1
|
Swindell J, Dos Santos PC. Interactions with sulfur acceptors modulate the reactivity of cysteine desulfurases and define their physiological functions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119794. [PMID: 39033933 DOI: 10.1016/j.bbamcr.2024.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Sulfur-containing biomolecules such as [FeS] clusters, thiamin, biotin, molybdenum cofactor, and sulfur-containing tRNA nucleosides are essential for various biochemical reactions. The amino acid l-cysteine serves as the major sulfur source for the biosynthetic pathways of these sulfur-containing cofactors in prokaryotic and eukaryotic systems. The first reaction in the sulfur mobilization involves a class of pyridoxal-5'-phosphate (PLP) dependent enzymes catalyzing a Cys:sulfur acceptor sulfurtransferase reaction. The first half of the catalytic reaction involves a PLP-dependent CS bond cleavage, resulting in a persulfide enzyme intermediate. The second half of the reaction involves the subsequent transfer of the thiol group to a specific acceptor molecule, which is responsible for the physiological role of the enzyme. Structural and biochemical analysis of these Cys sulfurtransferase enzymes shows that specific protein-protein interactions with sulfur acceptors modulate their catalytic reactivity and restrict their biochemical functions.
Collapse
Affiliation(s)
- Jimmy Swindell
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America.
| |
Collapse
|
2
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
3
|
The Cysteine Desulfurase IscS Is a Significant Target of 2-Aminoacrylate Damage in Pseudomonas aeruginosa. mBio 2022; 13:e0107122. [PMID: 35652590 PMCID: PMC9239102 DOI: 10.1128/mbio.01071-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa encodes eight members of the Rid protein superfamily. PA5339, a member of the RidA subfamily, is required for full growth and motility of P. aeruginosa. Our understanding of RidA integration into the metabolic network of P. aeruginosa is at an early stage, with analyses largely guided by the well-established RidA paradigm in Salmonella enterica. A P. aeruginosa strain lacking RidA has a growth and motility defect in a minimal glucose medium, both of which are exacerbated by exogenous serine. All described ridA mutant phenotypes are rescued by supplementation with isoleucine, indicating the primary generator of the reactive metabolite 2-aminoacrylate (2AA) in ridA mutants is a threonine/serine dehydratase. However, the critical (i.e., phenotype determining) targets of 2AA leading to growth and motility defects in P. aeruginosa remained undefined. This study was initiated to probe the effects of 2AA stress on the metabolic network of P. aeruginosa by defining the target(s) of 2AA that contribute to physiological defects of a ridA mutant. Suppressor mutations that restored growth to a P. aeruginosa ridA mutant were isolated, including an allele of iscS (encoding cysteine desulfurase). Damage to IscS was identified as a significant cause of growth defects of P. aeruginosa during enamine stress. A suppressing allele encoded an IscS variant that was less sensitive to damage by 2AA, resulting in a novel mechanism of phenotypic suppression of a ridA mutant. IMPORTANCE 2-aminoacrylate (2AA) is a reactive metabolite formed as an intermediate in various enzymatic reactions. In the absence of RidA, this metabolite can persist in vivo where it attacks and inactivates specific PLP-dependent enzymes, causing metabolic defects and organism-specific phenotypes. This work identifies the cysteine desulfurase IscS as the critical target of 2AA in Pseudomonas aeruginosa. A single substitution in IscS decreased sensitivity to 2AA and suppressed growth phenotypes of a ridA mutant. Here, we provide the first report of suppression of a ridA mutant phenotype by altering the sensitivity of a target enzyme to 2AA.
Collapse
|
4
|
Genetic analysis using vitamin B 6 antagonist 4-deoxypyridoxine uncovers a connection between pyridoxal 5'-phosphate and coenzyme A metabolism in Salmonella enterica. J Bacteriol 2022; 204:e0060721. [PMID: 35099985 DOI: 10.1128/jb.00607-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for organisms in all three domains of life. Despite the central role of PLP, many aspects of vitamin B6 metabolism, including its integration with other biological pathways, are not fully understood. In this study, we examined the metabolic perturbations caused by the vitamin B6 antagonist 4-deoxypyridoxine (dPN) in a ptsJ mutant of Salmonella enterica serovar Typhimurium LT2. Our data suggest that PdxK (PL/PN/PM kinase, EC 2.7.1.35) phosphorylates dPN to 4-deoxypyridoxine 5'-phosphate (dPNP), which in turn can compromise the de novo biosynthesis of PLP. The data are consistent with the hypothesis that accumulated dPNP inhibits GlyA (serine hydroxymethyltransferase, EC 2.1.2.1) and/or GcvP (glycine decarboxylase, EC 1.4.4.2), two PLP-dependent enzymes involved in the generation of one-carbon units. Our data suggest this inhibition leads to reduced flux to coenzyme A precursors and subsequently lower synthesis of CoA and thiamine. This study uncovers a link between vitamin B6 metabolism and the biosynthesis of CoA and thiamine, highlighting the integration of biochemical pathways in microbes. IMPORTANCE PLP is a ubiquitous cofactor required by enzymes in diverse metabolic networks. The data herein expand our understanding of the toxic effects of dPN, a vitamin B6 antagonist often used to mimic vitamin B6 deficiency and to study PLP-dependent enzyme kinetics. In addition to de novo PLP biosynthesis, we define a metabolic connection between vitamin B6 metabolism and synthesis of thiamine and CoA. This work provides a foundation for the use of dPN to study vitamin B6 metabolism in other organisms.
Collapse
|
5
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
6
|
Over-expression of Isu1p and Jac1p increases the ethanol tolerance and yield by superoxide and iron homeostasis mechanism in an engineered Saccharomyces cerevisiae yeast. J Ind Microbiol Biotechnol 2019; 46:925-936. [PMID: 30963327 DOI: 10.1007/s10295-019-02175-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The ethanol stress response in ethanologenic yeast during fermentation involves the swishing of several adaptation mechanisms. In Saccharomyces cerevisiae, the Jac1p and Isu1p proteins constitute the scaffold system for the Fe-S cluster assembly. This study was performed using the over-expression of the Jac1p and Isu1p in the industrially utilized S. cerevisiae UMArn3 strain, with the objective of improving the Fe-S assembly/recycling, and thus counteracting the toxic effects of ethanol stress during fermentation. The UMArn3 yeast was transformed with both the JAC1-His and ISU1-His genes-plasmid contained. The Jac1p and Isu1p His-tagged proteins over-expression in the engineered yeasts was confirmed by immunodetection, rendering increases in ethanol tolerance level from a DL50 = ~ 4.5% ethanol (v/v) to DL50 = ~ 8.2% ethanol (v/v), and survival up 90% at 15% ethanol (v/v) comparing to ~ 50% survival in the control strain. Fermentation by the engineered yeasts showed that the ethanol production was increased, producing 15-20% more ethanol than the control yeast. The decrease of ROS and free-iron accumulation was observed in the engineered yeasts under ethanol stress condition. The results indicate that Jac1p and Isu1p over-expression in the S. cerevisiae UMArn3.3 yeast increased its ethanol tolerance level and ethanol production by a mechanism that involves ROS and iron homeostasis related to the biogenesis/recycling of Fe-S clusters dependent proteins.
Collapse
|
7
|
Benoit SL, Holland AA, Johnson MK, Maier RJ. Iron-sulfur protein maturation in Helicobacter pylori: identifying a Nfu-type cluster carrier protein and its iron-sulfur protein targets. Mol Microbiol 2018; 108:379-396. [PMID: 29498770 DOI: 10.1111/mmi.13942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori is anomalous among non nitrogen-fixing bacteria in containing an incomplete NIF system for Fe-S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU-depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild-type (WT) strains. The hp1492 gene, encoding a putative Nfu-type Fe-S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one [2Fe-2S] or [4Fe-4S] cluster/dimer, based on analytical, UV-visible absorption/CD and resonance Raman studies. A bacterial two-hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe-S-containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe-S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe-S clusters in H. pylori.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Ashley A Holland
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Robert J Maier
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Clark IC, Youngblut M, Jacobsen G, Wetmore KM, Deutschbauer A, Lucas L, Coates JD. Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ Microbiol 2015; 18:3342-3354. [PMID: 26411776 DOI: 10.1111/1462-2920.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Genes important for growth of Pseudomonas stutzeri PDA on chlorate were identified using a randomly DNA bar-coded transposon mutant library. During chlorate reduction, mutations in genes encoding the chlorate reductase clrABC, predicted molybdopterin cofactor chaperon clrD, molybdopterin biosynthesis and two genes of unknown function (clrE, clrF) had fitness defects in pooled mutant assays (Bar-seq). Markerless in-frame deletions confirmed that clrA, clrB and clrC were essential for chlorate reduction, while clrD, clrE and clrF had less severe growth defects. Interestingly, the key detoxification gene cld was essential for chlorate reduction in isogenic pure culture experiments, but showed only minor fitness defects in Bar-seq experiments. We hypothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar-seq library contained an intact cld. In support of this, Δcld grew with wild-type PDA or ΔclrA, and purified Cld also restored growth to the Δcld mutant. Expanding on this, wild-type PDA and a Δcld mutant of the perchlorate reducer Azospira suillum PS grew on perchlorate in co-culture, but not individually. These results demonstrate that co-occurrence of cld and a chloroxyanion reductase within a single organism is not necessary and raises the possibility of syntrophic (per)chlorate respiration in the environment.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matt Youngblut
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Gillian Jacobsen
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren Lucas
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Abstract
This review describes the two main systems, namely the Isc (iron-sulfur cluster) and Suf (sulfur assimilation) systems, utilized by Escherichia coli and Salmonella for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In E. coli, fdx gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in E. coli and Salmonella. Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.
Collapse
|
10
|
Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 2015; 6:148. [PMID: 25941533 PMCID: PMC4403557 DOI: 10.3389/fgene.2015.00148] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/30/2015] [Indexed: 01/08/2023] Open
Abstract
The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40-65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements.
Collapse
Affiliation(s)
- Stefanía Magnúsdóttir
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Dmitry Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences and Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
11
|
Nakayama T, Yonekura SI, Yonei S, Zhang-Akiyama QM. Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress. Genes Genet Syst 2014; 88:175-88. [PMID: 24025246 DOI: 10.1266/ggs.88.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
E. coli YdbK is predicted to be a pyruvate:flavodoxin oxidoreductase (PFOR). However, enzymatic activity and the regulation of gene expression of it are not well understood. In this study, we found that E. coli cells overexpressing the ydbK gene had enhanced PFOR activity, indicating the product of ydbK to be a PFOR. The PFOR was labile to oxygen. The expression of ydbK was induced by superoxide generators such as methyl viologen (MV) in a SoxS-dependent manner after a lag period. We identified a critical element upstream of ydbK gene required for the induction by MV and proved direct binding of SoxS to the element. E. coli ydbK mutant was highly sensitive to MV, which was enhanced by additional inactivation of fpr gene encoding ferredoxin (flavodoxin):NADP(H) reductase (FPR). Aconitase activity, a superoxide sensor, was more extensively decreased by MV in the E. coli ydbK mutant than in wild-type strain. The induction level of soxS gene was higher in E. coli ydbK fpr double mutant than in wild-type strain. These results indicate that YdbK helps to protect cells from oxidative stress. It is possible that YdbK maintains the cellular redox state together with FPR and is involved in the reduction of oxidized proteins including SoxR in the late stages of the oxidative stress response in E. coli.
Collapse
Affiliation(s)
- Takayuki Nakayama
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University
| | | | | | | |
Collapse
|
12
|
Bhubhanil S, Niamyim P, Sukchawalit R, Mongkolsuk S. Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. MICROBIOLOGY-SGM 2013; 160:79-90. [PMID: 24194559 DOI: 10.1099/mic.0.068643-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Agrobacterium tumefaciens genome contains a cluster of genes that are predicted to encode Fe-S cluster assembly proteins, and this cluster is known as the sufS2BCDS1XA operon. sufS2 is the first gene in the operon, and it was inactivated to determine its physiological function. The sufS2 mutant exhibited a small colony phenotype, grew slower than the wild-type strain and was more sensitive to various oxidants including peroxide, organic hydroperoxide and superoxide. The sufS2 gene was negatively regulated by iron response regulator (Irr) and rhizobial iron regulator (RirA) under low and high iron conditions, respectively, and was inducible in response to oxidative stress. The oxidant-induced expression of sufS2 was controlled by Irr, RirA and an additional but not yet identified mechanism. sufS2 was required for RirA activity in the repression of a sufS2 promoter-lacZ fusion. RirA may use Fe-S as its cofactor. sufS2 disruption may cause a defect in the Fe-S supply and could thereby affect the RirA activity. The three conserved cysteine residues (C91, C99 and C105) in RirA were predicted to coordinate with the Fe-S cluster and were shown to be essential for RirA repression of the sufS2-lacZ fusion. These results suggested that sufS2 is important for the survival of A. tumefaciens.
Collapse
Affiliation(s)
- Sakkarin Bhubhanil
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Phettree Niamyim
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.,Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
13
|
Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate. J Bacteriol 2011; 194:576-83. [PMID: 22101844 DOI: 10.1128/jb.05988-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in iron-sulfur ([Fe-S]) cluster metabolism. An apbC mutant is unable to grow on tricarballylate as a carbon source. Based on the ability of ApbC to transfer an [Fe-S] cluster to an apoprotein, this defect was attributed to poor loading of the [Fe-S] cluster-containing TcuB enzyme. Consistent with these observations, a previous study showed that overexpression of iscU, which encodes an [Fe-S] cluster molecular scaffold, suppressed the tricarballylate growth defect of an apbC mutant (J. M. Boyd, J. A. Lewis, J. C. Escalante-Semerena, and D. M. Downs, J. Bacteriol. 190:4596-4602, 2008). In this study, tcuC mutations that suppress the growth defect of an apbC mutant by decreasing the intracellular concentration of tricarballylate are described. Collectively, the suppressor analyses support a model in which reduced TcuB activity prevents growth on tricarballylate by (i) decreasing catabolism and (ii) allowing levels of tricarballylate that are toxic to the cell to accumulate. The apbC tcuC mutant strains described here reveal that the balance of the metabolic network can be altered by the accumulation of deleterious metabolites.
Collapse
|
14
|
Majtan T, Frerman FE, Kraus JP. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation. Biometals 2010; 24:335-47. [PMID: 21184140 DOI: 10.1007/s10534-010-9400-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/14/2010] [Indexed: 02/01/2023]
Abstract
Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe-S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado at Denver, 12800 E 19th Ave, Aurora, CO 80045, USA
| | | | | |
Collapse
|
15
|
Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One 2010; 5:e14091. [PMID: 21124828 PMCID: PMC2991311 DOI: 10.1371/journal.pone.0014091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
16
|
Koenigsknecht MJ, Downs DM. Thiamine biosynthesis can be used to dissect metabolic integration. Trends Microbiol 2010; 18:240-7. [PMID: 20382023 PMCID: PMC2906612 DOI: 10.1016/j.tim.2010.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
The emergence of systems biology has re-emphasized the advantages of understanding biological processes with a global perspective. One biological process amenable to global approaches is microbial metabolism. This review describes a model system that contributes to the goals of systems biology by experimentally defining metabolic integration found in a bacterial cell and thus providing data needed for implementation and interpretation of systems approaches. We have taken a largely unbiased in vivo approach centered on thiamine biosynthesis to identify new metabolic components and connections, and to explore uncharacterized paradigms of the integration between them. This article summarizes recent results from this approach that include the identification of the function of unknown genes, connections between cofactors biosynthesis and thiamine biosynthesis, and how metabolites from one biosynthetic pathway can be used in thiamine biosynthesis.
Collapse
Affiliation(s)
| | - Diana M. Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
17
|
Thorgersen MP, Downs DM. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica. MICROBIOLOGY-SGM 2009; 155:295-304. [PMID: 19118370 DOI: 10.1099/mic.0.020727-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The response of a cell to integrated stresses was investigated using environmental and/or genetic perturbations that disrupted labile iron homeostasis and increased oxidative stress. The effects of the perturbations were monitored as nutritional requirements, and were traced to specific enzymic targets. A yggX gshA cyaY mutant strain required exogenous thiamine and methionine for growth. The thiamine requirement, which had previously been linked to the Fe-S cluster proteins ThiH and ThiC, was responsive to oxidative stress and was not directly affected by manipulation of the iron pool. The methionine requirement was associated with the activity of sulfite reductase, an enzyme that appeared responsive to disruption of labile iron homeostasis. The results are incorporated in a model to suggest how the activity of iron-containing enzymes not directly sensitive to oxygen can be decreased by oxidation of the labile iron pool.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica. J Bacteriol 2009; 191:2069-76. [PMID: 19136587 DOI: 10.1128/jb.01577-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica, tricarballylate (Tcb) catabolism requires function of TcuB, a membrane-bound protein that contains [4Fe-4S] clusters and heme. TcuB transfers electrons from reduced flavin adenine dinucleotide in the Tcb dehydrogenase (TcuA) to electron acceptors in the membrane. We recently showed that functions needed to assemble [Fe-S] clusters (i.e., the iscRSUA-hscBA-fdx operon) compensate for the lack of ApbC during growth of an apbC strain on Tcb. ApbC had been linked to [Fe-S] cluster metabolism, and we showed that an apbC strain had decreased TcuB activity. Here we report findings that expand our understanding of the regulation of expression of the iscRSUA genes in Salmonella enterica. We investigated why low levels of glucose or other saccharides restored growth of an apbC strain on Tcb. Here we report the following findings. (i) A < or =1 mM concentration of glucose, fructose, ribose, or glycerol restores growth of an apbC strain on Tcb. (ii) The saccharide effect results in increased levels of TcuB activity. (iii) The saccharide effect depends on the global regulatory protein Cra. (iv) Putative Cra binding sites are present in the regulatory region of the iscRSUA operon. (v) Cra protein binds to all three sites in the iscRSUA promoter region in a concentration-dependent fashion. To our knowledge, this is the first report of the involvement of Cra in [Fe-S] cluster assembly.
Collapse
|
19
|
Analysis of yggX and gshA mutants provides insights into the labile iron pool in Salmonella enterica. J Bacteriol 2008; 190:7608-13. [PMID: 18835989 DOI: 10.1128/jb.00639-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Salmonella enterica lacking YggX and the cellular reductant glutathione exhibit defects similar to those resulting from iron deficiency and oxidative stress. Mutant strains are sensitive to hydrogen peroxide and superoxide, deregulate the expression of the Fur-regulated gene entB, and fail to grow on succinate medium. Suppression of some yggX gshA mutant phenotypes by the cell-permeable iron chelator deferoxamine allowed the conclusion that increased levels of cellular Fenton chemistry played a role in the growth defects. The data presented are consistent with a scenario in which glutathione acts as a physiological chelator of the labile iron pool and in which YggX acts upstream of the labile iron pool by preventing superoxide toxicity.
Collapse
|
20
|
Abstract
Iron-sulfur (Fe-S) clusters are required for critical biochemical pathways, including respiration, photosynthesis, and nitrogen fixation. Assembly of these iron cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. Multiple Fe-S cluster assembly pathways are present in bacteria to carry out basal cluster assembly, stress-responsive cluster assembly, and enzyme-specific cluster assembly. Although biochemical and genetic characterization is providing a partial picture of in vivo Fe-S cluster assembly, a number of mechanistic questions remain unanswered. Furthermore, new factors involved in Fe-S cluster assembly and repair have recently been identified and are expanding the complexity of current models. Here we attempt to summarize recent advances and to highlight new avenues of research in the field of Fe-S cluster assembly.
Collapse
|
21
|
Salmonella enterica requires ApbC function for growth on tricarballylate: evidence of functional redundancy between ApbC and IscU. J Bacteriol 2008; 190:4596-602. [PMID: 18441067 DOI: 10.1128/jb.00262-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. Here we show that apbC is required for S. enterica to use tricarballylate as a carbon and energy source. Tricarballylate catabolism requires three gene products, TcuA, TcuB, and TcuC. Of relevance to this work is the TcuB protein, which has two [4Fe-4S] clusters required for function, making it a logical target for the apbC effect. TcuB activity was 100-fold lower in an apbC mutant than in the isogenic apbC(+) strain. Genetic data show that derepression of the iscRSUA-hscAB-fdx-orf3 operon or overexpression of iscU from a plasmid compensates for the lack of ApbC during growth on tricarballylate. The studies described herein provide evidence that the scaffold protein IscU has a functional overlap with ApbC and that ApbC function is involved in the synthesis of active TcuB.
Collapse
|
22
|
Thorgersen MP, Downs DM. Cobalt targets multiple metabolic processes in Salmonella enterica. J Bacteriol 2007; 189:7774-81. [PMID: 17720790 PMCID: PMC2168735 DOI: 10.1128/jb.00962-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/12/2007] [Indexed: 11/20/2022] Open
Abstract
Cobalt is essential for growth of Salmonella enterica and other organisms, yet this metal can be toxic when present in excess. Wild-type Salmonella exhibits several metabolic defects when grown in the presence of cobalt, some of which generate visible growth consequences. Work herein identifies sulfur assimilation, iron homeostasis, and Fe-S cluster metabolism as targets for cobalt toxicity. In each case it is proposed that cobalt exerts its effect by one of two mechanisms: direct competition with iron or indirectly through a mechanism that involves the status of reduced thiols in the cell. Cobalt toxicity results in decreased siroheme production, increased expression of the Fur regulon, and decreased activity of Fe-S cluster proteins. The consequences of reduced sulfite reductase activity in particular are exacerbated by the need for glutathione in cobalt resistance. Significantly, independent metabolic perturbations could be detected at cobalt concentrations below those required to generate a detectable growth defect.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
23
|
Abstract
Metabolism encompasses the biochemical basis of life and as such spans all biological disciplines. Many decades of basic research, primarily in microbes, have resulted in extensive characterization of metabolic components and regulatory paradigms. With this basic knowledge in hand and the technologies currently available, it has become feasible to move toward an understanding of microbial metabolism as a system rather than as a collection of component parts. Insight into the system will be generated by continued efforts to rigorously define metabolic components combined with renewed efforts to discover components and connections using in vivo-driven approaches. On the tail of a detailed understanding of components and connections that comprise metabolism will come the ability to generate a comprehensive mathematical model that describes the system. While microbes provide the logical organism for this work, the value of such a model would span biological disciplines. Described herein are approaches that can provide insight into metabolism and caveats of their use. The goal of this review is to emphasize that in silico, in vitro, and in vivo approaches must be used in combination to achieve a full understanding of microbial metabolism.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
24
|
Abstract
Sulfur is a functionally important element of living matter. Incorporation into biomolecules occurs by two basic strategies. Sulfide is added to an activated acceptor in the biosynthesis of cysteine, from which methionine, coenzyme A and a number of biologically important thiols can be constructed. By contrast, the biosyntheses of iron sulfur clusters, cofactors such as thiamin, molybdopterin, biotin and lipoic acid, and the thio modification of tRNA require an activated sulfur species termed persulfidic sulfur (R-S-SH) instead of sulfide. Persulfidic sulfur is produced enzymatically with the IscS protein, the SufS protein and rhodanese being the most prominent biocatalysts. This review gives an overview of sulfur incorporation into biomolecules in prokaryotes with a special emphasis on the properties and the enzymatic generation of persulfidic sulfur as well as its use in biosynthetic pathways.
Collapse
Affiliation(s)
- Dorothea Kessler
- Biochemiezentrum Heidelberg, Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
25
|
Dougherty MJ, Downs DM. A connection between iron-sulfur cluster metabolism and the biosynthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica. MICROBIOLOGY-SGM 2006; 152:2345-2353. [PMID: 16849799 DOI: 10.1099/mic.0.28926-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Several cellular pathways have been identified which affect the efficiency of thiamine biosynthesis in Salmonella enterica. Mutants defective in iron-sulfur (Fe-S) cluster metabolism are less efficient at synthesis of the pyrimidine moiety of thiamine. These mutants are compromised for the conversion of aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), not the synthesis of AIR. The gene product ThiC contains potential ligands for an Fe-S cluster that are required for function in vivo. The conversion of AIR to HMP-P is sensitive to oxidative stress, and variants of ThiC have been identified that have increased sensitivity to oxidative growth conditions. The data are consistent with ThiC or an as-yet-unidentified protein involved in HMP-P synthesis containing an Fe-S cluster required for its physiological function.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| |
Collapse
|
26
|
Lundgren HK, Björk GR. Structural alterations of the cysteine desulfurase IscS of Salmonella enterica serovar Typhimurium reveal substrate specificity of IscS in tRNA thiolation. J Bacteriol 2006; 188:3052-62. [PMID: 16585765 PMCID: PMC1447000 DOI: 10.1128/jb.188.8.3052-3062.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cysteine desulfurase IscS in Salmonella enterica serovar Typhimurium is required for the formation of all four thiolated nucleosides in tRNA, which is thought to occur via two principally different biosynthetic pathways. The synthesis of 4-thiouridine (s(4)U) and 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) occurs by a transfer of sulfur from IscS via various proteins to the target nucleoside in the tRNA, and no iron-sulfur cluster protein participates, whereas the synthesis of 2-thiocytidine (s(2)C) and N(6)-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A) is dependent on iron-sulfur cluster proteins, whose formation and maintenance depend on IscS. Accordingly, inactivation of IscS should result in decreased synthesis of all thiolated nucleosides. We selected mutants defective either in the synthesis of a thiolated nucleoside (mnm(5)s(2)U) specific for the iron-sulfur protein-independent pathway or in the synthesis of a thiolated nucleoside (ms(2)io(6)A) specific for the iron-sulfur protein-dependent pathway. Although we found altered forms of IscS that influenced the synthesis of all thiolated nucleosides, consistent with the model, we also found mutants defective in subsets of thiolated nucleosides. Alterations in the C-terminal region of IscS reduced the level of only ms(2)io(6)A, suggesting that the synthesis of this nucleoside is especially sensitive to minor aberrations in iron-sulfur cluster transfer activity. Our results suggest that IscS has an intrinsic substrate specificity in how it mediates sulfur mobilization and/or iron-sulfur cluster formation and maintenance required for thiolation of tRNA.
Collapse
Affiliation(s)
- Hans K Lundgren
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
27
|
Vivas E, Skovran E, Downs DM. Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo. J Bacteriol 2006; 188:1175-9. [PMID: 16428423 PMCID: PMC1347345 DOI: 10.1128/jb.188.3.1175-1179.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/11/2005] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica, the isc operon contains genes necessary for the synthesis of Fe-S clusters and strains lacking this operon have severe defects in a variety of cellular processes. Other cellular loci that impact Fe-S cluster synthesis to a lesser extent have been described. The cyaY locus encodes a frataxin homolog, and it is shown here that lesions in this locus affect Fe-S cluster metabolism. When present in combination with other lesions, mutations in cyaY can result in a strain with more severe defects than those lacking the isc locus.
Collapse
Affiliation(s)
- E Vivas
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706-1502, USA
| | | | | |
Collapse
|
28
|
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and evolutionary ancient prosthetic groups that are required to sustain fundamental life processes. Owing to their remarkable structural plasticity and versatile chemical/electronic features [Fe-S] clusters participate in electron transfer, substrate binding/activation, iron/sulfur storage, regulation of gene expression, and enzyme activity. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Three different types of [Fe-S] cluster biosynthetic systems have been discovered, and all of them are mechanistically unified by the requirement for a cysteine desulfurase and the participation of an [Fe-S] cluster scaffolding protein. Important mechanistic questions related to [Fe-S] cluster biosynthesis involve the molecular details of how [Fe-S] clusters are assembled on scaffold proteins, how [Fe-S] clusters are transferred from scaffolds to target proteins, how various accessory proteins participate in [Fe-S] protein maturation, and how the biosynthetic process is regulated.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
29
|
Bergthorsson U, Roth JR. Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol 2005; 187:400-3. [PMID: 15601727 PMCID: PMC538839 DOI: 10.1128/jb.187.1.400-403.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nicotinic acid is required by most isolates of Salmonella enterica (serovar Dublin), a pathogen of cattle. A single nadA missense mutation causes the nutritional requirement of all serovar Dublin isolates tested. Models for persistence of this allele are tested and discussed.
Collapse
|
30
|
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
31
|
Skovran E, Lauhon CT, Downs DM. Lack of YggX results in chronic oxidative stress and uncovers subtle defects in Fe-S cluster metabolism in Salmonella enterica. J Bacteriol 2004; 186:7626-34. [PMID: 15516576 PMCID: PMC524902 DOI: 10.1128/jb.186.22.7626-7634.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As components involved in Fe-S cluster metabolism are described, the challenge becomes defining the integrated process that occurs in vivo based on the individual functions characterized in vitro. Strains lacking yggX have been used here to mimic chronic oxidative stress and uncover subtle defects in Fe-S cluster metabolism. We describe the in vivo similarities and differences between isc mutants, which have a known function in cluster assembly, and mutants disrupted in four additional loci, gshA, apbC, apbE, and rseC. The latter mutants share similarities with isc mutants: (i) a sensitivity to oxidative stress, (ii) a thiamine auxotrophy in the absence of the YggX protein, and (iii) decreased activities of Fe-S proteins, including aconitase, succinate dehydrogenase, and MiaB. However, they differ from isc mutants by displaying a phenotypic dependence on metals and a distinct defect in the SoxRS response to superoxides. Results presented herein support the proposed role of YggX in iron trafficking and protection against oxidative stress, describe additional phenotypes of isc mutants, and suggest a working model in which the ApbC, ApbE, and RseC proteins and glutathione participate in Fe-S cluster repair.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726-4087, USA
| | | | | |
Collapse
|
32
|
Martinez-Gomez NC, Robers M, Downs DM. Mutational Analysis of ThiH, a Member of the Radical S-Adenosylmethionine (AdoMet) Protein Superfamily. J Biol Chem 2004; 279:40505-10. [PMID: 15271986 DOI: 10.1074/jbc.m403985200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.
Collapse
Affiliation(s)
- Norma C Martinez-Gomez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726-4087, USA
| | | | | |
Collapse
|
33
|
Abstract
The [4Fe-4S]2+ clusters of dehydratases are rapidly damaged by univalent oxidants, including hydrogen peroxide, superoxide, and peroxynitrite. The loss of an electron destabilizes the cluster, causing it to release its catalytic iron atom and converting the cluster initially to an inactive [3Fe-4S]1+ form. Continued exposure to oxidants in vitro leads to further iron release. Experiments have shown that these clusters are repaired in vivo. We sought to determine whether repair is mediated by either the Isc or Suf cluster-assembly systems that have been identified in Escherichia coli. We found that all the proteins encoded by the isc operon were critical for de novo assembly, but most of these were unnecessary for cluster repair. IscS, a cysteine desulfurase, appeared to be an exception: although iscS mutants repaired damaged clusters, they did so substantially more slowly than did wild-type cells. Because sulfur mobilization should be required only if clusters degrade beyond the [3Fe-4S]1+ state, we used whole cell EPR to visualize the fate of oxidized enzymes in vivo. Fumarase A was overproduced. Brief exposure of cells to hydrogen peroxide resulted in the appearance of the characteristic [3Fe-4S]1+ signal of the oxidized enzyme. When hydrogen peroxide was then scavenged, the enzyme activity reappeared within minutes, in concert with the disappearance of the EPR signal. Thus it is unclear why IscS is required for efficient repair. The iscS mutants grew poorly, allowing the possibility that metabolic defects indirectly slow the repair process. Our data did indicate that damaged clusters decompose beyond the [3Fe-4S]1+ state in vivo when stress is prolonged. Under the conditions of our experiments, mutants that lacked other repair candidates--Suf proteins, glutathione, and NADPH: ferredoxin reductase--all repaired clusters at normal rates. We conclude that the mechanism of cluster repair is distinct from that of de novo assembly and that this is true because mild oxidative stress does not degrade clusters in vivo to the point of presenting an apoenzyme to the de novo cluster-assembly systems.
Collapse
Affiliation(s)
- Ouliana Djaman
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
34
|
Mühlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K, Kispal G, Lill R. Functional Characterization of the Eukaryotic Cysteine Desulfurase Nfs1p from Saccharomyces cerevisiae. J Biol Chem 2004; 279:36906-15. [PMID: 15220327 DOI: 10.1074/jbc.m406516200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that the essential protein Nfs1 performs a crucial role in cellular iron-sulfur (Fe/S) protein maturation. The protein is located predominantly in mitochondria, yet low amounts are present in cytosol and nucleus. Here we examined several aspects concerning the molecular function of yeast Nfs1p as a model protein. First, we demonstrated that purified Nfs1p facilitates the in vitro assembly of Fe/S proteins by using cysteine as its specific substrate. Thus, eukaryotic Nfs1 is a functional orthologue of the bacterial cysteine desulfurase IscS. Second, we showed that only the mitochondrial version but not the extramitochondrial version of Nfs1p is functional in generating cytosolic and nuclear Fe/S proteins. Mutation of the nuclear targeting signal of Nfs1p did not affect the maturation of cytosolic and nuclear Fe/S proteins, despite a severe growth defect under this condition. Nfs1p could not assemble an Fe/S cluster on the Isu scaffold proteins when they were located in the yeast cytosol. The lack of function of these central Fe/S cluster assembly components suggests that the maturation of extramitochondrial Fe/S protein does not involve functional copies of the mitochondrial Fe/S cluster assembly machinery in the yeast cytosol. Third, the extramitochondrial version of Nfs1p was shown to play a direct role in the thiomodification of tRNAs. Finally, we identified a highly conserved N-terminal beta-sheet of Nfs1p as a functionally essential part of the protein. The implication of these findings for the structural stability of Nfs1p and for its targeting mechanism to mitochondria and cytosol/nucleus will be discussed.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35033 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Ollagnier-de-Choudens S, Sanakis Y, Fontecave M. SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. J Biol Inorg Chem 2004; 9:828-38. [PMID: 15278785 DOI: 10.1007/s00775-004-0581-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
IscA/SufA proteins belong to complex protein machineries which are involved in iron-sulfur cluster biosynthesis. They are defined as scaffold proteins from which preassembled clusters are transferred to target apoproteins. The experiments described here demonstrate that the transfer reaction proceeds in two observable steps: a first fast one leading to a protein-protein complex between the cluster donor (SufA/IscA) and the acceptor (biotin synthase), and a slow one consisting of cluster transfer leading to the apoform of the scaffold protein and the holoform of the target protein. Mutation of cysteines in the acceptor protein specifically inhibits the second step of the reaction, showing that these cysteines are involved in the cluster transfer mechanism but not in complex formation. No cluster transfer from IscA to IscU, another scaffold of the isc operon, could be observed, whereas IscU was shown to be an efficient cluster source for cluster assembly in IscA. Implications of these results are discussed.
Collapse
Affiliation(s)
- S Ollagnier-de-Choudens
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DRDC-CB, CEA/CNRS/Université Joseph Fourier, UMR 5047, 17 Avenue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | |
Collapse
|
36
|
Dougherty MJ, Downs DM. A mutant allele of rpoD results in increased conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine in Salmonella enterica. J Bacteriol 2004; 186:4034-7. [PMID: 15175319 PMCID: PMC419934 DOI: 10.1128/jb.186.12.4034-4037.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An allele of rpoD (rpoD1181) that results in increased synthesis of the pyrimidine moiety of thiamine in Salmonella enterica was identified. The S508Y substitution caused by rpoD1181 is analogous to the S506F derivative of the Escherichia coli protein. The properties of this E. coli mutant protein have been well characterized in vitro. Identification of a metabolic phenotype caused by the rpoD1181 allele of S. enterica allows past in vitro results to be incorporated in continuing efforts to understand cellular processes that are integrated with the thiamine biosynthetic pathway.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
37
|
Lauhon CT, Skovran E, Urbina HD, Downs DM, Vickery LE. Substitutions in an active site loop of Escherichia coli IscS result in specific defects in Fe-S cluster and thionucleoside biosynthesis in vivo. J Biol Chem 2004; 279:19551-8. [PMID: 14978044 DOI: 10.1074/jbc.m401261200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.
Collapse
Affiliation(s)
- Charles T Lauhon
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
38
|
Leipuviene R, Qian Q, Björk GR. Formation of thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium occurs in two principally distinct pathways. J Bacteriol 2004; 186:758-66. [PMID: 14729702 PMCID: PMC321476 DOI: 10.1128/jb.186.3.758-766.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNA from Salmonella enterica serovar Typhimurium contains five thiolated nucleosides, 2-thiocytidine (s(2)C), 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U), and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A). The levels of all of them are significantly reduced in cells with a mutated iscS gene, which encodes the cysteine desulfurase IscS, a member of the ISC machinery that is responsible for [Fe-S] cluster formation in proteins. A mutant (iscU52) was isolated that carried an amino acid substitution (S107T) in the IscU protein, which functions as a major scaffold in the formation of [Fe-S] clusters. In contrast to the iscS mutant, the iscU52 mutant showed reduced levels of only two of the thiolated nucleosides, ms(2)io(6)A (10-fold) and s(2)C (more than 2-fold). Deletions of the iscU, hscA, or fdx genes from the isc operon lead to a similar tRNA thiolation pattern to that seen for the iscU52 mutant. Unexpectedly, deletion of the iscA gene, coding for an alternative scaffold protein for the [Fe-S] clusters, showed a novel tRNA thiolation pattern, where the synthesis of only one thiolated nucleoside, ms(2)io(6)A, was decreased twofold. Based on our results, we suggest two principal distinct routes for thiolation of tRNA: (i) a direct sulfur transfer from IscS to the tRNA modifying enzymes ThiI and MnmA, which form s(4)U and the s(2)U moiety of (c)mnm(5)s(2)U, respectively; and (ii) an involvement of [Fe-S] proteins (an unidentified enzyme in the synthesis of s(2)C and MiaB in the synthesis of ms(2)io(6)A) in the transfer of sulfur to the tRNA.
Collapse
Affiliation(s)
- Ramune Leipuviene
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | | | | |
Collapse
|
39
|
Leonardi R, Roach PL. Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J Biol Chem 2004; 279:17054-62. [PMID: 14757766 DOI: 10.1074/jbc.m312714200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of thiamine in Escherichia coli requires the formation of an intermediate thiazole from tyrosine, 1-deoxy-d-xylulose-5-phosphate (Dxp), and cysteine using at least six structural proteins, ThiFSGH, IscS, and ThiI. We describe for the first time the reconstitution of thiazole synthase activity using cell-free extracts and proteins derived from adenosine-treated E. coli 83-1 cells. The addition of adenosine or adenine to growing cultures of Aerobacter aerogenes, Salmonella typhimurium, and E. coli has been shown previously to relieve the repression by thiamine of its own biosynthesis and increase the expression levels of the thiamine biosynthetic enzymes. By exploiting this effect, we show that the in vitro thiazole synthase activity of cleared lysates or desalted proteins from E. coli 83-1 cells is dependent upon the addition of purified ThiGH-His complex, tyrosine (but not cysteine or 1-deoxy-d-xylulose-5-phosphate), and an as yet unidentified intermediate present in the protein fraction from these cells. The activity is strongly stimulated by the addition of S-adenosylmethionine and NADPH.
Collapse
Affiliation(s)
- Roberta Leonardi
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | |
Collapse
|
40
|
Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 2004; 279:12363-8. [PMID: 14722066 DOI: 10.1074/jbc.m312448200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IscS protein is a pyridoxal phosphate-containing cysteine desulfurase involved in iron-sulfur cluster biogenesis. In prokaryotes, IscS is also involved in various metabolic functions, including thio-modification of tRNA. By contrast, the eukaryotic ortholog of IscS (Nfs1) has thus far been shown to be functional only in mitochondrial iron-sulfur cluster biogenesis. We demonstrate here that yeast Nfs1p is also required for the post-transcriptional thio-modification of both mitochondrial (mt) and cytoplasmic (cy) tRNAs in vivo. Depletion of Nfs1p resulted in an immediate impairment of the 2-thio-modification of 5-carboxymethylaminomethyl-2-thiouridine at the wobble positions of mt-tRNA(UUU)(Lys) and mt-tRNA(UUG)(Gln). In addition, we observed a severe reduction in the 2-thio-modification of 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) of cy-tRNA(UUU)(Lys2) and cy-tRNA(UUC)(Glu3), although the effect was somewhat delayed compared with that seen in mt-tRNAs. Mass spectrometry analysis revealed an increase in 5-methoxycarbonylmethyluridine concomitant with a decrease in mcm(5)s(2)U in cy-tRNAs that were prepared from Nfs1p-depleted cells. These results suggest that Nfs1p is involved in the 2-thio-modification of both 5-carboxymethylaminomethyl-2-thiouridine in mt-tRNAs and mcm(5)s(2)U in cy-tRNAs.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Pomposiello PJ, Koutsolioutsou A, Carrasco D, Demple B. SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli. J Bacteriol 2003; 185:6624-32. [PMID: 14594836 PMCID: PMC262090 DOI: 10.1128/jb.185.22.6624-6632.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genomic studies with bacteria have identified redox-responsive genes without known roles in counteracting oxidative damage. Previous transcriptional profiling showed that expression of one such gene, yggX, was activated by superoxide stress in Escherichia coli. Here we show that this activation could be mimicked by artificial expression of the regulatory protein SoxS. Northern analysis confirmed the transcriptional activation of yggX by oxidative stress or SoxS expression but not in response to the related MarA or Rob proteins. Northern analysis showed that mltC, which codes for a peptidoglycan hydrolase and is positioned immediately downstream of yggX, was also regulated by oxidative stress or ectopic expression of SoxS. Purified SoxS protein bound to the predicted yggX promoter region, between positions 223 and 163 upstream from the yggX translational start site. Within this region, a 20-bp sequence was found to be necessary for oxidative stress-mediated activation of yggX transcription. A yggX deletion strain was hypersensitive to the redox-cycling agent paraquat, and a plasmid expressing YggX complemented the sensitivity of the deletion strain. Under exposure to paraquat, the yggX deletion strain showed a deficiency in aconitase activity compared to the isogenic wild-type strain, while expression of YggX from a multicopy plasmid increased the aconitase levels above those of the wild-type strain. These results demonstrate the direct regulation of the yggX gene by the redox-sensing SoxRS system and provide further evidence for the involvement of yggX in protection of iron-sulfur proteins against oxidative damage.
Collapse
Affiliation(s)
- Pablo J Pomposiello
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
42
|
Tantaleán JC, Araya MA, Saavedra CP, Fuentes DE, Pérez JM, Calderón IL, Youderian P, Vásquez CC. The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 2003; 185:5831-7. [PMID: 13129955 PMCID: PMC193957 DOI: 10.1128/jb.185.19.5831-5837.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many eubacteria are resistant to the toxic oxidizing agent potassium tellurite, and tellurite resistance involves diverse biochemical mechanisms. Expression of the iscS gene from Geobacillus stearothermophilus V, which is naturally resistant to tellurite, confers tellurite resistance in Escherichia coli K-12, which is naturally sensitive to tellurite. The G. stearothermophilus iscS gene encodes a cysteine desulfurase. A site-directed mutation in iscS that prevents binding of its pyridoxal phosphate cofactor abolishes both enzyme activity and its ability to confer tellurite resistance in E. coli. Expression of the G. stearothermophilus iscS gene confers tellurite resistance in tellurite-hypersensitive E. coli iscS and sodA sodB mutants (deficient in superoxide dismutase) and complements the auxotrophic requirement of an E. coli iscS mutant for thiamine but not for nicotinic acid. These and other results support the hypothesis that the reduction of tellurite generates superoxide anions and that the primary targets of superoxide damage in E. coli are enzymes with iron-sulfur clusters.
Collapse
Affiliation(s)
- Juan C Tantaleán
- Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Martens EC, Gawronski-Salerno J, Vokal DL, Pellitteri MC, Menard ML, Goodrich-Blair H. Xenorhabdus nematophila requires an intact iscRSUA-hscBA-fdx operon to colonize Steinernema carpocapsae nematodes. J Bacteriol 2003; 185:3678-82. [PMID: 12775707 PMCID: PMC156225 DOI: 10.1128/jb.185.12.3678-3682.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An insertion between iscA and hscB of the Xenorhabdus nematophila iscRSUA-hscBA-fdx locus, predicted to encode Fe-S assembly machinery, prevented colonization of Steinernema carpocapsae nematodes. The insertion disrupted cotranscription of iscA and hscB, but did not reduce hscBA expression, suggesting that X. nematophila requires coordinated expression of the isc-hsc-fdx locus for colonization.
Collapse
Affiliation(s)
- Eric C Martens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ollagnier-de Choudens S, Nachin L, Sanakis Y, Loiseau L, Barras F, Fontecave M. SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly. J Biol Chem 2003; 278:17993-8001. [PMID: 12637501 DOI: 10.1074/jbc.m300285200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SufA is a component of the recently discovered suf operon, which has been shown to play an important function in bacteria during iron-sulfur cluster biosynthesis and resistance to oxidative stress. The SufA protein from Erwinia chrysanthemi, a Gram-negative plant pathogen, has been purified to homogeneity and characterized. It is a homodimer with the ability to assemble rather labile [2Fe-2S] and [4Fe-4S] clusters as shown by Mössbauer spectroscopy. These clusters can be transferred to apoproteins such as ferredoxin or biotin synthase during a reaction that is not inhibited by bathophenanthroline, an iron chelator. Cluster assembly in these proteins is much more efficient when iron and sulfur are provided by holoSufA than by free iron sulfate and sodium sulfide. We propose the function of SufA is that of a scaffold protein for [Fe-S] cluster assembly and compare it to IscA, a member of the isc operon also involved in cluster biosynthesis in both prokaryotes and eukaryotes. Mechanistic and physiological implications of these results are also discussed.
Collapse
Affiliation(s)
- Sandrine Ollagnier-de Choudens
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, Département Résponse et Dynamique Cellulaire-Chimie Biochimie, CEA/CNRS/Université Joseph Fourier, UMR 5047, 17 Ave. des Martyrs, Grenoble 38054, cedex 09, France
| | | | | | | | | | | |
Collapse
|
45
|
Skovran E, Downs DM. Lack of the ApbC or ApbE protein results in a defect in Fe-S cluster metabolism in Salmonella enterica serovar Typhimurium. J Bacteriol 2003; 185:98-106. [PMID: 12486045 PMCID: PMC141979 DOI: 10.1128/jb.185.1.98-106.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isc genes function in the assembly of Fe-S clusters and are conserved in many prokaryotic and eukaryotic organisms. In most bacteria studied, the isc operon can be deleted without loss of cell viability, indicating that additional systems for Fe-S cluster assembly must exist. Several laboratories have described nutritional and biochemical defects resulting from mutations in the isc operon. Here we demonstrate that null mutations in two genes of unknown function, apbC and apbE, result in similar cellular deficiencies. Exogenous ferric chloride suppressed these deficiencies in the apbC and apbE mutants, distinguishing them from previously described isc mutants. The deficiencies caused by the apbC and isc mutations were additive, which is consistent with Isc and ApbC's having redundant functions or with Isc and ApbC's functioning in different areas of Fe-S cluster metabolism (e.g., Fe-S cluster assembly and Fe-S cluster repair). Both the ApbC and ApbE proteins are similar in sequence to proteins that function in metal cofactor assembly. Like the enzymes with sequence similarity to ApbC, purified ApbC protein was able to hydrolyze ATP. The data herein are consistent with the hypothesis that the ApbC and ApbE proteins function in Fe-S cluster metabolism in vivo.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Abstract
Escherichia coli tRNA contains four naturally occurring nucleosides modified with sulfur. Cysteine is the intracellular sulfur source for each of these modified bases. We previously found that the iscS gene, a member of the nifS cysteine desulfurase gene family, is required for 4-thiouridine biosynthesis in E. coli. Since IscS does not bind tRNA, its role is the mobilization and distribution of sulfur to enzymes that catalyze the sulfur insertion steps. In addition to iscS, E. coli contains two other nifS homologs, csdA and csdB, each of which has cysteine desulfurase activity and could potentially donate sulfur for thionucleoside biosynthesis. Double csdA csdB and iscS csdA mutants were prepared or obtained, and all mutants were analyzed for thionucleoside content. It was found that unfractionated tRNA isolated from the iscS mutant strain contained <5% of the level of sulfur found in the parent strain. High-pressure liquid chromatography analysis of tRNA nuclease digests from the mutant strain grown in the presence of [(35)S]cysteine showed that only a small fraction of 2-thiocytidine was present, while the other thionucleosides were absent when cells were isolated during log phase. As expected, digests from the iscS mutant strain contained 6-N-dimethylallyl adenosine (i(6)A) in place of 6-N-dimethylallyl-2-methylthioadenosine and 5-methylaminomethyl uridine (mnm(5)U) instead of 5-methylaminomethyl-2-thiouridine. Prolonged growth of the iscS and iscS csdA mutant strains revealed a gradual increase in levels of 2-thiocytidine and 6-N-dimethylallyl-2-methylthioadenosine with extended incubation (>24 h), while the thiouridines remained absent. This may be due to a residual level of Fe-S cluster biosynthesis in iscS deletion strains. An overall scheme for thionucleoside biosynthesis in E. coli is discussed.
Collapse
Affiliation(s)
- Charles T Lauhon
- School of Pharmacy, University of Wisconsin, Madison 53705, USA.
| |
Collapse
|
47
|
Nilsson K, Lundgren HK, Hagervall TG, Björk GR. The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar typhimurium. J Bacteriol 2002; 184:6830-5. [PMID: 12446633 PMCID: PMC135462 DOI: 10.1128/jb.184.24.6830-6835.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deficiency of a modified nucleoside in tRNA often mediates suppression of +1 frameshift mutations. In Salmonella enterica serovar Typhimurium strain TR970 (hisC3737), which requires histidine for growth, a potential +1 frameshifting site, CCC-CAA-UAA, exists within the frameshifting window created by insertion of a C in the hisC gene. This site may be suppressed by peptidyl-tRNAProcmo5UGG (cmo(5)U is uridine-5-oxyacetic acid), making a frameshift when decoding the near-cognate codon CCC, provided that a pause occurs by, e.g., a slow entry of the tRNAGlnmnm5s2UUG (mnm(5)s(2)U is 5-methylaminomethyl-2-thiouridine) to the CAA codon located in the A site. We selected mutants of strain TR970 that were able to grow without histidine, and one such mutant (iscS51) was shown to have an amino acid substitution in the L-cysteine desulfurase IscS. Moreover, the levels of all five thiolated nucleosides 2-thiocytidine, mnm(5)s(2)U, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine present in the tRNA of S. enterica were reduced in the iscS51 mutant. In logarithmically growing cells of Escherichia coli, a deletion of the iscS gene resulted in nondetectable levels of all thiolated nucleosides in tRNA except N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine, which was present at only 1.6% of the wild-type level. After prolonged incubation of cells in stationary phase, a 20% level of 2-thiocytidine and a 2% level of N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine was observed, whereas no 4-thiouridine, 5-carboxymethylaminomethyl-2-thiouridine, or mnm(5)s(2)U was found. We attribute the frameshifting ability mediated by the iscS51 mutation to a slow decoding of CAA by the tRNAGlnmnm5s2UUG due to mnm(5)s(2)U deficiency. Since the growth rate of the iscS deletion mutant in rich medium was similar to that of a mutant (mnmA) lacking only mnm(5)s(2)U, we suggest that the major cause for the reduced growth rate of the iscS deletion mutant is the lack of mnm(5)s(2)U and 5-carboxymethylaminomethyl-2-thiouridine and not the lack of any of the other three thiolated nucleosides that are also absent in the iscS deletion mutant.
Collapse
|
48
|
Allen S, Zilles JL, Downs DM. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica. J Bacteriol 2002; 184:6130-7. [PMID: 12399482 PMCID: PMC151968 DOI: 10.1128/jb.184.22.6130-6137.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Together, the biosyntheses of histidine, purines, and thiamine pyrophosphate (TPP) contain examples of convergent, divergent, and regulatory pathway integration. Mutations in two purine biosynthetic genes (purI and purH) affect TPP biosynthesis due to flux through the purine and histidine pathways. The molecular genetic characterization of purI mutants and their respective pseudorevertants resulted in the conclusion that <1% of the wild-type activity of the PurI enzyme was sufficient for thiamine but not for purine synthesis. The respective pseudorevertants were found to be informational suppressors. In addition, it was shown that accumulation of the purine intermediate aminoimidazole carboxamide ribotide inhibits thiamine synthesis, specifically affecting the conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine.
Collapse
Affiliation(s)
- Shara Allen
- Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, USA
| | | | | |
Collapse
|
49
|
Kato SI, Mihara H, Kurihara T, Takahashi Y, Tokumoto U, Yoshimura T, Esaki N. Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron-sulfur cluster assembly. Proc Natl Acad Sci U S A 2002; 99:5948-52. [PMID: 11972033 PMCID: PMC122882 DOI: 10.1073/pnas.082123599] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IscS and IscU from Escherichia coli cooperate with each other in the biosynthesis of iron-sulfur clusters. IscS catalyzes the desulfurization of L-cysteine to produce L-alanine and sulfur. Cys-328 of IscS attacks the sulfur atom of L-cysteine, and the sulfane sulfur derived from L-cysteine binds to the Sgamma atom of Cys-328. In the course of the cluster assembly, IscS and IscU form a covalent complex, and a sulfur atom derived from L-cysteine is transferred from IscS to IscU. The covalent complex is thought to be essential for the cluster biogenesis, but neither the nature of the bond connecting IscS and IscU nor the residues involved in the complex formation have been determined, which have thus far precluded the mechanistic analyses of the cluster assembly. We here report that a covalent bond is formed between Cys-328 of IscS and Cys-63 of IscU. The bond is a disulfide bond, not a polysulfide bond containing sulfane sulfur between the two cysteine residues. We also found that Cys-63 of IscU is essential for the IscU-mediated activation of IscS: IscU induced a six-fold increase in the cysteine desulfurase activity of IscS, whereas the IscU mutant with a serine substitution for Cys-63 had no effect on the activity. Based on these findings, we propose a mechanism for an early stage of iron-sulfur cluster assembly: the sulfur transfer from IscS to IscU is initiated by the attack of Cys-63 of IscU on the Sgamma atom of Cys-328 of IscS that is bound to sulfane sulfur derived from L-cysteine.
Collapse
Affiliation(s)
- Shin-ichiro Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang W, Rogers PA, Ding H. Repair of nitric oxide-modified ferredoxin [2Fe-2S] cluster by cysteine desulfurase (IscS). J Biol Chem 2002; 277:12868-73. [PMID: 11825893 DOI: 10.1074/jbc.m109485200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-sulfur proteins are among the sensitive targets of the nitric oxide cytotoxicity. When Escherichia coli cells are exposed to nitric oxide, iron-sulfur clusters are modified forming protein-bound dinitrosyl iron complexes. Such modified protein dinitrosyl iron complexes are stable in vitro but are efficiently repaired in aerobically growing E. coli cells even without any new protein synthesis. Here we show that cysteine desulfurase encoded by the gene iscS of E. coli can directly convert the ferredoxin dinitrosyl iron complex to the ferredoxin [2Fe-2S] cluster in the presence of L-cysteine in vitro. A reassembly of the [2Fe-2S] cluster in the ferredoxin dinitrosyl iron complex does not require any addition of iron or other protein components. Furthermore, a complete removal of the dinitrosyl iron complex from ferredoxin prevents reassembly of the [2Fe-2S] cluster in the protein. The results suggest that cysteine desulfurase (IscS) together with L-cysteine can efficiently repair the nitric oxide-modified ferredoxin [2Fe-2S] cluster and that the iron center in the dinitrosyl iron complex may be recycled for the reassembly of iron-sulfur clusters in proteins.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|