioredoxin, required for protection against thiol-specific oxidative stress. Consequently B. subtilis cells grown in the absence of oxygen were more protected against severe heat shock and much less protein aggregates were detected compared to aerobically grown cells. The presented results indicate that in B. subtilis Spx and its regulon plays not only an important role for oxidative but also for heat stress response and thermotolerance development. In addition, our experiments suggest that the protection of misfolded proteins from thiol oxidation during heat shock can be critical for the prevention of cellular protein aggregation in vivo.
Collapse
Affiliation(s)
- Stephanie Runde
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, D-14195, Berlin, Germany; Institut für Mikrobiologie, Leibniz Universität Hannover, D-30167, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun C, Wang L, Hu D, Riquicho ARM, Liu T, Hou X, Li Y. Proteomic analysis of non-heading Chinese cabbage infected with Hyaloperonospora parasitica. J Proteomics 2013; 98:15-30. [PMID: 24334100 DOI: 10.1016/j.jprot.2013.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 12/29/2022]
Abstract
UNLABELLED Downy mildew is a serious fungal disease in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) that is caused by Hyaloperonospora parasitica, which infects members of the Brassicaceae family. For breeding improvement, researchers must understand the defence mechanisms employed by non-heading Chinese cabbage to combat H. parasitica infection. Using 2-DE protein analysis, we compared the proteomes from leaves of non-heading Chinese cabbage seedlings that were infected with H. parasitica or that were only treated with water at different time points post-infection. By MS analysis, 91 protein spots with significant differences in abundance (>2-fold, p<0.05) were identified in mock- and H. parasitica-inoculated leaves. Next, a resistance strategy for incompatible interactions was proposed. This network consisted of several functional components, including enhanced ethylene biosynthesis and energy supply, balanced ROS production and scavenging, accelerated protein metabolism and photorespiratory, reduced photosynthesis, and induced photosystem repair. These findings increase our knowledge of incompatible interactions between plants and pathogens and also provide new insight regarding the function of plant molecular processes, which should assist in the discovery of new strategies for pathogen control. BIOLOGICAL SIGNIFICANCE This study reported the proteomic analysis of the incompatible interactions between non-heading Chinese cabbage and downy mildew using 2-DE and MS. In total, 91 protein spots that were related to the resistance response were identified. These proteins were assigned to different functional categories, such as amino acid and carbohydrate metabolism, photosynthesis and photorespiration, protein metabolism, signal transduction, redox homeostasis, and ethylene biosynthesis. Meanwhile, several key proteins were determined to be associated with ethylene signalling, ROS scavenging and resistance-related proteins. Consistent with these results, the expression of ethylene biosynthesis genes and response genes, as well as the activity of antioxidant enzymes, increased after inoculation. These findings provide new insight for further understanding the molecular mechanisms of plant resistance.
Collapse
Affiliation(s)
- Chengzhen Sun
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Li Wang
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Die Hu
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Ali Ramuli Maquina Riquicho
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Tongkun Liu
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Xilin Hou
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Ying Li
- Horticultural Department, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing 210095, China; Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
50
|
Lackmann JW, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 2013; 10:20130591. [PMID: 24068175 PMCID: PMC3808546 DOI: 10.1098/rsif.2013.0591] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/30/2013] [Indexed: 01/22/2023] Open
Abstract
Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.
Collapse
Affiliation(s)
- Jan-Wilm Lackmann
- Biology of Microorganisms, Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Simon Schneider
- Coupled Plasma-Solid State Systems, Physics and Astronomy, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Eugen Edengeiser
- Physical Chemistry II, Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Fabian Jarzina
- Biology of Microorganisms, Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Steffen Brinckmann
- Interdisciplinary Center for Advanced Materials Simulation (ICAMS), Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Elena Steinborn
- Biology of Microorganisms, Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Martina Havenith
- Physical Chemistry II, Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jan Benedikt
- Coupled Plasma-Solid State Systems, Physics and Astronomy, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Julia E. Bandow
- Biology of Microorganisms, Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|