1
|
Sung JH, Lee SY, Lee CS, Lee JH, Park HH. Structural analysis of a bacterial ankyrin-like protein secreted by Acinetobacter baumannii. Biochem Biophys Res Commun 2024; 733:150573. [PMID: 39208644 DOI: 10.1016/j.bbrc.2024.150573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In bacteria, the ankyrin-like protein AnkB helps overcome stress by regulating catalase activity when expressed under stressful conditions. As the structural properties of AnkB are largely unexplored, our understanding of various AnkB-mediated functions in bacteria remains limited. In the present study, we describe the structure of AnkB from Acinetobacter baumannii, hereafter referred to as "AbAnkB," which has a unique tertiary configuration compared with that of other ankyrin domain-containing proteins. Structural analysis revealed that AbAnkB has a relatively long loop between AKR3 and AKR4 and an oppositely positioned α8 helix. Based on amino acid conservation and protein surface analyses, we identified a hydrophobic patch that might be critical for the function of AbAnkB. To the best of our knowledge, our study is the first to report the structure of a bacterial AnkB protein; our findings will markedly enhance our understanding of its functions in bacteria.
Collapse
Affiliation(s)
- Ji Hye Sung
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Pogoreutz C, Ziegler M. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 2024; 32:422-434. [PMID: 38216372 DOI: 10.1016/j.tim.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/14/2024]
Abstract
Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany.
| |
Collapse
|
3
|
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants (Basel) 2023; 12:1273. [PMID: 37372003 DOI: 10.3390/antiox12061273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. Leptospira are diderm bacteria form the Spirochaetes phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in Leptospira virulence. In this review, we describe the ROS encountered by Leptospira in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in Leptospira adaptation to oxidative stress.
Collapse
Affiliation(s)
- Samuel G Huete
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| |
Collapse
|
4
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
The Ankyrin Repeat Protein RARP-1 Is a Periplasmic Factor That Supports Rickettsia parkeri Growth and Host Cell Invasion. J Bacteriol 2022; 204:e0018222. [PMID: 35727033 DOI: 10.1128/jb.00182-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia spp. are obligate intracellular bacterial pathogens that have evolved a variety of strategies to exploit their host cell niche. However, the bacterial factors that contribute to this intracellular lifestyle are poorly understood. Here, we show that the conserved ankyrin repeat protein RARP-1 supports Rickettsia parkeri infection. Specifically, RARP-1 promotes efficient host cell entry and growth within the host cytoplasm, but it is not necessary for cell-to-cell spread or evasion of host autophagy. We further demonstrate that RARP-1 is not secreted into the host cytoplasm by R. parkeri. Instead, RARP-1 resides in the periplasm, and we identify several binding partners that are predicted to work in concert with RARP-1 during infection. Altogether, our data reveal that RARP-1 plays a critical role in the rickettsial life cycle. IMPORTANCE Rickettsia spp. are obligate intracellular bacterial pathogens that pose a growing threat to human health. Nevertheless, their strict reliance on a host cell niche has hindered investigation of the molecular mechanisms driving rickettsial infection. This study yields much-needed insight into the Rickettsia ankyrin repeat protein RARP-1, which is conserved across the genus but has not yet been functionally characterized. Earlier work had suggested that RARP-1 is secreted into the host cytoplasm. However, the results from this work demonstrate that R. parkeri RARP-1 resides in the periplasm and is important both for invasion of host cells and for growth in the host cell cytoplasm. These results reveal RARP-1 as a novel regulator of the rickettsial life cycle.
Collapse
|
6
|
Skåne A, Loose JSM, Vaaje-Kolstad G, Askarian F. Comparative proteomic profiling reveals specific adaption of Vibrio anguillarum to oxidative stress, iron deprivation and humoral components of innate immunity. J Proteomics 2022; 251:104412. [PMID: 34737109 DOI: 10.1016/j.jprot.2021.104412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SIGNIFICANCE: Vibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.
Collapse
Affiliation(s)
- Anna Skåne
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Zai W, Kang L, Dong T, Wang H, Yin L, Gan S, Lai W, Ding Y, Hu Y, Wu J. E. coli Membrane Vesicles as a Catalase Carrier for Long-Term Tumor Hypoxia Relief to Enhance Radiotherapy. ACS NANO 2021; 15:15381-15394. [PMID: 34520168 DOI: 10.1021/acsnano.1c07621] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypoxia is one of the most important factors that limit the effect of radiotherapy, and the abundant H2O2 in tumor tissues will also aggravate hypoxia-induced radiotherapy resistance. Delivering catalase to decompose H2O2 into oxygen is an effective strategy to relieve tumor hypoxia and radiotherapy resistance. However, low stability limits catalase's in vivo application, which is one of the most common limitations for almost all proteins' internal utilization. Here, we develop catalase containing E. coli membrane vesicles (EMs) with excellent protease resistance to relieve tumor hypoxia for a long time. Even treated with 100-fold of protease, EMs showed higher catalase activity than free catalase. After being injected into tumors post 12 h, EMs maintained their hypoxia relief ability while free catalase lost its activity. Our results indicate that EMs might be an excellent catalase delivery for tumor hypoxia relief. Combined with their immune stimulation features, EMs could enhance radiotherapy and induce antitumor immune memory effectively.
Collapse
Affiliation(s)
- Wenjing Zai
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lining Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shaoju Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjia Lai
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yibing Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Zhang Y, Deng Y, Feng J, Guo Z, Chen H, Wang B, Hu J, Lin Z, Su Y. Functional characterization of VscCD, an important component of the type Ⅲ secretion system of Vibrio harveyi. Microb Pathog 2021; 157:104965. [PMID: 34015493 DOI: 10.1016/j.micpath.2021.104965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Vibrio harveyi is a Gram-negative bacterium that occurs widely in the ocean and a kind of pathogenic bacteria associated with vibriosis in grouper. We investigated whether the VscCD protein of the type Ⅲ secretion system (T3SS) was important for pathogenicity of V. harveyi. Mutations to the vscC and vscD genes (ΔvscCD) and complementation of the ΔvscCD mutant (C-ΔvscCD) were created. Moreover, the biological characteristics of the wild-type (WT) and mutant strains of V. harveyi 345 were compared. The results showed that deletion of the vscCD genes had no effect on bacterial growth, swimming/swarming ability, secretion of extracellular protease, or biofilm formation. However, as compared with the V. harveyi 345: pMMB207 (WT+) and complementary (C-ΔvscCD) strains, the ΔvscCD: pMMB207 (ΔvscCD+) mutant displayed decreased resistance to acid stress, H2O2, and antibiotics. In addition, infection of the pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) showed that as compared with the WT+ and C-ΔvscCD strains, the ΔvscCD+ strain significantly reduced cumulative mortality of the host. The colonization ability of the ΔvscCD+ mutant in the spleen and liver tissues of the pearl gentian grouper was significantly lower than that of the WT+ and C-ΔvscCD strains. In the early stage of infection with the ΔvscCD+ strain, the expression levels of IL-1β, IL-16, TLR3, TNF-α, MHC-Iα, and CD8α were up-regulated to varying degrees. As compared with the WT+ and C-ΔvscCD strains, luxR expression was significantly up-regulated in the ΔvscCD+ strain, while the expression of vcrH and vp1668 was significantly down-regulated. As an important component of the T3SS, VscCD seemed to play a significant role in the pathogenesis of V. harveyi.
Collapse
Affiliation(s)
- Yaqiu Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haoxiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Baotun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianmei Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
9
|
Zavala-Alvarado C, Sismeiro O, Legendre R, Varet H, Bussotti G, Bayram J, G. Huete S, Rey G, Coppée JY, Picardeau M, Benaroudj N. The transcriptional response of pathogenic Leptospira to peroxide reveals new defenses against infection-related oxidative stress. PLoS Pathog 2020; 16:e1008904. [PMID: 33021995 PMCID: PMC7567364 DOI: 10.1371/journal.ppat.1008904] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/16/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Pathogenic Leptospira spp. are the causative agents of the waterborne zoonotic disease leptospirosis. Leptospira are challenged by numerous adverse conditions, including deadly reactive oxygen species (ROS), when infecting their hosts. Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. In L. interrogans, genes encoding defenses against ROS are repressed by the peroxide stress regulator, PerR. In this study, RNA sequencing was performed to characterize both the L. interrogans response to low and high concentrations of hydrogen peroxide and the PerR regulon. We showed that Leptospira solicit three main peroxidase machineries (catalase, cytochrome C peroxidase and peroxiredoxin) and heme to detoxify oxidants produced during peroxide stress. In addition, canonical molecular chaperones of the heat shock response and DNA repair proteins from the SOS response were required for Leptospira recovering from oxidative damage. Identification of the PerR regulon upon exposure to H2O2 allowed to define the contribution of this regulator in the oxidative stress response. This study has revealed a PerR-independent regulatory network involving other transcriptional regulators, two-component systems and sigma factors as well as non-coding RNAs that putatively orchestrate, in concert with PerR, the oxidative stress response. We have shown that PerR-regulated genes encoding a TonB-dependent transporter and a two-component system (VicKR) are involved in Leptospira tolerance to superoxide. This could represent the first defense mechanism against superoxide in L. interrogans, a bacterium lacking canonical superoxide dismutase. Our findings provide an insight into the mechanisms required by pathogenic Leptospira to overcome oxidative damage during infection-related conditions. This will participate in framing future hypothesis-driven studies to identify and decipher novel virulence mechanisms in this life-threatening pathogen. Leptospirosis is a zoonotic infectious disease responsible for over one million of severe cases and 60 000 fatalities annually worldwide. This neglected and emerging disease has a worldwide distribution, but it mostly affects populations from developing countries in sub-tropical areas. The causative agents of leptospirosis are pathogenic bacterial Leptospira spp. There is a considerable deficit in our knowledge of these atypical bacteria, including their virulence mechanisms. During infection, Leptospira are confronted with the deadly oxidants produced by the host tissues and immune response. Here, we have identified the leptospiral factors necessary for overcoming infection-related oxidative stress. We found that Leptospira solicit peroxidases to detoxify oxidants as well as chaperones of the heat shock response and DNA repair proteins of the SOS response to recover from oxidative damage. Moreover, our study indicates that the oxidative stress response is orchestrated by a regulatory network involving PerR and other transcriptional regulators, sigma factors, two component systems, and putative non-coding RNAs. These findings provide insights into the mechanisms required by pathogenic Leptospira to tolerate infection-related oxidants and could help identifying novel virulence factors and developing new therapeutic targets.
Collapse
Affiliation(s)
- Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, COMUE BioSPC, Paris, France
| | - Odile Sismeiro
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Hugo Varet
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Giovanni Bussotti
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Jan Bayram
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Samuel G. Huete
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Guillaume Rey
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Catalase expression of Propionibacterium acnes may contribute to intracellular persistence of the bacterium in sinus macrophages of lymph nodes affected by sarcoidosis. Immunol Res 2020; 67:182-193. [PMID: 31187451 DOI: 10.1007/s12026-019-09077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial catalase is important for intracellular survival of the bacteria. This protein of Propionibacterium acnes, one of possible causes of sarcoidosis, induces hypersensitive Th1 immune responses in sarcoidosis patients. We examined catalase expression in cultured P. acnes isolated from 19 sarcoid and 18 control lymph nodes and immunohistochemical localization of the protein in lymph nodes from 43 sarcoidosis and 102 control patients using a novel P. acnes-specific antibody (PAC) that reacts with the catalase protein, together with the previously reported P. acnes-specific PAB and TIG antibodies. High catalase expression of P. acnes cells was found during stationary phase in more isolates from sarcoid than from non-sarcoid lymph nodes and was associated with bacterial survival under H2O2-induced oxidative stress. In many sarcoid and some control lymph nodes, catalase expression was detected at the outer margins of PAB-reactive Hamazaki-Wesenberg (HW) bodies in sinus macrophages, the same location as catalase expression on the surface of cultured P. acnes and the same distribution as bacterial cell membrane-bound lipoteichoic acid in HW bodies. Some or no catalase expression was detected in sarcoid granulomas with PAB reactivity or in clustered paracortical macrophages packed with many PAB-reactive small-round bodies. HW bodies expressing catalase may be persistent P. acnes in sinus macrophages whereas PAB-reactive small-round bodies with undetectable catalase may be activated P. acnes proliferating in paracortical macrophages. Intracellular proliferation of P. acnes in paracortical macrophages may lead to granuloma formation by this commensal bacterium in sarcoidosis patients with Th1 hypersensitivity to certain P. acnes antigens, including catalase.
Collapse
|
11
|
Adewunmi Y, Namjilsuren S, Walker WD, Amato DN, Amato DV, Mavrodi OV, Patton DL, Mavrodi DV. Antimicrobial Activity of, and Cellular Pathways Targeted by, p-Anisaldehyde and Epigallocatechin Gallate in the Opportunistic Human Pathogen Pseudomonas aeruginosa. Appl Environ Microbiol 2020; 86:e02482-19. [PMID: 31811038 PMCID: PMC6997733 DOI: 10.1128/aem.02482-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated p-anisaldehyde from star anise into a polymer network called proantimicrobial networks via degradable acetals (PANDAs) and used it as a novel drug delivery platform. PANDAs released p-anisaldehyde upon a change in pH and humidity and controlled the growth of the multidrug-resistant pathogen Pseudomonas aeruginosa PAO1. In this study, we identified the cellular pathways targeted by p-anisaldehyde by generating 10,000 transposon mutants of PAO1 and screened them for hypersensitivity to p-anisaldehyde. To improve the antimicrobial efficacy of p-anisaldehyde, we combined it with epigallocatechin gallate (EGCG), a polyphenol from green tea, and demonstrated that it acts synergistically with p-anisaldehyde in killing P. aeruginosa We then used transcriptome sequencing to profile the responses of P. aeruginosa to p-anisaldehyde, EGCG, and their combination. The exposure to p-anisaldehyde altered the expression of genes involved in modification of the cell envelope, membrane transport, drug efflux, energy metabolism, molybdenum cofactor biosynthesis, and the stress response. We also demonstrate that the addition of EGCG reversed many p-anisaldehyde-coping effects and induced oxidative stress. Our results provide insight into the antimicrobial activity of p-anisaldehyde and its interactions with EGCG and may aid in the rational identification of new synergistically acting combinations of plant metabolites. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds.IMPORTANCE Essential oils (EOs) are plant-derived products that have long been exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to their broad-range antimicrobial activity, low toxicity to human commensal bacteria, and capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, our understanding of many aspects of their mode of action remains inconclusive. The overarching aim of this work was to address these gaps by studying the molecular interactions between an antimicrobial plant aldehyde and the opportunistic human pathogen Pseudomonas aeruginosa The results of this study identify the microbial genes and associated pathways involved in the response to antimicrobial phytoaldehydes and provide insights into the molecular mechanisms governing the synergistic effects of individual constituents within essential oils.
Collapse
Affiliation(s)
- Yetunde Adewunmi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Sanchirmaa Namjilsuren
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Dahlia N Amato
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Douglas V Amato
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
- South MS Branch Experiment Station, Mississippi State University, Poplarville, Mississippi, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
12
|
Ankyrin-Like Protein AnkB Interacts with CatB, Affects Catalase Activity, and Enhances Resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to Phenazine-1-Carboxylic Acid. Appl Environ Microbiol 2018; 84:AEM.02145-17. [PMID: 29180371 DOI: 10.1128/aem.02145-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae, which causes rice bacterial leaf blight, and Xanthomonas oryzae pv. oryzicola, which causes rice bacterial leaf streak, are important plant-pathogenic bacteria. A member of the adaptor protein family, ankyrin protein, has been investigated largely in humans but rarely in plant-pathogenic bacteria. In this study, a novel ankyrin-like protein, AnkB, was identified in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. The expression of ankB was significantly upregulated when these bacteria were treated with phenazine-1-carboxylic acid (PCA). ankB is located 58 bp downstream of the gene catB (which encodes a catalase) in both bacteria, and the gene expression of catB and catalase activity were reduced following ankB deletion in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Furthermore, we demonstrated that AnkB directly interacts with CatB by glutathione S-transferase (GST) pulldown assays. Deletion of ankB increased the sensitivity of X. oryzae pv. oryzae and X. oryzae pv. oryzicola to H2O2 and PCA, decreased bacterial biofilm formation, swimming ability, and exopolysaccharide (EPS) production, and also reduced virulence on rice. Together our results indicate that the ankyrin-like protein AnkB has important and conserved roles in antioxidant systems and pathogenicity in X. oryzae pv. oryzae and X. oryzae pv. oryzicola.IMPORTANCE This study demonstrates that the ankyrin protein AnkB directly interacts with catalase CatB in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Ankyrin protein AnkB can affect the gene expression of catB, catalase activity, and sensitivity to H2O2 In Xanthomonas spp., the locations of genes ankB and catB and the amino acid sequence of AnkB are highly conserved. It is suggested that in prokaryotes, AnkB plays a conserved role in the defense against oxidative stress.
Collapse
|
13
|
Liebens V, Frangipani E, Van der Leyden A, Fauvart M, Visca P, Michiels J. Membrane localization and topology of the DnpA protein control fluoroquinolone tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 2016; 363:fnw184. [PMID: 27481702 DOI: 10.1093/femsle/fnw184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
DnpA, a putative de-N-acetylase of the PIG-L superfamily, is required for antibiotic tolerance in Pseudomonas aeruginosa Exactly how dnpA (gene locus PA5002) directs the formation of antibiotic-tolerant persister cells is currently unknown. Previous research provided evidence for a role in surface-associated process(es), possibly in lipopolysaccharide biosynthesis. In silico sequence analysis of DnpA predicts a single transmembrane domain and Nin/Cout orientation of DnpA. In contrast, we here show that DnpA is an integral inner membrane protein containing two transmembrane domains, with the major C-terminal part located at the cytoplasmic face. Correct insertion into the inner membrane is necessary for DnpA to promote fluoroquinolone tolerance. The membrane localization of DnpA further supports its role in cell envelope-associated process(es). In addition to shedding light on the biological role of DnpA, this study highlights the risks of overreliance on the predictive value of bioinformatics tools and the importance of rigorous experimental validation of in silico predictions.
Collapse
Affiliation(s)
- Veerle Liebens
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| | | | | | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium imec, Smart Systems and Emerging Technologies Unit, Department of Life Science Technologies, 3001 Leuven, Belgium
| | - Paolo Visca
- Department of Sciences, Roma Tre University, Rome 00146, Italy
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Wang H, Chen S, Zhang J, Rothenbacher FP, Jiang T, Kan B, Zhong Z, Zhu J. Catalases promote resistance of oxidative stress in Vibrio cholerae. PLoS One 2012; 7:e53383. [PMID: 23300923 PMCID: PMC3534063 DOI: 10.1371/journal.pone.0053383] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a major challenge faced by bacteria. Many bacteria control oxidative stress resistance pathways through the transcriptional regulator OxyR. The human pathogen Vibrio cholerae is a Gram-negative bacterium that is the causative agent of cholera. V. cholerae lives in both aquatic environments and human small intestines, two environments in which it encounters reactive oxygen species (ROS). To study how V. cholerae responds to oxidative stress, we constructed an in-frame oxyR deletion mutant. We found that this mutant was not only sensitive to H2O2, but also displayed a growth defect when diluted in rich medium. Further study showed that two catalases, KatG and KatB, either when expressed in living cells, present in culture supernatants, or added as purified recombinant proteins, could rescue the oxyR growth defect. Furthermore, although it could colonize infant mouse intestines similar to that of wildtype, the oxyR mutant was defective in zebrafish intestinal colonization. Alternatively, co-infection with wildtype, but not katG-katB deletion mutants, greatly enhanced oxyR mutant colonization. Our study suggests that OxyR in V. cholerae is critical for antioxidant defense and that the organism is capable of scavenging environmental ROS to facilitate population growth.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shusu Chen
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Zhang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Francesca P. Rothenbacher
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tiantian Jiang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zengtao Zhong
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (ZZ); (JZ)
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ZZ); (JZ)
| |
Collapse
|
15
|
Chou LF, Chen YT, Lu CW, Ko YC, Tang CY, Pan MJ, Tian YC, Chiu CH, Hung CC, Yang CW. Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. Gene 2012; 511:364-70. [PMID: 23041083 DOI: 10.1016/j.gene.2012.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Abstract
Leptospirosis, a widespread zoonosis, is a re-emerging infectious disease caused by pathogenic Leptospira species. In Taiwan, Leptospira santarosai serovar Shermani is the most frequently isolated serovar, causing both renal and systemic infections. This study aimed to generate a L. santarosai serovar Shermani genome sequence and categorize its hypothetical genes, particularly those associated with virulence. The genome sequence consists of 3,936,333 nucleotides and 4033 predicted genes. Additionally, 2244 coding sequences could be placed into clusters of orthologous groups and the number of genes involving cell wall/membrane/envelope biogenesis and defense mechanisms was higher than that of other Leptospira spp. Comparative genetic analysis based on BLASTX data revealed that about 73% and 68.8% of all coding sequences have matches to pathogenic L. interrogans and L. borgpetersenii, respectively, and about 57.6% to saprophyte L. biflexa. Among the hypothetical proteins, 421 have a transmembrane region, 172 have a signal peptide and 17 possess a lipoprotein signature. According to PFAM prediction, 32 hypothetical proteins have properties of toxins and surface proteins mediated bacterial attachment, suggesting they may have roles associated with virulence. The availability of the genome sequence of L. santarosai serovar Shermani and the bioinformatics re-annotation of leptospiral hypothetical proteins will facilitate further functional genomic studies to elucidate the pathogenesis of leptospirosis and develop leptospiral vaccines.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou, and College of Medicine, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun 2012; 80:3892-9. [PMID: 22927050 DOI: 10.1128/iai.00466-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Leptospira spp. are likely to encounter higher concentrations of reactive oxygen species induced by the host innate immune response. In this study, we characterized Leptospira interrogans catalase (KatE), the only annotated catalase found within pathogenic Leptospira species, by assessing its role in resistance to H(2)O(2)-induced oxidative stress and during infection in hamsters. Pathogenic L. interrogans bacteria had a 50-fold-higher survival rate under H(2)O(2)-induced oxidative stress than did saprophytic L. biflexa bacteria, and this was predominantly catalase dependent. We also characterized KatE, the only annotated catalase found within pathogenic Leptospira species. Catalase assays performed with recombinant KatE confirmed specific catalase activity, while protein fractionation experiments localized KatE to the bacterial periplasmic space. The insertional inactivation of katE in pathogenic Leptospira bacteria drastically diminished leptospiral viability in the presence of extracellular H(2)O(2) and reduced virulence in an acute-infection model. Combined, these results suggest that L. interrogans KatE confers in vivo resistance to reactive oxygen species induced by the host innate immune response.
Collapse
|
17
|
Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett 2011; 327:1-8. [PMID: 22092667 DOI: 10.1111/j.1574-6968.2011.02449.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/22/2011] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms.
Collapse
Affiliation(s)
- Helen Fones
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
18
|
Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni. J Bacteriol 2011; 194:334-45. [PMID: 22081390 DOI: 10.1128/jb.05740-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.
Collapse
|
19
|
Tremblay J, Déziel E. Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 2010; 11:587. [PMID: 20961425 PMCID: PMC3091734 DOI: 10.1186/1471-2164-11-587] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril tip populations of a swarming colony displays general down-regulation of genes associated with virulence and up-regulation of genes involved in energy metabolism. These results allow us to propose a model where tendril tip cells function as «scouts» whose main purpose is to rapidly spread on uncolonized surfaces while swarm center population are in a state allowing a permanent settlement of the colonized area (biofilm-like).
Collapse
Affiliation(s)
- Julien Tremblay
- INRS-Institut Armand-Frappier, Laval (Québec), H7V 1B7, Canada
| | | |
Collapse
|
20
|
Hanin A, Sava I, Bao Y, Huebner J, Hartke A, Auffray Y, Sauvageot N. Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS One 2010; 5:e11879. [PMID: 20686694 PMCID: PMC2912369 DOI: 10.1371/journal.pone.0011879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/05/2010] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is part of the commensal microbiota of humans and its main habitat is the gastrointestinal tract. Although harmless in healthy individuals, E. faecalis has emerged as a major cause of nosocomial infections. In order to better understand the transformation of a harmless commensal into a life-threatening pathogen, we developed a Recombination-based In VivoExpression Technology for E. faecalis. Two R-IVET systems with different levels of sensitivity have been constructed in a E. faecalis V583 derivative strain and tested in the insect model Galleria mellonella, during growth in urine, in a mouse bacteremia and in a mouse peritonitis model. Our combined results led to the identification of 81 in vivo activated genes. Among them, the ef_3196/7 operon was shown to be strongly induced in the insect host model. Deletion of this operonic structure demonstrated that this two-component system was essential to the E. faecalis pathogenic potential in Galleria. Gene ef_0377, induced in insect and mammalian models, has also been further analyzed and it has been demonstrated that this ankyrin-encoding gene was also involved in E. faecalis virulence. Thus these R-IVET screenings led to the identification of new E. faecalis factors implied in in vivo persistence and pathogenic potential of this opportunistic pathogen.
Collapse
Affiliation(s)
- Aurelie Hanin
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
| | - Irina Sava
- Division of Infection Diseases, Department of Medicine, University Medical Center, Freiburg, Germany
| | - YinYin Bao
- Division of Infection Diseases, Department of Medicine, University Medical Center, Freiburg, Germany
| | - Johannes Huebner
- Division of Infection Diseases, Department of Medicine, University Medical Center, Freiburg, Germany
| | - Axel Hartke
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
| | - Yanick Auffray
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
| | - Nicolas Sauvageot
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
- * E-mail:
| |
Collapse
|
21
|
Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T. Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genomics 2010; 11:90. [PMID: 20137066 PMCID: PMC2830190 DOI: 10.1186/1471-2164-11-90] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 02/05/2010] [Indexed: 12/29/2022] Open
Abstract
Background Burkholderia cepacia complex bacteria are opportunistic pathogens, which can cause severe respiratory tract infections in patients with cystic fibrosis (CF). As treatment of infected CF patients is problematic, multiple preventive measures are taken to reduce the infection risk. Besides a stringent segregation policy to prevent patient-to-patient transmission, clinicians also advise patients to clean and disinfect their respiratory equipment on a regular basis. However, problems regarding the efficacy of several disinfection procedures for the removal and/or killing of B. cepacia complex bacteria have been reported. In order to unravel the molecular mechanisms involved in the resistance of biofilm-grown Burkholderia cenocepacia cells against high concentrations of reactive oxygen species (ROS), the present study focussed on the transcriptional response in sessile B. cenocepacia J2315 cells following exposure to high levels of H2O2 or NaOCl. Results The exposure to H2O2 and NaOCl resulted in an upregulation of the transcription of 315 (4.4%) and 386 (5.4%) genes, respectively. Transcription of 185 (2.6%) and 331 (4.6%) genes was decreased in response to the respective treatments. Many of the upregulated genes in the NaOCl- and H2O2-treated biofilms are involved in oxidative stress as well as general stress response, emphasizing the importance of the efficient neutralization and scavenging of ROS. In addition, multiple upregulated genes encode proteins that are necessary to repair ROS-induced cellular damage. Unexpectedly, a prolonged treatment with H2O2 also resulted in an increased transcription of multiple phage-related genes. A closer inspection of hybridisation signals obtained with probes targeting intergenic regions led to the identification of a putative 6S RNA. Conclusion Our results reveal that the transcription of a large fraction of B. cenocepacia J2315 genes is altered upon exposure of sessile cells to ROS. These observations have highlighted that B. cenocepacia may alter several pathways in response to exposure to ROS and they have led to the identification of many genes not previously implicated in the stress response of this pathogen.
Collapse
Affiliation(s)
- Elke Peeters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
22
|
Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 2009; 18:132-9. [PMID: 19962898 DOI: 10.1016/j.tim.2009.11.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/09/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022]
Abstract
The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature, and is predominantly found in eukaryotic proteins. Genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses has identified numerous genes encoding ANK-containing proteins that are proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells, where they mimic or manipulate various host functions. Studying the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions.
Collapse
|
23
|
Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect Immun 2009; 77:4243-55. [PMID: 19651857 DOI: 10.1128/iai.00376-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichiae are obligately intracellular bacteria that reside and replicate in phagocytes by circumventing host cell defenses and modulating cellular processes, including host cell gene transcription. However, the mechanisms by which ehrlichiae influence host gene transcription have largely remained undetermined. Numerous ankyrin and tandem repeat-containing proteins associated with host-pathogen interactions have been identified in Ehrlichia species, but their roles in pathobiology are unknown. In this study, we determined by confocal immunofluorescence microscopy and by immunodetection in purified nuclear extracts that the ankyrin repeat-containing protein p200 is translocated to the nuclei of Ehrlichia-infected monocytes. Chromatin immunoprecipitation (ChIP) with DNA sequencing revealed an Ehrlichia chaffeensis p200 interaction located within host promoter and intronic Alu-Sx elements, the most abundant repetitive elements in the human genome. A specific adenine-rich (mid-A-stretch) motif within Alu-Sx elements was identified using electrophoretic mobility shift and NoShift assays. Whole-genome analysis with ChIP and DNA microarray analysis (ChIP-chip) determined that genes (n = 456) with promoter Alu elements primarily related to transcription, apoptosis, ATPase activity, and structural proteins associated with the nucleus and membrane-bound organelles were the primary targets of p200. Several p200 target genes (encoding tumor necrosis factor alpha, Stat1, and CD48) associated with ehrlichial pathobiology were strongly upregulated during infection, as determined by quantitative PCR. This is the first study to identify a nuclear translocation of bacterially encoded protein by E. chaffeensis and to identify a specific binding motif and genes that are primary targets of a novel molecular strategy to reprogram host cell gene expression to promote survival of the pathogen.
Collapse
|
24
|
Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J, Siozios S, Nene V, Werren J, Bourtzis K, Bordenstein SR, Tettelin H. Extensive genomic diversity of closely related Wolbachia strains. MICROBIOLOGY-SGM 2009; 155:2211-2222. [PMID: 19389774 DOI: 10.1099/mic.0.027581-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/divergent genes being unique to a given strain. Each strain caused an average of approximately 60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21-87% of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution.
Collapse
Affiliation(s)
- Nadeeza Ishmael
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Sarah Biber
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joyce Sakamoto
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Vishvanath Nene
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - John Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| |
Collapse
|
25
|
Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 2008; 70:908-23. [PMID: 18811729 DOI: 10.1111/j.1365-2958.2008.06453.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Dot/Icm type IV secretion system of Legionella pneumophila translocates numerous bacterial effectors into the host cell and is essential for bacterial proliferation within macrophages and protozoa. We have recently shown that L. pneumophila strain AA100/130b harbours 11 genes encoding eukaryotic-like ankyrin (Ank) proteins, a family of proteins involved in various essential eukaryotic cellular processes. In contrast to most Dot/Icm-exported substrates, which have little or no detectable role in intracellular proliferation, a mutation in ankB results in a severe growth defect in intracellular replication within human monocyte-derived macrophages (hMDMs), U937 macrophages and Acanthamoeba polyphaga. Single cell analyses of coinfections of hMDMs have shown that the intracellular growth defect of the ankB mutant is totally rescued in cis within communal phagosomes harbouring the wild type strain. Interestingly, distinct from dot/icm structural mutants, the ankB mutant is also rescued in trans within cells harbouring the wild type strain in a different phagosome, indicating that AnkB is a trans-acting secreted effector. Using adenylate cyclase fusions to AnkB, we show that AnkB is translocated into the host cell via the Dot/Icm secretion system in an IcmSW-dependent manner and that the last three C-terminal amino acid residues are essential for translocation. Distinct from the dot/icm structural mutants, the ankB mutant-containing phagosomes exclude late endosomal and lysosomal markers and their phagosomes are remodelled by the rough endoplasmic reticulum. We show that at the postexponential phase of growth, the LetA/S and PmrA/B Two Component Systems confer a positive regulation on expression of the ankB gene, whereas RpoS, LetE and RelA suppress its expression. Our data show that the eukaryotic-like AnkB protein is a Dot/Icm-exported effector that plays a major role in intracellular replication of L. pneumophila within macrophages and protozoa, and its expression is temporally controlled by regulators of the postexponential phase of growth.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, Room 413, College of Medicine, University of Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
26
|
Characterization of the traD operon of naphthalene-catabolic plasmid NAH7: a host-range modifier in conjugative transfer. J Bacteriol 2008; 190:6281-9. [PMID: 18676671 DOI: 10.1128/jb.00709-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida G7 carries a naphthalene-catabolic and self-transmissible plasmid, NAH7, which belongs to the IncP-9 incompatibility group. Adjacent to the putative origin of conjugative transfer (oriT) of NAH7 are three genes, traD, traE, and traF, whose functions and roles in conjugation were previously unclear. These three genes were transcribed monocistronically and thus were designated the traD operon. Mutation of the three genes in the traD operon resulted in 10- to 10(5)-fold decreases in the transfer frequencies of the plasmids from Pseudomonas to Pseudomonas and Escherichia coli and from E. coli to E. coli. On the other hand, the traD operon was essential for the transfer of NAH7 from E. coli to Pseudomonas strains. These results indicated that the traD operon is a host-range modifier in the conjugative transfer of NAH7. The TraD, TraE, and TraF proteins were localized in the cytoplasm, periplasm, and membrane, respectively, in strain G7 cells. Our use of a bacterial two-hybrid assay system showed that TraE interacted in vivo with other essential components for conjugative transfer, including TraB (coupling protein), TraC (relaxase), and MpfH (a channel subunit in the mating pair formation system).
Collapse
|
27
|
|
28
|
Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 2008; 10:1460-74. [PMID: 18279343 DOI: 10.1111/j.1462-2920.2007.01560.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with approximately 30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the DeltaankH and DeltaankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
Collapse
Affiliation(s)
- Fabien Habyarimana
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
He P, Sheng YY, Shi YZ, Jiang XG, Qin JH, Zhang ZM, Zhao GP, Guo XK. Genetic diversity among major endemic strains of Leptospira interrogans in China. BMC Genomics 2007; 8:204. [PMID: 17603913 PMCID: PMC1936430 DOI: 10.1186/1471-2164-8-204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/01/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Leptospirosis is a world-widely distributed zoonosis. Humans become infected via exposure to pathogenic Leptospira spp. from contaminated water or soil. The availability of genomic sequences of Leptospira interrogans serovar Lai and serovar Copenhageni opened up opportunities to identify genetic diversity among different pathogenic strains of L. interrogans representing various kinds of serotypes (serogroups and serovars). RESULTS Comparative genomic hybridization (CGH) analysis was used to compare the gene content of L. interrogans serovar Lai strain Lai with that of other 10 L. interrogans strains prevailed in China and one identified from Brazil using a microarray spotted with 3,528 protein coding sequences (CDSs) of strain Lai. The cutoff ratio of sample/reference (S/R) hybridization for detecting the absence of genes from one tested strain was set by comparing the ratio of S/R hybridization and the in silico sequence similarities of strain Lai and serovar Copenhageni strain Fiocruz L1-130. Among the 11 strains tested, 275 CDSs were found absent from at least one strain. The common backbone of the L. interrogans genome was estimated to contain about 2,917 CDSs. The genes encoding fundamental cellular functions such as translation, energy production and conversion were conserved. While strain-specific genes include those that encode proteins related to either cell surface structures or carbohydrate transport and metabolism. We also found two genomic islands (GIs) in strain Lai containing genes divergently absent in other strains. Because genes encoding proteins with potential pathogenic functions are located within GIs, these elements might contribute to the variations in disease manifestation. Differences in genes involved in O-antigen biosynthesis were also identified for strains belonging to different serogroups, which offers an opportunity for future development of genomic typing tools for serological classification. CONCLUSION CGH analyses for pathogenic leptospiral strains prevailed in China against the L. interrogans serovar Lai strain Lai CDS-spotted microarrays revealed 2,917 common backbone CDSs and strain specific genes encoding proteins mainly related to cell surface structures and carbohydrated transport/metabolism. Of the 275 CDSs considered absent from at least one of the L. interrogans strains tested, most of them were clustered in the rfb gene cluster and two putative genomic islands (GI A and B) in strain Lai. The strain-specific genes detected via this work will provide a knowledge base for further investigating the pathogenesis of L interrogans and/or for the development of effective vaccines and/or diagnostic tools.
Collapse
Affiliation(s)
- Ping He
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue-Ying Sheng
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Zhou Shi
- National Engineering Center for Biochip at Shanghai, Zhangjiang High Tech Park, Shanghai 201203, China
| | - Xiu-Gao Jiang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (ICDC, CCDC), Beijing 102206, China
| | - Jin-Hong Qin
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Ming Zhang
- National Engineering Center for Biochip at Shanghai, Zhangjiang High Tech Park, Shanghai 201203, China
| | - Guo-Ping Zhao
- National Engineering Center for Biochip at Shanghai, Zhangjiang High Tech Park, Shanghai 201203, China
- State Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Zhangjiang High Tech Park, Shanghai 201203, China
| | - Xiao-Kui Guo
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
30
|
Mavromatis K, Doyle CK, Lykidis A, Ivanova N, Francino MP, Chain P, Shin M, Malfatti S, Larimer F, Copeland A, Detter JC, Land M, Richardson PM, Yu XJ, Walker DH, McBride JW, Kyrpides NC. The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies. J Bacteriol 2006; 188:4015-23. [PMID: 16707693 PMCID: PMC1482910 DOI: 10.1128/jb.01837-05] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, alpha-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).
Collapse
Affiliation(s)
- K Mavromatis
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Starkenburg SR, Chain PSG, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 2006; 72:2050-63. [PMID: 16517654 PMCID: PMC1393235 DOI: 10.1128/aem.72.3.2050-2063.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.
Collapse
|
32
|
Mossialos D, Tavankar GR, Zlosnik JEA, Williams HD. Defects in a quinol oxidase lead to loss of KatC catalase activity in Pseudomonas aeruginosa: KatC activity is temperature dependent and it requires an intact disulphide bond formation system. Biochem Biophys Res Commun 2006; 341:697-702. [PMID: 16430860 DOI: 10.1016/j.bbrc.2005.12.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/21/2005] [Indexed: 11/24/2022]
Abstract
Mutation or overexpression of the cyanide-insensitive terminal oxidase (CIO) of Pseudomonas aeruginosa leads to temperature-sensitivity, multiple antibiotic sensitivity, and abnormal cell division and failure to produce a temperature-inducible catalase [G.R. Tavankar, D. Mossialos, H.D. Williams, Mutation or overexpression of a terminal oxidase leads to a cell division defect and multiple antibiotic sensitivity in Pseudomonas aeruginosa, J. Biol. Chem. 278 (2003) 4524-4530]. We identify this enzyme as KatC, a newly described catalase from P. aeruginosa. Loss of KatC activity leads to temperature-dependent hydrogen peroxide sensitivity, which correlates with its temperature-inducible expression pattern. This is the first description, to our knowledge, of a temperature-inducible bacterial catalase. The transcription of katC is not affected in strains lacking or overexpressing the CIO, indicating that a post-transcriptional effect leads to loss of KatC activity. Disulphide bond formation is affected in strains lacking or overexpressing the CIO. This is shown by reduced activity of the extracellular enzymes lipase and elastase, and an altered pattern of redox states of DsbA, a key protein in disulphide bond formation in P. aeruginosa, in these strains. Moreover, a dsbA mutant had no detectable KatC activity, demonstrating that an intact disulphide bond formation system is required for KatC activity and thus explaining the loss of this catalase in the cio mutant and overexpressing strains.
Collapse
Affiliation(s)
- Dimitris Mossialos
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
33
|
Parvatiyar K, Alsabbagh EM, Ochsner UA, Stegemeyer MA, Smulian AG, Hwang SH, Jackson CR, McDermott TR, Hassett DJ. Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite. J Bacteriol 2005; 187:4853-64. [PMID: 15995200 PMCID: PMC1169530 DOI: 10.1128/jb.187.14.4853-4864.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impact of arsenite [As(III)] on several levels of cellular metabolism and gene regulation was examined in Pseudomonas aeruginosa. P. aeruginosa isogenic mutants devoid of antioxidant enzymes or defective in various metabolic pathways, DNA repair systems, metal storage proteins, global regulators, or quorum sensing circuitry were examined for their sensitivity to As(III). Mutants lacking the As(III) translocator (ArsB), superoxide dismutase (SOD), catabolite repression control protein (Crc), or glutathione reductase (Gor) were more sensitive to As(III) than wild-type bacteria. The MICs of As(III) under aerobic conditions were 0.2, 0.3, 0.8, and 1.9 mM for arsB, sodA sodB, crc, and gor mutants, respectively, and were 1.5- to 13-fold less than the MIC for the wild-type strain. A two-dimensional gel/matrix-assisted laser desorption ionization-time of flight analysis of As(III)-treated wild-type bacteria showed significantly (>40-fold) increased levels of a heat shock protein (IbpA) and a putative allo-threonine aldolase (GlyI). Smaller increases (up to 3.1-fold) in expression were observed for acetyl-coenzyme A acetyltransferase (AtoB), a probable aldehyde dehydrogenase (KauB), ribosomal protein L25 (RplY), and the probable DNA-binding stress protein (PA0962). In contrast, decreased levels of a heme oxygenase (HemO/PigA) were found upon As(III) treatment. Isogenic mutants were successfully constructed for six of the eight genes encoding the aforementioned proteins. When treated with sublethal concentrations of As(III), each mutant revealed a marginal to significant lag period prior to resumption of apparent normal growth compared to that observed in the wild-type strain. Our results suggest that As(III) exposure results in an oxidative stress-like response in P. aeruginosa, although activities of classic oxidative stress enzymes are not increased. Instead, relief from As(III)-based oxidative stress is accomplished from the collective activities of ArsB, glutathione reductase, and the global regulator Crc. SOD appears to be involved, but its function may be in the protection of superoxide-sensitive sulfhydryl groups.
Collapse
Affiliation(s)
- Kislay Parvatiyar
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, OH 45267-0524, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lau GW, Britigan BE, Hassett DJ. Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect Immun 2005; 73:2550-3. [PMID: 15784603 PMCID: PMC1087439 DOI: 10.1128/iai.73.4.2550-2553.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gee W Lau
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
35
|
Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005; 3:e121. [PMID: 15780005 PMCID: PMC1069646 DOI: 10.1371/journal.pbio.0030121] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 02/02/2005] [Indexed: 11/18/2022] Open
Abstract
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease. Analysis of this Wolbachia genome, which resides within filarial parasites, offers insight into endosymbiont evolution and the promise of new strategies for the elimination of human filarial disease
Collapse
Affiliation(s)
- Jeremy Foster
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Mehul Ganatra
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Ibrahim Kamal
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Jennifer Ware
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Kira Makarova
- 2National Center for Biotechnology Information, National Library of MedicineNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Natalia Ivanova
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | | | | | - Sanjay Kumar
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Janos Posfai
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Tamas Vincze
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Jessica Ingram
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Laurie Moran
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Alla Lapidus
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Marina Omelchenko
- 2National Center for Biotechnology Information, National Library of MedicineNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Nikos Kyrpides
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Elodie Ghedin
- 4Parasite Genomics, Institute for Genomic ResearchRockville, MarylandUnited States of America
| | - Shiliang Wang
- 4Parasite Genomics, Institute for Genomic ResearchRockville, MarylandUnited States of America
| | - Eugene Goltsman
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Victor Joukov
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | | | - Kiryl Tsukerman
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Mikhail Mazur
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Donald Comb
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Eugene Koonin
- 2National Center for Biotechnology Information, National Library of MedicineNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Barton Slatko
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| |
Collapse
|
36
|
Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, Wells JM. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. MICROBIOLOGY-SGM 2005; 151:243-257. [PMID: 15632442 DOI: 10.1099/mic.0.27412-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni is a zoonotic pathogen and the most common cause of bacterial foodborne diarrhoeal illness worldwide. To establish intestinal colonization prior to either a commensal or pathogenic interaction with the host, C. jejuni will encounter iron-limited niches where there is likely to be intense competition from the host and normal microbiota for iron. To gain a better understanding of iron homeostasis and the role of ferric uptake regulator (Fur) in iron acquisition in C. jejuni, a proteomic and transcriptome analysis of wild-type and fur mutant strains in iron-rich and iron-limited growth conditions was carried out. All of the proposed iron-transport systems for haemin, ferric iron and enterochelin, as well as the putative iron-transport genes p19, Cj1658, Cj0177, Cj0178 and cfrA, were expressed at higher levels in the wild-type strain under iron limitation and in the fur mutant in iron-rich conditions, suggesting that they were regulated by Fur. Genes encoding a previously uncharacterized ABC transport system (Cj1660-Cj1663) also appeared to be Fur regulated, supporting a role for these genes in iron uptake. Several promoters containing consensus Fur boxes that were identified in a previous bioinformatics search appeared not to be regulated by iron or Fur, indicating that the Fur box consensus needs experimental refinement. Binding of purified Fur to the promoters upstream of the p19, CfrA and CeuB operons was verified using an electrophoretic mobility shift assay (EMSA). These results also implicated Fur as having a role in the regulation of several genes, including fumarate hydratase, that showed decreased expression in response to iron limitation. The known PerR promoters were also derepressed in the C. jejuni Fur mutant, suggesting that they might be co-regulated in response to iron and peroxide stress. These results provide new insights into the effects of iron on metabolism and oxidative stress response as well as the regulatory role of Fur.
Collapse
Affiliation(s)
- Kathryn Holmes
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Francis Mulholland
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Bruce M Pearson
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Carmen Pin
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | | | - Julian M Ketley
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jerry M Wells
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| |
Collapse
|
37
|
Chauvatcharin N, Atichartpongkul S, Utamapongchai S, Whangsuk W, Vattanaviboon P, Mongkolsuk S. Genetic and physiological analysis of the major OxyR-regulated katA from Xanthomonas campestris pv. phaseoli. Microbiology (Reading) 2005; 151:597-605. [PMID: 15699208 DOI: 10.1099/mic.0.27598-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
katAencodes the major catalase that accounts for 90 % of the total catalase activity present inXanthomonas campestrispv.phaseoli.katAis located upstream of an ORF designatedankAencoding a cytoplasmic membrane protein homologous to eukaryotic ankyrin. Transcriptional analysis ofkatAandankAidentified twokatAtranscripts: a major monocistronickatAtranscript and a minor bicistronickatA–ankAtranscript. KatA expression was induced in the presence of various oxidants including H2O2, organic hydroperoxides and the superoxide-generating agent menadione, in an OxyR-dependent manner. Analysis of thekatApromoter region showed a putative OxyR binding site located upstream of anEscherichia coli-likeσ70−35 region that is likely to be responsible for transcription activation in response to oxidant treatment. Gel mobility shift experiments confirmed that purified OxyR specifically binds to thekatApromoter. AkatAmutant was highly sensitive to H2O2during both the exponential and stationary phases of growth. This phenotype could be complemented by functionalkatA, confirming the essential role of the gene in protectingX. campestrisfrom H2O2toxicity. Unexpectedly, inactivation ofankAalso significantly reduced resistance to H2O2and the phenotype could be complemented by plasmid-borne expression ofankA. Physiological analyses showed thatkatAplays an important role in, but is not solely responsible for, both the adaptive and menadione-induced cross-protective responses to H2O2killing inX. campestris.
Collapse
Affiliation(s)
- Nopmanee Chauvatcharin
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | - Supa Utamapongchai
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Wirongrong Whangsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
38
|
Nascimento ALTO, Ko AI, Martins EAL, Monteiro-Vitorello CB, Ho PL, Haake DA, Verjovski-Almeida S, Hartskeerl RA, Marques MV, Oliveira MC, Menck CFM, Leite LCC, Carrer H, Coutinho LL, Degrave WM, Dellagostin OA, El-Dorry H, Ferro ES, Ferro MIT, Furlan LR, Gamberini M, Giglioti EA, Góes-Neto A, Goldman GH, Goldman MHS, Harakava R, Jerônimo SMB, Junqueira-de-Azevedo ILM, Kimura ET, Kuramae EE, Lemos EGM, Lemos MVF, Marino CL, Nunes LR, de Oliveira RC, Pereira GG, Reis MS, Schriefer A, Siqueira WJ, Sommer P, Tsai SM, Simpson AJG, Ferro JA, Camargo LEA, Kitajima JP, Setubal JC, Van Sluys MA. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 2004; 186:2164-72. [PMID: 15028702 PMCID: PMC374407 DOI: 10.1128/jb.186.7.2164-2172.2004] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.
Collapse
Affiliation(s)
- A L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Trott DJ, Alt DP, Zuerner RL, Bulach DM, Wannemuehler MJ, Stasko J, Townsend KM, Stanton TB. Identification and cloning of the gene encoding BmpC: an outer-membrane lipoprotein associated with Brachyspira pilosicoli membrane vesicles. Microbiology (Reading) 2004; 150:1041-1053. [PMID: 15073313 DOI: 10.1099/mic.0.26755-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intestinal spirochaeteBrachyspira pilosicolicauses colitis in a wide variety of host species. Little is known about the structure or protein constituents of theB. pilosicoliouter membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated fromB. pilosicolistrain 95-1000 cells by osmotic lysis in dH2O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV;ρ=1·18 g cm−3) and a low-density fraction (LDMV;ρ=1·12 g cm−3). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDaB. pilosicoliOM protein) and was used as a source of antigens to produce mAbs. FiveB. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to theB. pilosicoliOM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening aB. pilosicoli95-1000 genome library with the mAb and was expressed inEscherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction ofE. colistrain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains ofB. pilosicoliisolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution withinB. pilosicoli.
Collapse
Affiliation(s)
- Darren J Trott
- School of Veterinary Science, The University of Queensland, St Lucia, Queensland, Australia
| | - David P Alt
- Bacterial Diseases of Livestock Research, National Animal Disease Center, Ames, IA, USA
| | - Richard L Zuerner
- Bacterial Diseases of Livestock Research, National Animal Disease Center, Ames, IA, USA
| | - Dieter M Bulach
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Victoria, Australia
| | | | - Judi Stasko
- Microscopy Services, National Animal Disease Center, Ames, IA, USA
| | - Kirsty M Townsend
- School of Veterinary Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Thaddeus B Stanton
- Pre-Harvest Food Safety Research, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
40
|
Palma M, DeLuca D, Worgall S, Quadri LEN. Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 2004; 186:248-52. [PMID: 14679246 PMCID: PMC303446 DOI: 10.1128/jb.186.1.248-252.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa must often overcome a high concentration of oxidants to successfully infect the human host. We report here the results of a transcriptome profiling comparing cells treated with H(2)O(2) and untreated controls. The data indicate that the early response of P. aeruginosa to H(2)O(2) consists of an upregulation of protective mechanisms and a downregulation of primary metabolism.
Collapse
Affiliation(s)
- Marco Palma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
41
|
Srinivasa Rao PS, Yamada Y, Leung KY. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2635-2644. [PMID: 12949187 DOI: 10.1099/mic.0.26478-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Edwardsiella tarda causes haemorrhagic septicaemia in fish and gastro- and extra-intestinal infections in animals including humans. Resistance to phagocyte-mediated killing is one of the virulence factors of Ed. tarda. The authors' previous studies using TnphoA transposon mutagenesis indicated that katB mutants derived from the strain PPD130/91 are at least 1.6 log higher in LD50 values than the wild-type strain. These findings suggest the involvement of catalase (KatB) in Ed. tarda pathogenesis. In this study, experiments were conducted to characterize the contribution of KatB to Ed. tarda infection. Zymographic analyses indicated that the 22 Ed. tarda strains examined expressed three different types of catalase-peroxidases (Kat1-3) based on their mobility in non-denaturing polyacrylamide gels. KatB (Kat1), the major catalase enzyme, was expressed in eight out of 22 Ed. tarda strains, and was commonly found in virulent strains except AL9379. AL9379 has a mutated katB, which has a base substitution and a deletion that translate into stop codons in the catalase gene. KatB produced by PPD130/91 was located in both periplasmic and cytoplasmic fractions and was constitutively expressed in various growth phases. Kinetics studies indicated that the catalase provided resistance to H2O2- and phagocyte-mediated killing. Infection kinetics studies of katB mutant 34 in gourami fish demonstrated its inability to survive and replicate in phagocyte-rich organs and this prevented the dissemination of infections when compared to the wild-type. Complementation of catalase mutants restored the production of catalase, and led to an increase in the resistance to H2O2- and phagocyte-mediated killing, and a decrease in LD50 values. This study has identified and characterized a major catalase gene (katB) that is required for resistance to H2O2- and phagocyte-mediated killing in Ed. tarda. The results also suggest that catalase may play a role as a virulence factor in Ed. tarda pathogenesis.
Collapse
Affiliation(s)
- P S Srinivasa Rao
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Science Drive 4, Singapore 117543
| | - Yoshiyuki Yamada
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Science Drive 4, Singapore 117543
| | - Ka Yin Leung
- Tropical Marine Science Institute, The National University of Singapore, Science Drive 4, Singapore 117543
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Science Drive 4, Singapore 117543
| |
Collapse
|
42
|
Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003; 185:2759-73. [PMID: 12700255 PMCID: PMC154410 DOI: 10.1128/jb.185.9.2759-2773.2003] [Citation(s) in RCA: 367] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Patrick Chain
- Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Harris AG, Wilson JE, Danon SJ, Dixon MF, Donegan K, Hazell SL. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. MICROBIOLOGY (READING, ENGLAND) 2003; 149:665-672. [PMID: 12634335 DOI: 10.1099/mic.0.26012-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori infects the human gastric mucosa and elicits an aggressive inflammatory response. Despite the severity of the inflammatory response, the bacterium is able to persist and cause a chronic infection. It is believed that antioxidant defence mechanisms enable this organism to persist. Wild-type H. pylori strain SS1, and KatA- and KapA-deficient mutants, were used to infect C57/BL6 mice to test this hypothesis. Neither KatA nor KapA was essential for the initial colonization of H. pylori SS1 in the murine model of infection. The wild-type SS1 colonized the gastric mucosa at significantly higher levels than both mutants throughout the 24-week experiment. Neither KatA- nor KapA-deficient mutants were able to maintain consistent ongoing colonization for the 24-week period, indicating the necessity of both KapA and KatA in sustaining a long-term infection. At 24 weeks, 5/10 mice inoculated with the KatA mutant and 2/10 mice inoculated with the KapA mutant were colonized, compared with 10/10 of the mice inoculated with the wild-type SS1. An increase in the severity of inflammation in the wild-type-inoculated mice appeared to correlate with the decline in colonization of animals inoculated with the mutants, suggesting that increased oxidative stress militated against continued infection by the mutants. These data indicate that KapA may be of equal or greater importance than KatA in terms of sustained infection on inflamed gastric mucosae.
Collapse
Affiliation(s)
- Andrew G Harris
- Centre for Biomedical Research, Faculty of Sciences, University of Southern Queensland, Toowoomba, Australia 4350
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia 2052
| | - John E Wilson
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia 2052
| | - Stephen J Danon
- CSIRO Molecular Science, North Ryde, NSW, Australia 1670
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia 2052
| | - Michael F Dixon
- Department of Histopathology, The General Infirmary at Leeds, Leeds LS1 3EX, UK
| | - Kevin Donegan
- School of Quantitative Methods and Mathematical Sciences, University of Western Sydney, Campbelltown, NSW, Australia 2560
| | - Stuart L Hazell
- Centre for Biomedical Research, Faculty of Sciences, University of Southern Queensland, Toowoomba, Australia 4350
| |
Collapse
|
44
|
Schweizer HP, Hoang TT, Propst KL, Ornelas HR, Karkhoff-Schweizer RR. Vector design and development of host systems for Pseudomonas. GENETIC ENGINEERING 2002; 23:69-81. [PMID: 11570107 DOI: 10.1007/0-306-47572-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- H P Schweizer
- Department of Microbiology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
45
|
Hassett DJ, Alsabbagh E, Parvatiyar K, Howell ML, Wilmott RW, Ochsner UA. A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol 2000; 182:4557-63. [PMID: 10913089 PMCID: PMC94627 DOI: 10.1128/jb.182.16.4557-4563.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Pseudomonas aeruginosa oxyR mutant was dramatically sensitive to H(2)O(2), despite possessing wild-type catalase activity. Oxygen-dependent oxyR phenotypes also included an inability to survive aerobic serial dilution in Luria broth and to resist aminoglycosides. Plating the oxyR mutant after serial dilution in its own spent culture supernatant, which contained the major catalase KatA, or under anaerobic conditions allowed for survival. KatA was resistant to sodium dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin and the neutrophil protease cathepsin G. When provided in trans and expressed constitutively, the OxyR-regulated genes katB, ahpB, and ahpCF could not restore both the serial dilution defect and H(2)O(2) resistance; only oxyR itself could do so. The aerobic dilution defect could be complemented, in part, by only ahpB and ahpCF, suggesting that the latter gene products could possess a catalase-like activity. Aerobic Luria broth was found to generate approximately 1.2 microM H(2)O(2) min(-1) via autoxidation, a level sufficient to kill serially diluted oxyR and oxyR katA bacteria and explain the molecular mechanism behind the aerobic serial dilution defect. Taken together, our results indicate that inactivation of OxyR renders P. aeruginosa exquisitely sensitive to both H(2)O(2) and aminoglycosides, which are clinically and environmentally important antimicrobials.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 2000; 182:4533-44. [PMID: 10913087 PMCID: PMC94625 DOI: 10.1128/jb.182.16.4533-4544.2000] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa possesses an extensive armament of genes involved in oxidative stress defense, including katB-ankB, ahpB, and ahpC-ahpF. Transcription of these genes was regulated in response to H(2)O(2), paraquat, or organic peroxides. Expression of katB-lacZ and the observed KatB catalase levels in P. aeruginosa PAO1 were induced up to 250-fold after exposure to oxidative stress-generating compounds. Also, ahpB-lacZ and ahpC-lacZ expression was 90- and 3-fold higher, respectively, upon exposure to paraquat. The dose- and time-response curves revealed that 1 microM paraquat was sufficient for half-maximal activation of each reporter fusion within 5 min of exposure. Expression of these genes was not observed in a DeltaoxyR mutant, indicating that OxyR was essential for this response. The transcriptional start sites of katB-ankB, ahpB, and ahpC-ahpF were mapped, putative OxyR-binding sites were identified upstream of the -35 promoter elements, and direct binding of purified OxyR protein to these target promoters was demonstrated. The oxyR mutant was hypersusceptible to oxidative stress-generating agents, including H(2)O(2) and paraquat, in spite of total KatA catalase activity being comparable to that of the wild type. The oxyR phenotype was fully complemented by a plasmid containing the oxyR gene, while any of the katB, ahpB, or ahpCF genes alone resulted in only marginal complementation. Increased katB-lacZ expression and higher KatB catalase levels were detected in a DeltaahpCF background compared to wild-type bacteria, suggesting a compensatory function for KatB in the absence of AhpCF. In P. aeruginosa, oxyR is located upstream of recG, encoding a putative DNA repair enzyme. oxyR-lacZ and recG-lacZ reporter activities and oxyR-recG mRNA analysis showed that oxyR and recG are organized in an operon and expressed constitutively with regard to oxidative stress from a single promoter upstream of oxyR. Mutants affected in recG but not oxyR were dramatically impaired in DNA damage repair as measured by sensitivity to UV irradiation. In conclusion, we present evidence that the oxyR-recG locus is essential for oxidative stress defense and for DNA repair.
Collapse
Affiliation(s)
- U A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|