1
|
Mérida-Floriano A, Rowe WPM, Casadesús J. Genome-Wide Identification and Expression Analysis of SOS Response Genes in Salmonella enterica Serovar Typhimurium. Cells 2021; 10:cells10040943. [PMID: 33921732 PMCID: PMC8072944 DOI: 10.3390/cells10040943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.
Collapse
Affiliation(s)
- Angela Mérida-Floriano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
| | - Will P. M. Rowe
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-455-7105
| |
Collapse
|
2
|
Hossain MA, Park HC, Lee KJ, Park SW, Park SC, Kang J. In vitro synergistic potentials of novel antibacterial combination therapies against Salmonella enterica serovar Typhimurium. BMC Microbiol 2020; 20:118. [PMID: 32410630 PMCID: PMC7227263 DOI: 10.1186/s12866-020-01810-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/03/2020] [Indexed: 01/08/2023] Open
Abstract
Background The antibiotics generally used in farm animals are rapidly losing their effectiveness all over the world as bacteria develop antibiotic resistance. Like some other pathogenic bacteria multidrug-resistant strains of Salmonella enterica serovar Typhimurium (S. Typhimurium) are also frequently found in animals and humans which poses a major public health concern. New strategies are needed to block the development of resistance and to prolong the life of traditional antibiotics. Thus, this study aimed to increase the efficacy of existing antibiotics against S. Typhimurium by combining them with opportunistic phenolic compounds gallic acid (GA), epicatechin, epicatechin gallate, epigallocatechin and hamamelitannin. Fractional inhibitory concentration indexes (FICI) of phenolic compound-antibiotic combinations against S. Typhimurium were determined. Based on the FICI and clinical importance, 1 combination (GA and ceftiofur) was selected for evaluating its effects on the virulence factors of this bacterium. Viability of Rattus norvegicus (IEC-6) cell in presence of this antibacterial combination was evaluated. Results Minimum inhibitory concentrations (MICs) of GA, epigallocatechin and hamamelitannin found against different strains of S. Typhimurium were 256, (512–1024), and (512–1024) μg/mL, respectively. Synergistic antibacterial effect was obtained from the combination of erythromycin-epicatechin gallate (FICI: 0.50) against S. Typhimurium. Moreover, additive effects (FICI: 0.502–0.750) were obtained from 16 combinations against this bacterium. The time-kill assay and ultrastructural morphology showed that GA-ceftiofur combination more efficiently inhibited the growth of S. Typhimurium compared to individual antimicrobials. Biofilm viability, and swimming and swarming motilities of S. Typhimurium in presence of GA-ceftiofur combination were more competently inhibited than individual antimicrobials. Viabilities of IEC-6 cells were more significantly enhanced by GA-ceftiofur combinations than these antibacterials alone. Conclusions This study suggests that GA-ceftiofur combination can be potential medication to treat S. Typhimurium-associated diarrhea and prevent S. Typhimurium-associated blood-stream infections (e.g.: fever) in farm animals, and ultimately its transmission from animal to human. Further in vivo study to confirm these effects and safety profiles in farm animal should be undertaken for establishing these combinations as medications.
Collapse
Affiliation(s)
- Md Akil Hossain
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, 39660, Republic of Korea
| | - Hae-Chul Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, 39660, Republic of Korea
| | - Kwang-Jick Lee
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, 39660, Republic of Korea
| | - Sung-Won Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, 39660, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, Republic of Korea
| | - JeongWoo Kang
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-si, 39660, Republic of Korea.
| |
Collapse
|
3
|
Lories B, Roberfroid S, Dieltjens L, De Coster D, Foster KR, Steenackers HP. Biofilm Bacteria Use Stress Responses to Detect and Respond to Competitors. Curr Biol 2020; 30:1231-1244.e4. [PMID: 32084407 PMCID: PMC7322538 DOI: 10.1016/j.cub.2020.01.065] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Bacteria use complex regulatory networks to cope with stress, but the function of these networks in natural habitats is poorly understood. The competition sensing hypothesis states that bacterial stress response systems can serve to detect ecological competition, but studying regulatory responses in diverse communities is challenging. Here, we solve this problem by using differential fluorescence induction to screen the Salmonella Typhimurium genome for loci that respond, at the single-cell level, to life in biofilms with competing strains of S. Typhimurium and Escherichia coli. This screening reveals the presence of competing strains drives up the expression of genes associated with biofilm matrix production (CsgD pathway), epithelial invasion (SPI1 invasion system), and, finally, chemical efflux and antibiotic tolerance (TolC efflux pump and AadA aminoglycoside 3-adenyltransferase). We validate that these regulatory changes result in the predicted phenotypic changes in biofilm, mammalian cell invasion, and antibiotic tolerance. We further show that these responses arise via activation of major stress responses, providing direct support for the competition sensing hypothesis. Moreover, inactivation of the type VI secretion system (T6SS) of a competitor annuls the responses to competition, indicating that T6SS-derived cell damage activates these stress response systems. Our work shows that bacteria use stress responses to detect and respond to competition in a manner important for major phenotypes, including biofilm formation, virulence, and antibiotic tolerance.
Collapse
Affiliation(s)
- Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Stefanie Roberfroid
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lise Dieltjens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - David De Coster
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
4
|
Genotoxic, Metabolic, and Oxidative Stresses Regulate the RNA Repair Operon of Salmonella enterica Serovar Typhimurium. J Bacteriol 2018; 200:JB.00476-18. [PMID: 30201777 DOI: 10.1128/jb.00476-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
The σ54 regulon in Salmonella enterica serovar Typhimurium includes a predicted RNA repair operon encoding homologs of the metazoan Ro60 protein (Rsr), Y RNAs (YrlBA), RNA ligase (RtcB), and RNA 3'-phosphate cyclase (RtcA). Transcription from σ54-dependent promoters requires that a cognate bacterial enhancer binding protein (bEBP) be activated by a specific environmental or cellular signal; the cognate bEBP for the σ54-dependent promoter of the rsr-yrlBA-rtcBA operon is RtcR. To identify conditions that generate the signal for RtcR activation in S Typhimurium, transcription of the RNA repair operon was assayed under multiple stress conditions that result in nucleic acid damage. RtcR-dependent transcription was highly induced by the nucleic acid cross-linking agents mitomycin C (MMC) and cisplatin, and this activation was dependent on RecA. Deletion of rtcR or rtcB resulted in decreased cell viability relative to that of the wild type following treatment with MMC. Oxidative stress from peroxide exposure also induced RtcR-dependent transcription of the operon. Nitrogen limitation resulted in RtcR-independent increased expression of the operon; the effect of nitrogen limitation required NtrC. The adjacent toxin-antitoxin module, dinJ-yafQ, was cotranscribed with the RNA repair operon but was not required for RtcR activation, although YafQ endoribonuclease activated RtcR-dependent transcription. Stress conditions shown to induce expression the RNA repair operon of Escherichia coli (rtcBA) did not stimulate expression of the S Typhimurium RNA repair operon. Similarly, MMC did not induce expression of the E. coli rtcBA operon, although when expressed in S Typhimurium, E. coli RtcR responds effectively to the unknown signal(s) generated there by MMC exposure.IMPORTANCE Homologs of the metazoan RNA repair enzymes RtcB and RtcA occur widely in eubacteria, suggesting a selective advantage. Although the enzymatic activities of the eubacterial RtcB and RtcA have been well characterized, the physiological roles remain largely unresolved. Here we report stress responses that activate expression of the σ54-dependent RNA repair operon (rsr-yrlBA-rtcBA) of S Typhimurium and demonstrate that expression of the operon impacts cell survival under MMC-induced stress. Characterization of the requirements for activation of this tightly regulated operon provides clues to the possible functions of operon components in vivo, enhancing our understanding of how this human pathogen copes with environmental stressors.
Collapse
|
5
|
Correction: Almeida-Dalmet, S.; et al. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes 2017, 9, 52. Genes (Basel) 2018. [PMID: 29518922 PMCID: PMC5867867 DOI: 10.3390/genes9030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Almeida-Dalmet S, Litchfield CD, Gillevet P, Baxter BK. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes (Basel) 2018; 9:genes9010052. [PMID: 29361787 PMCID: PMC5793203 DOI: 10.3390/genes9010052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Haloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR) was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.
Collapse
Affiliation(s)
- Swati Almeida-Dalmet
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Carol D Litchfield
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Patrick Gillevet
- Department of Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT 84105, USA.
| |
Collapse
|
7
|
Huang T, Yu X, Gelbič I, Guan X. RAP-PCR fingerprinting reveals time-dependent expression of development-related genes following differentiation process of Bacillus thuringiensis. Can J Microbiol 2015; 61:683-90. [DOI: 10.1139/cjm-2015-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gene expression profiles are important data to reveal the functions of genes putatively involved in crucial biological processes. RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and specifically primed reverse transcription polymerase chain reaction (RT-PCR) were combined to screen differentially expressed genes following development of a commercial Bacillus thuringiensis subsp. kurstaki strain 8010 (serotype 3a3b). Six differentially expressed transcripts (RAP1 to RAP6) were obtained. RAP1 encoded a putative triple helix repeat-containing collagen or an exosporium protein H related to spore pathogenicity. RAP2 was homologous to a ClpX protease and an ATP-dependent protease La (LonB), which likely acted as virulence factors. RAP3 was homologous to a beta subunit of propionyl-CoA carboxylase required for the development of Myxococcus xanthus. RAP4 had homology to a quinone oxidoreductase involved in electron transport and ATP formation. RAP5 showed significant homology to a uridine kinase that mediates phosphorylation of uridine and azauridine. RAP6 shared high sequence identity with 3-methyl-2-oxobutanoate-hydroxymethyltransferase (also known as ketopantoate hydroxymethyltransferase or PanB) involved in the operation of the tricarboxylic acid cycle. The findings described here would help to elucidate the molecular mechanisms underlying the differentiation process of B. thuringiensis and unravel novel pathogenic genes.
Collapse
Affiliation(s)
- Tianpei Huang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, People’s Republic of China
- Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, 350002 Fuzhou, Fujian, People’s Republic of China
| | - Xiaomin Yu
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, People’s Republic of China
| | - Ivan Gelbič
- Biological Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Xiong Guan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, People’s Republic of China
- Fujian–Taiwan Joint Center for Ecological Control of Crop Pests, 350002 Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
8
|
A replication-inhibited unsegregated nucleoid at mid-cell blocks Z-ring formation and cell division independently of SOS and the SlmA nucleoid occlusion protein in Escherichia coli. J Bacteriol 2013; 196:36-49. [PMID: 24142249 DOI: 10.1128/jb.01230-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. To investigate the nature of this coordination, the effects of inhibiting replication on Z-ring formation and cell division were tested in both synchronized and exponentially growing cells with only one replicating chromosome. When replication elongation was blocked by hydroxyurea or nalidixic acid, arrested cells contained one partially replicated, compact nucleoid located mid-cell. Cell division was strongly inhibited at or before the level of Z-ring formation. DNA cross-linking by mitomycin C delayed segregation, and the accumulation of about two chromosome equivalents at mid-cell also blocked Z-ring formation and cell division. Z-ring inhibition occurred independently of SOS, SlmA-mediated nucleoid occlusion, and MinCDE proteins and did not result from a decreased FtsZ protein concentration. We propose that the presence of a compact, incompletely replicated nucleoid or unsegregated chromosome masses at the normal mid-cell division site inhibits Z-ring formation and that the SOS system, SlmA, and MinC are not required for this inhibition.
Collapse
|
9
|
Ward WO, Swartz CD, Hanley NM, Whitaker JW, Franzén R, DeMarini DM. Mutagen structure and transcriptional response: induction of distinct transcriptional profiles in Salmonella TA100 by the drinking-water mutagen MX and its homologues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:69-79. [PMID: 19598237 DOI: 10.1002/em.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under conditions of mutagenesis by the drinking-water mutagen MX and two of its structural homologues, BA-1, and BA-4. Approximately 50% of the genes expressed differentially following MX treatment were unique to MX; the corresponding percentages for BA-1 and BA-4 were 91 and 80, respectively. Among these mutagens, there was no overlap of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or RegulonDB regulons. Among the 25 Comprehensive Microbial Resource functions altered by these mutagens, only four were altered by more than one mutagen. Thus, the three structural homologues produced distinctly different transcriptional profiles, with none having a single altered KEGG pathway in common. We tested whether structural similarity between a xenobiotic and endogenous metabolites could explain transcriptional changes. For the 830 intracellular metabolites in Salmonella that we examined, BA-1 had a high degree of structural similarity to 2-isopropylmaleate, which is the substrate for isopropylmalate isomerase. The transcription of the gene for this enzyme was suppressed twofold in BA-1-treated cells. Finally, the distinct transcriptional responses of the three structural homologues were not predicted by a set of phenotypic anchors, including mutagenic potency, cytotoxicity, mutation spectra, and physicochemical properties. Ultimately, explanations for varying transcriptional responses induced by compounds with similar structures await an improved understanding of the interactions between small molecules and the cellular machinery.
Collapse
Affiliation(s)
- William O Ward
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
10
|
Leonard PG, Ono S, Gor J, Perkins SJ, Ladbury JE. Investigation of the self-association and hetero-association interactions of H-NS and StpA from Enterobacteria. Mol Microbiol 2009; 73:165-79. [PMID: 19508284 DOI: 10.1111/j.1365-2958.2009.06754.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleoid-associated protein H-NS and its paralogue StpA are global regulators of gene expression and form an integral part of the protein scaffold responsible for DNA condensation in Escherichia coli and Salmonella typhimurium. Although protein oligomerization is a requirement for this function, it is not entirely understood how this is accomplished. We address this by reporting on the self-association of H-NS and its hetero-association with StpA. We identify residues 1-77 of H-NS as being necessary and sufficient for high-order association. A multi-technique-based approach was used to measure the effects of salt concentration on the size distribution of H-NS and the thermal stability of H-NS and StpA dimers. The thermal stability of the StpA homodimer is significantly greater than that of H-NS(1-74). Investigation of the hetero-association of H-NS and StpA proteins suggested that the association of H-NS with StpA is more stable than the self-association of either H-NS or StpA with themselves. This provides a clear understanding of the method of oligomerization of these important proteins in effecting DNA condensation and reveals that the different associative properties of H-NS and StpA allow them to perform distinct, yet complementary roles in the bacterial nucleoid.
Collapse
Affiliation(s)
- Paul G Leonard
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
11
|
Screening of genes regulated by cold shock in Shewanella piezotolerans WP3 and time course expression of cold-regulated genes. Arch Microbiol 2008; 189:549-56. [PMID: 18193200 DOI: 10.1007/s00203-007-0347-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/05/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
The differential gene transcription of a deep-sea bacterium Shewanella piezotolerans WP3 in response to cold shock was analyzed by RNA arbitrarily primed PCR. Ninety primer sets were used to scan two different RNA pools derived from the culture of cold shock and its control (culture at its optimal grown temperature). Ninety-four putative differentially expressed fragments were identified and cloned. Six out of the 94 fragments were confirmed to be truly differentially transcribed in terms of cold shock by reverse Northern dot blot and then sequenced. Sequence blast analysis showed that the six differentially transcribed genes are putative genes for zonular occludens toxin, chaperon GroEL, efflux transporter, Sua5/YciO/YrdC/YwlC family protein, betaine-aldehyde dehydrogenase, and DEAD box RNA helicase, respectively. The time course expression profiles of these six genes from 0 to 90 min upon cold shock were quantified by real-time PCR. Deletion mutation of the highest induced gene--RNA helicase gene, had no significant impact on the growth of the strain no matter upon cold shock or under permanent low temperature. It is suggested that one or more additional DEAD box RNA helicase genes compensate for the loss of the function of the mutated gene.
Collapse
|
12
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
13
|
Ward WO, Swartz CD, Porwollik S, Warren SH, Hanley NM, Knapp GW, McClelland M, DeMarini DM. Toxicogenomic analysis incorporating operon-transcriptional coupling and toxicant concentration-expression response: analysis of MX-treated Salmonella. BMC Bioinformatics 2007; 8:378. [PMID: 17925033 PMCID: PMC2225428 DOI: 10.1186/1471-2105-8-378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 10/09/2007] [Indexed: 11/25/2022] Open
Abstract
Background Deficiencies in microarray technology cause unwanted variation in the hybridization signal, obscuring the true measurements of intracellular transcript levels. Here we describe a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. To illustrate this approach, we characterized changes in global gene expression induced in Salmonella typhimurium TA100 by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), the primary mutagen in chlorinated drinking water. We used the co-expression of genes within an operon and the monotonic increases or decreases in gene expression relative to increasing toxicant concentration to augment our identification of differentially expressed genes beyond Bayesian-t analysis. Results Operon analysis increased the number of altered genes by 95% from the list identified by a Bayesian t-test of control to the highest concentration of MX. Monotonic analysis added 46% more genes. A functional analysis of the resulting 448 differentially expressed genes yielded functional changes beyond what would be expected from only the mutagenic properties of MX. In addition to gene-expression changes in DNA-damage response, MX induced changes in expression of genes involved in membrane transport and porphyrin metabolism, among other biological processes. The disruption of porphyrin metabolism might be attributable to the structural similarity of MX, which is a chlorinated furanone, to ligands indigenous to the porphyrin metabolism pathway. Interestingly, our results indicate that the lexA regulon in Salmonella, which partially mediates the response to DNA damage, may contain only 60% of the genes present in this regulon in E. coli. In addition, nanH was found to be highly induced by MX and contains a putative lexA regulatory motif in its regulatory region, suggesting that it may be regulated by lexA. Conclusion Operon and monotonic analyses improved the determination of differentially expressed genes beyond that of Bayesian-t analysis, showing that MX alters cellular metabolism involving pathways other than DNA damage. Because co-expression of similarly functioning genes also occurs in eukaryotes, this method has general applicability for improving analysis of toxicogenomic data.
Collapse
Affiliation(s)
- William O Ward
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Le Breton Y, Muller C, Auffray Y, Rincé A. New insights into the Enterococcus faecalis CroRS two-component system obtained using a differential-display random arbitrarily primed PCR approach. Appl Environ Microbiol 2007; 73:3738-41. [PMID: 17434998 PMCID: PMC1932664 DOI: 10.1128/aem.00390-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a modified random arbitrarily primed PCR approach, the operon encoding the Enterococcus faecalis JH2-2 CroRS two-component regulatory system was shown to be repressed during stationary phase, and a CroRS-regulated operon (glnQHMP) was identified. Gel retardation assays showed that the CroR regulator binds specifically to the glnQHMP promoter.
Collapse
Affiliation(s)
- Yoann Le Breton
- Laboratoire Microbiologie de l'Environnement, EA 956, USC INRA 2017, IRBA, Université de Caen, France.
| | | | | | | |
Collapse
|
15
|
Li S, Xiao X, Li J, Luo J, Wang F. Identification of genes regulated by changing salinity in the deep-sea bacterium Shewanella sp. WP3 using RNA arbitrarily primed PCR. Extremophiles 2005; 10:97-104. [PMID: 16133656 DOI: 10.1007/s00792-005-0476-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Accepted: 07/25/2005] [Indexed: 11/30/2022]
Abstract
The differential gene transcription of a deep-sea bacterium Shewanella sp. WP3 in response to changing salinity was analyzed by RNA fingerprinting using arbitrarily primed PCR (RAP-PCR). Ninety primer sets were used to scan two different RNA pools derived from cultures of 1% and 7% NaCl concentrations. Forty-three putative differential-expressed fragments were identified, cloned, and sequenced. Six out of the 43 fragments were confirmed to be truly differentially transcribed in terms of changing salinity. The deduced amino acid sequences of the six gene fragments showed highest identities (66-96%) with ribosomal protein L24, ATP binding protein, and chaperon protein HscA of Shewanella oneidensis MR-1 (Y6, Y9, and Y29); isocitrate lyase of Pseudomonas aeruginosa (Y15); peptidylprolyl cis-trans isomerase of Shewanella sp. SIB1 (Y21), glutamine synthetase of Shewanella violacea (Y25), respectively. Four genes (Y6, Y15, Y21, and Y25) were up regulated in 7% NaCl, while the other two (Y9 and Y29) contained more abundant transcripts in 1% NaCl. The data suggested that strategies involved in controlling protein synthesis, protein folding and/or trafficking, glutamate concentration, fatty acid metabolism, and substance transporting were used for salt adaptation in Shewanella sp. WP3. The expression patterns of the six genes in response to transient stress shocks including salt shock (3% NaCl shift to 12%), cold shock (15 degrees C shift to 0 degrees C), and high-hydrostatic pressure shock (0.1 MPa shift to 50 MPa) were further examined. Y29 encoding the putative HscA chaperon protein was indicated to be involved in adaptation of all the stresses tested.
Collapse
Affiliation(s)
- Shengkang Li
- College of Life Science, Zhongshan University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Frye JG, Porwollik S, Blackmer F, Cheng P, McClelland M. Host gene expression changes and DNA amplification during temperate phage induction. J Bacteriol 2005; 187:1485-92. [PMID: 15687213 PMCID: PMC545606 DOI: 10.1128/jb.187.4.1485-1492.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 11/10/2004] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium LT2 harbors four temperate prophages. The lytic cycle of these phages was induced with hydrogen peroxide or mitomycin C. Microarray analysis was used to monitor the increase in phage genome copy number and the changes in RNA expression. Phage gene transcription was classified temporally, and host genes that responded to hydrogen peroxide, mitomycin C, or phage induction were also identified. A region of the serovar Typhimurium LT2 host genome encompassing hundreds of genes, flanking the Fels-1 lambdoid prophage, was amplified manyfold during lytic induction, presumably due to Fels-1 runoff replication prior to excision, a phenomenon termed escape replication. An excisionase (xis) mutant of Fels-1 also induced escape replication but did not get packaged. Gifsy-1, a lambdoid prophage that does not normally produce escape replication, did so after deletion of either its integrase or excisionase genes. Escape replication is probably widespread; large regions of host genome amplification were also observed after phage induction in serovar Typhimurium strains SL1344 and 14028s at the suspected integration site of prophage genomes.
Collapse
Affiliation(s)
- Jonathan G Frye
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
17
|
Suvarnapunya AE, Lagassé HAD, Stein MA. The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol Microbiol 2003; 48:549-59. [PMID: 12675811 DOI: 10.1046/j.1365-2958.2003.03460.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intracellular pathogen, Salmonella enterica serovar Typhimurium, is able to proliferate in phagocytes, although reactive oxygen and nitrogen intermediates are lethal to most phagocytosed bacteria. To determine whether repair of oxidatively damaged DNA is involved in S. typhimurium intramacrophage proliferation, null mutants of the DNA base excision repair (BER) system were generated. These mutants were deficient in discrete enzymes (Deltanth, Deltanei, Deltaxth, Deltanfo) or in the defined glycosylase (Deltanth/nei) and endonuclease (Deltaxth/nfo) steps. In this study, S. typhimurium BER mutants are characterized for the first time. In vitro characterization of the Salmonella BER mutants revealed phenotypes that are mostly consistent with characterized Escherichia coli BER mutants. These strains were used to evaluate the role of BER in the context of Salmonella virulence. S. typhimurium Deltaxth and Deltaxth/nfo were significantly impaired for survival in both cultured and primary macrophages activated with interferon (IFN)-gamma. Survival of Deltaxth and Deltaxth/nfo was improved nearly to wild-type levels in activated primary macrophages lacking both phagocyte oxidase and inducible nitric oxide synthase. In the murine typhoid fever model, Deltanth/nei was fivefold attenuated and Deltaxth/nfo was 12-fold attenuated compared with wild type. These data indicate that DNA oxidation is a mechanism that macrophages use to damage intracellular Salmonella, and suggest that BER-mediated repair of this damage may be important in the establishment of Salmonella infection. We speculate that adaptation to a pathogenic lifestyle may influence the acquisition and retention of redundant BER enzymes.
Collapse
Affiliation(s)
- Akamol E Suvarnapunya
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, Stafford Hall, Room 118, University of Vermont, Burlington, VT 05405-0084, USA
| | | | | |
Collapse
|
18
|
Brzostowicz PC, Walters DM, Thomas SM, Nagarajan V, Rouvière PE. mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species. Appl Environ Microbiol 2003; 69:334-42. [PMID: 12514013 PMCID: PMC152449 DOI: 10.1128/aem.69.1.334-342.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mRNA differential display has been used to identify cyclohexanone oxidation genes in a mixed microbial community derived from a wastewater bioreactor. Thirteen DNA fragments randomly amplified from the total RNA of an enrichment subculture exposed to cyclohexanone corresponded to genes predicted to be involved in the degradation of cyclohexanone. Nine of these DNA fragments are part of genes encoding three distinct Baeyer-Villiger cyclohexanone monooxygenases from three different bacterial species present in the enrichment culture. In Arthrobacter sp. strain BP2 and Rhodococcus sp. strain Phi2, the monooxygenase is part of a gene cluster that includes all the genes required for the degradation of cyclohexanone, while in Rhodococcus sp. strain Phi1 the genes surrounding the monooxygenase are not predicted to be involved in this degradation pathway but rather seem to belong to a biosynthetic pathway. Furthermore, in the case of Arthrobacter strain BP2, three other genes flanking the monooxygenase were identified by differential display, demonstrating that the repeated sampling of bacterial operons shown earlier for a pure culture (D. M. Walters, R. Russ, H. Knackmuss, and P. E. Rouvière, Gene 273:305-315, 2001) is also possible for microbial communities. The activity of the three cyclohexanone monooxygenases was confirmed and characterized following their expression in Escherichia coli.
Collapse
Affiliation(s)
- Patricia C Brzostowicz
- DuPont Central Research and Development, DuPont Experimental Station, Wilmington, Delaware 19880-0328, USA
| | | | | | | | | |
Collapse
|
19
|
Bunny K, Liu J, Roth J. Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage. J Bacteriol 2002; 184:6235-49. [PMID: 12399494 PMCID: PMC151935 DOI: 10.1128/jb.184.22.6235-6249.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LexA protein of Escherichia coli represses the damage-inducible SOS regulon, which includes genes for repair of DNA. Surprisingly, lexA null mutations in Salmonella enterica are lethal even with a sulA mutation, which corrects lexA lethality in E. coli. Nine suppressors of lethality isolated in a sulA mutant of S. enterica had lost the Fels-2 prophage, and seven of these (which grew better) had also lost the Gifsy-1 and Gifsy-2 prophages. All three phage genomes included a homologue of the tum gene of coliphage 186, which encodes a LexA-repressed cI antirepressor. The tum homologue of Fels-2 was responsible for lexA lethality and had a LexA-repressed promoter. This basis of lexA lethality was unexpected because the four prophages of S. enterica LT2 are not strongly UV inducible and do not sensitize strains to UV killing. In S. enterica, lexA(Ind(-)) mutants have the same phenotypes as their E. coli counterparts. Although lexA null mutants express their error-prone DinB polymerase constitutively, they are not mutators in either S. enterica or E. coli.
Collapse
Affiliation(s)
- Kim Bunny
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
20
|
Abstract
Changes in gene expression after treatment of Escherichia coli cultures with mitomycin C were assessed using gene array technology. Unexpectedly, a large number of genes (nearly 30% of all genes) displayed significant changes in their expression level. Analysis and classification of expression profiles of the corresponding genes allowed us to assign this large number of genes into one or two dozen small clusters of genes with similar expression profiles. This assignment allowed us to describe systematically the changes in the level of gene expression in response to DNA damage. Among the damage-induced genes, more than 100 are novel. From those genes involved in DNA metabolism that have not previously been shown to be induced by DNA damage, the mutS gene involved in mismatch repair is especially noteworthy. In addition to the SOS response, we observed the induction of other stress response pathways, such as those of oxidative stress and osmotic protection. Among the genes that are downregulated in response to DNA damage are numerous protein biosynthesis genes. Analysis of the gene expression data highlighted the essential involvement of sigma(s)-regulated genes and the general stress response network in the response to DNA damage.
Collapse
Affiliation(s)
- Pavel P Khil
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Daigle F, Graham JE, Curtiss R. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol 2001; 41:1211-22. [PMID: 11555299 DOI: 10.1046/j.1365-2958.2001.02593.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella enterica serovar Typhi (S. typhi) is a human-restricted pathogen which causes typhoid fever. Relatively little is known about S. typhi host interaction as animal models of this disease are severely limited by the lack of virulence of S. typhi in other hosts. The virulence of other Salmonella serovars in animal models is dependent on the abilities of these bacteria to survive within host macrophages. We have used selective capture of transcribed sequences (SCOTS) to identify S. typhi genes expressed during growth in human macrophages. This positive cDNA selection technique identified 28 distinct clones representing previously identified as well as novel, uncharacterized and hypothetical gene sequences that are expressed intracellularly. Transcripts for the Vi capsular antigen and genes whose products are involved in stress responses and nutrient acquisition were obtained from intracellular bacteria using SCOTS. Most of these clones are present in the S. typhimurium genome and are also expressed in murine macrophages. Nineteen of these gene sequences were disrupted insertionally in S. typhi, and most of the resulting mutants exhibited a lower level of survival within macrophages compared with the wild-type parent strain. Mutant strains, transformed with a copy of a wild-type gene, exhibited a macrophage survival level similar to that of the parental strain.
Collapse
Affiliation(s)
- F Daigle
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO 63130, USA
| | | | | |
Collapse
|
22
|
Walters DM, Russ R, Knackmuss HJ, Rouvière PE. High-density sampling of a bacterial operon using mRNA differential display. Gene 2001; 273:305-15. [PMID: 11595177 DOI: 10.1016/s0378-1119(01)00597-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have implemented a simplified high throughput approach to differential display in order to identify transcriptionally regulated genes in bacteria. In contrast with the few previous applications of differential display to prokaryotes, we use a large number of primers which allows for a high-density sampling of the mRNA population and the identification of many differentially amplified DNA fragments. From the overlap of these short sequences, long contiguous sequences that encode several genes can be assembled. The multiplicity of sampling provides a strong indication that the genes identified are indeed differentially regulated. As a test case, we looked for the genes involved in the degradation of 2,4-dinitrophenol (2,4-DNP) in a Rhodococcus erythropolis strain, HL PM-1. In this experiment a long polycistronic mRNA was sampled repeatedly. The induction of these genes by 2,4-DNP was confirmed by dot blot analysis and two of them were confirmed to be involved in the degradation of 2,4-DNP. This work shows that mRNA differential display is an important tool for the identification of metabolic genes in prokaryotes.
Collapse
MESH Headings
- 2,4-Dinitrophenol/metabolism
- 2,4-Dinitrophenol/pharmacology
- Amino Acid Sequence
- Bacterial Proteins/drug effects
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Molecular Sequence Data
- Operon/genetics
- Picrates/metabolism
- Picrates/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rhodococcus/drug effects
- Rhodococcus/genetics
- Rhodococcus/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Time Factors
Collapse
Affiliation(s)
- D M Walters
- Central Research and Development, E. I. DuPont de Nemours Co., Wilmington, DE 19800, USA
| | | | | | | |
Collapse
|
23
|
Bidle KA, Bartlett DH. RNA arbitrarily primed PCR survey of genes regulated by ToxR in the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 2001; 183:1688-93. [PMID: 11160100 PMCID: PMC95054 DOI: 10.1128/jb.183.5.1688-1693.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are currently investigating the role of ToxR-mediated gene regulation in Photobacterium profundum strain SS9. SS9 is a moderately piezophilic ("pressure loving") psychrotolerant marine bacterium belonging to the family Vibrionaceae. In Vibrio cholerae, ToxR is a transmembrane DNA binding protein involved in mediating virulence gene expression in response to various environmental signals. A homolog to V. cholerae ToxR that is necessary for pressure-responsive gene expression of two outer membrane protein-encoding genes was previously found in SS9. To search for additional genes regulated by ToxR in SS9, we have used RNA arbitrarily primed PCR (RAP-PCR) with wild-type and toxR mutant strains of SS9. Seven ToxR-activated transcripts and one ToxR-repressed transcript were identified in this analysis. The cDNAs corresponding to these partial transcripts were cloned and sequenced, and ToxR regulation of their genes was verified. The products of these genes are all predicted to fall into one or both of two functional categories, those whose products alter membrane structure and/or those that are part of a starvation response. The transcript levels of all eight newly identified genes were also characterized as a function of hydrostatic pressure. Various patterns of pressure regulation were observed, indicating that ToxR activation or repression cannot be used to predict the influence of pressure on gene expression in SS9. These results provide further information on the nature of the ToxR regulon in SS9 and indicate that RAP-PCR is a useful approach for the discovery of new genes under the control of global regulatory transcription factors.
Collapse
Affiliation(s)
- K A Bidle
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | | |
Collapse
|
24
|
Sonnenfield JM, Burns CM, Higgins CF, Hinton JC. The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie 2001; 83:243-9. [PMID: 11278075 DOI: 10.1016/s0300-9084(01)01232-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The StpA protein is closely related to H-NS, the well-characterised global regulator of gene expression which is a major component of eubacterial chromatin. Despite sharing a very high degree of sequence identify and having biochemical properties in common with H-NS, the physiological function of StpA remains unknown. We show that StpA exhibits similar DNA-binding activities to H-NS. Although both display a strong preference for binding to curved DNA, StpA binds DNA with a four-fold higher affinity than H-NS, with K(d)s of 0.7 microM and 2.8 microM, respectively. It has previously been reported that expression of stpA is derepressed in an hns mutant. We have quantified the amount of StpA protein produced under this condition and find it to be only one-tenth the level of H-NS protein in wild-type cells. Our findings explain why the presence of StpA does not compensate for the lack of H-NS in an hns mutant, and why the characteristic pleiotropic hns mutant phenotype is observed.
Collapse
Affiliation(s)
- J M Sonnenfield
- Nuffield Department of Clinical Biochemistry, Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | |
Collapse
|