1
|
He X, Zhang W, Liu J, Liu J, Chen Y, Luan C, Zhang J, Bao G, Lin X, Muh F, Lin T, Lu F. The global regulatory role of RsbUVW in virulence and biofilm formation in MRSA. Microb Pathog 2025; 203:107508. [PMID: 40158706 DOI: 10.1016/j.micpath.2025.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The widespread prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has caused serious challenges to clinical treatment. This study was designed to explore effective targets for MRSA prevention and control. The key virulence regulator was screened through the correlation analysis between virulence and various regulatory factors in the main clinical epidemic MRSA. The potential key factors were inactivated to further evaluate the inhibitory effect on the virulence of MRSA standard strain S. aureus ATCC43300 and its influence on drug resistance and biofilm formation. Enterobacterial repetitive intergenic consensus-PCR was used to analyze the clinical epidemic genotypes of MRSA. The virulence of MRSA was evaluated mainly by measuring its adhesion and invasion ability to A549 cells, the lethality to Galleria mellonella larvae, and the transcription level of related genes. The biofilm formation was assessed by crystal violet staining on polystyrene microplates. The results showed that most virulence factors of clinical representative MRSA strain were significantly positively correlated with RsbUVW system. After knocking out the rsbV gene, a key component of the rsbUVW system, the virulence of S. aureus ATCC43300 was significantly reduced (P < 0.05), as indicated by a significant decrease in lethality against G. mellonella larvae and invasion against A549 cells, and a significant decrease in the expression of immune escape related virulence factors polysaccharide intercellular adhesin (PIA) and staphyloxanthin. The biomass and stability of protein-dependent biofilm by S. aureus ATCC43300 were significantly increased. This study will provide useful information for the effective prevention and control of MRSA.
Collapse
Affiliation(s)
- Xinlong He
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225001, China
| | - Wenwen Zhang
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, Affiliated Hospital of East China Normal University, Shanghai, 200050, China
| | - Jie Liu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Jiali Liu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yinsong Chen
- Department of Lung, Third People's Hospital of Yangzhou, Yangzhou, China
| | - Changjiao Luan
- Department of Lung, Third People's Hospital of Yangzhou, Yangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Guangyu Bao
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Xiangfang Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Fauzi Muh
- Department of Epidemiology & Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia
| | - Tao Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China.
| | - Feng Lu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
2
|
Sheriff EK, Salvato F, Andersen SE, Chatterjee A, Kleiner M, Duerkop BA. Enterococcal quorum-controlled protease alters phage infection. FEMS MICROBES 2024; 5:xtae022. [PMID: 39156124 PMCID: PMC11328733 DOI: 10.1093/femsmc/xtae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Increased prevalence of multidrug-resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics, we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered that numerous uncharacterized phage proteins are produced during phage infection of E. faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum-sensing-regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the quorum-sensing regulator fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the putative murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.
Collapse
Affiliation(s)
- Emma K Sheriff
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Pl., Raleigh, NC 27695, United States
| | - Shelby E Andersen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Pl., Raleigh, NC 27695, United States
| | - Breck A Duerkop
- Department of Immunology and Microbiology, School of Medicine, University of Colorado – Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, United States
| |
Collapse
|
3
|
Sheriff EK, Salvato F, Andersen SE, Chatterjee A, Kleiner M, Duerkop BA. Enterococcal quorum-controlled protease alters phage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593607. [PMID: 38766208 PMCID: PMC11100838 DOI: 10.1101/2024.05.10.593607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Increased prevalence of multidrug resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered numerous uncharacterized phage proteins are produced during phage infection of Enterococcus faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum sensing regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.
Collapse
Affiliation(s)
- Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
4
|
Peng Q, Tang X, Dong W, Sun N, Yuan W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics (Basel) 2022; 12:antibiotics12010012. [PMID: 36671212 PMCID: PMC9854888 DOI: 10.3390/antibiotics12010012] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria can form biofilms in natural and clinical environments on both biotic and abiotic surfaces. The bacterial aggregates embedded in biofilms are formed by their own produced extracellular matrix. Staphylococcus aureus (S. aureus) is one of the most common pathogens of biofilm infections. The formation of biofilm can protect bacteria from being attacked by the host immune system and antibiotics and thus bacteria can be persistent against external challenges. Therefore, clinical treatments for biofilm infections are currently encountering difficulty. To address this critical challenge, a new and effective treatment method needs to be developed. A comprehensive understanding of bacterial biofilm formation and regulation mechanisms may provide meaningful insights against antibiotic resistance due to bacterial biofilms. In this review, we discuss an overview of S. aureus biofilms including the formation process, structural and functional properties of biofilm matrix, and the mechanism regulating biofilm formation.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Ning Sun
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| |
Collapse
|
5
|
Elhawy MI, Molle V, Becker SL, Bischoff M. The Low-Molecular Weight Protein Arginine Phosphatase PtpB Affects Nuclease Production, Cell Wall Integrity, and Uptake Rates of Staphylococcus aureus by Polymorphonuclear Leukocytes. Int J Mol Sci 2021; 22:ijms22105342. [PMID: 34069497 PMCID: PMC8161221 DOI: 10.3390/ijms22105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
The epidemiological success of Staphylococcus aureus as a versatile pathogen in mammals is largely attributed to its virulence factor repertoire and the sophisticated regulatory network controlling this virulon. Here we demonstrate that the low-molecular-weight protein arginine phosphatase PtpB contributes to this regulatory network by affecting the growth phase-dependent transcription of the virulence factor encoding genes/operons aur, nuc, and psmα, and that of the small regulatory RNA RNAIII. Inactivation of ptpB in S. aureus SA564 also significantly decreased the capacity of the mutant to degrade extracellular DNA, to hydrolyze proteins in the extracellular milieu, and to withstand Triton X-100 induced autolysis. SA564 ΔptpB mutant cells were additionally ingested faster by polymorphonuclear leukocytes in a whole blood phagocytosis assay, suggesting that PtpB contributes by several ways positively to the ability of S. aureus to evade host innate immunity.
Collapse
Affiliation(s)
- Mohamed Ibrahem Elhawy
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (M.I.E.); (S.L.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, 34095 Montpellier, France;
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (M.I.E.); (S.L.B.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (M.I.E.); (S.L.B.)
- Correspondence: ; Tel.: +49-6841-1623963
| |
Collapse
|
6
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
7
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
8
|
Subinhibitory Concentrations of Mupirocin Stimulate Staphylococcus aureus Biofilm Formation by Upregulating cidA. Antimicrob Agents Chemother 2020; 64:AAC.01912-19. [PMID: 31932378 DOI: 10.1128/aac.01912-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Previous studies have shown that the administration of antibiotics at subinhibitory concentrations stimulates biofilm formation by the majority of multidrug-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated the effect of subinhibitory concentrations of mupirocin on biofilm formation by the community-associated (CA) mupirocin-sensitive MRSA strain USA300 and the highly mupirocin-resistant clinical S. aureus SA01 to SA05 isolates. We found that mupirocin increased the ability of MRSA cells to attach to surfaces and form biofilms. Confocal laser scanning microscopy (CLSM) demonstrated that mupirocin treatment promoted thicker biofilm formation, which also correlated with the production of extracellular DNA (eDNA). Furthermore, quantitative real-time PCR (RT-qPCR) results revealed that this effect was largely due to the involvement of holin-like and antiholin-like proteins (encoded by the cidA gene), which are responsible for modulating cell death and lysis during biofilm development. We found that cidA expression levels significantly increased by 6.05- to 35.52-fold (P < 0.01) after mupirocin administration. We generated a cidA-deficient mutant of the USA300 S. aureus strain. Exposure of the ΔcidA mutant to mupirocin did not result in thicker biofilm formation than that in the parent strain. We therefore hypothesize that the mupirocin-induced stimulation of S. aureus biofilm formation may involve the upregulation of cidA.
Collapse
|
9
|
Modulation of Staphylococcus aureus Biofilm Matrix by Subinhibitory Concentrations of Clindamycin. Antimicrob Agents Chemother 2016; 60:5957-67. [PMID: 27458233 DOI: 10.1128/aac.00463-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus biofilms are extremely difficult to treat. They provide a protected niche for the bacteria, rendering them highly recalcitrant toward host defenses as well as antibiotic treatment. Bacteria within a biofilm are shielded from the immune system by the formation of an extracellular polymeric matrix, composed of polysaccharides, extracellular DNA (eDNA), and proteins. Many antibiotics do not readily penetrate biofilms, resulting in the presence of subinhibitory concentrations of antibiotics. Here, we show that subinhibitory concentrations of clindamycin triggered a transcriptional stress response in S. aureus via the alternative sigma factor B (σ(B)) and upregulated the expression of the major biofilm-associated genes atlA, lrgA, agrA, the psm genes, fnbA, and fnbB Our data suggest that subinhibitory concentrations of clindamycin alter the ability of S. aureus to form biofilms and shift the composition of the biofilm matrix toward higher eDNA content. An understanding of the molecular mechanisms underlying biofilm assembly and dispersal in response to subinhibitory concentrations of clinically relevant antibiotics such as clindamycin is critical to further optimize antibiotic treatment strategies of biofilm-associated S. aureus infections.
Collapse
|
10
|
Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance. J Bacteriol 2016; 198:2043-55. [PMID: 27185828 DOI: 10.1128/jb.00229-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The ability of Staphylococcus aureus to resist host innate immunity augments the severity and pervasiveness of its pathogenesis. Nitric oxide (NO˙) is an innate immune radical that is critical for the efficient clearance of a wide range of microbial pathogens. Exposure of microbes to NO˙ typically results in growth inhibition and induction of stress regulons. S. aureus, however, induces a metabolic state in response to NO˙ that allows for continued replication and precludes stress regulon induction. The regulatory factors mediating this distinctive response remain largely undefined. Here, we employ a targeted transposon screen and transcriptomics to identify and characterize five regulons essential for NO˙ resistance in S. aureus: three virulence regulons not formerly associated with NO˙ resistance, SarA, CodY, and Rot, as well as two regulons with established roles, Fur and SrrAB. We provide new insights into the contributions of Fur and SrrAB during NO˙ stress and show that the S. aureus ΔsarA mutant, the most sensitive of the newly identified mutants, exhibits metabolic dysfunction and widespread transcriptional dysregulation following NO˙ exposure. Altogether, our results broadly characterize the regulatory requirements for NO˙ resistance in S. aureus and suggest an intriguing overlap between the regulation of NO˙ resistance and virulence in this well-adapted human pathogen. IMPORTANCE The prolific human pathogen Staphylococcus aureus is uniquely capable of resisting the antimicrobial radical nitric oxide (NO˙), a crucial component of the innate immune response. However, a complete understanding of how S. aureus regulates an effective response to NO˙ is lacking. Here, we implicate three central virulence regulators, SarA, CodY, and Rot, as major players in the S. aureus NO˙ response. Additionally, we elaborate on the contribution of two regulators, SrrAB and Fur, already known to play a crucial role in S. aureus NO˙ resistance. Our study sheds light on a unique facet of S. aureus pathogenicity and demonstrates that the transcriptional response of S. aureus to NO˙ is highly pleiotropic and intrinsically tied to metabolism and virulence regulation.
Collapse
|
11
|
RpiRc Is a Pleiotropic Effector of Virulence Determinant Synthesis and Attenuates Pathogenicity in Staphylococcus aureus. Infect Immun 2016; 84:2031-2041. [PMID: 27113358 DOI: 10.1128/iai.00285-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 12/16/2022] Open
Abstract
In Staphylococcus aureus, metabolism is intimately linked with virulence determinant biosynthesis, and several metabolite-responsive regulators have been reported to mediate this linkage. S. aureus possesses at least three members of the RpiR family of transcriptional regulators. Of the three RpiR homologs, RpiRc is a potential regulator of the pentose phosphate pathway, which also regulates RNAIII levels. RNAIII is the regulatory RNA of the agr quorum-sensing system that controls virulence determinant synthesis. The effect of RpiRc on RNAIII likely involves other regulators, as the regulators that bind the RNAIII promoter have been intensely studied. To determine which regulators might bridge the gap between RpiRc and RNAIII, sarA, sigB, mgrA, and acnA mutations were introduced into an rpiRc mutant background, and the effects on RNAIII were determined. Additionally, phenotypic and genotypic differences were examined in the single and double mutant strains, and the virulence of select strains was examined using two different murine infection models. The data suggest that RpiRc affects RNAIII transcription and the synthesis of virulence determinants in concert with σ(B), SarA, and the bacterial metabolic status to negatively affect virulence.
Collapse
|
12
|
CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. J Bacteriol 2014; 196:1184-96. [PMID: 24391052 DOI: 10.1128/jb.00128-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus Agr system regulates virulence gene expression by responding to cell population density (quorum sensing). When an extracellular peptide signal (AIP-III in strain UAMS-1, used for these experiments) reaches a concentration threshold, the AgrC-AgrA two-component regulatory system is activated through a cascade of phosphorylation events, leading to induction of the divergently transcribed agrBDCA operon and the RNAIII gene. RNAIII is a posttranscriptional regulator of numerous metabolic and pathogenesis genes. CodY, a global regulatory protein, is known to repress agrBDCA and RNAIII transcription during exponential growth in rich medium, but the mechanism of this regulation has remained elusive. Here we report that phosphorylation of AgrA by the AgrC protein kinase is required for the overexpression of the agrBDCA operon and the RNAIII gene in a codY mutant during the exponential-growth phase, suggesting that the quorum-sensing system, which normally controls AgrC activation, is active even in exponential-phase cells in the absence of CodY. In part, such premature expression of RNAIII was attributable to higher-than-normal accumulation of AIP-III in a codY mutant strain, as determined using ultrahigh-performance liquid chromatography coupled to mass spectrometry. Although CodY is a strong repressor of the agr locus, CodY bound only weakly to the agrBDCA-RNAIII promoter region, suggesting that direct regulation by CodY is unlikely to be the principal mechanism by which CodY regulates agr and RNAIII expression. Taken together, these results strongly suggest that cell population density signals inducing virulence gene expression can be overridden by nutrient availability, a condition monitored by CodY.
Collapse
|
13
|
Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 2013; 13:257. [PMID: 24228850 PMCID: PMC3833181 DOI: 10.1186/1471-2180-13-257] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. RESULTS Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. CONCLUSIONS Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.
Collapse
Affiliation(s)
- Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital & Baylor College of Medicine, 6621, Fannin, MC: WT 6-104, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
14
|
Teixeira N, Varahan S, Gorman MJ, Palmer KL, Zaidman-Remy A, Yokohata R, Nakayama J, Hancock LE, Jacinto A, Gilmore MS, de Fátima Silva Lopes M. Drosophila host model reveals new enterococcus faecalis quorum-sensing associated virulence factors. PLoS One 2013; 8:e64740. [PMID: 23734216 PMCID: PMC3667150 DOI: 10.1371/journal.pone.0064740] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/17/2013] [Indexed: 01/30/2023] Open
Abstract
Enterococcus faecalis V583 is a vancomycin-resistant clinical isolate which belongs to the hospital-adapted clade, CC2. This strain harbours several factors that have been associated with virulence, including the fsr quorum-sensing regulatory system that is known to control the expression of GelE and SprE proteases. To discriminate between genes directly regulated by Fsr, and those indirectly regulated as the result of protease expression or activity, we compared gene expression in isogenic mutants of V583 variously defective in either Fsr quorum sensing or protease expression. Quorum sensing was artificially induced by addition of the quorum signal, GBAP, exogenously in a controlled manner. The Fsr regulon was found to be restricted to five genes, gelE, sprE, ef1097, ef1351 and ef1352. Twelve additional genes were found to be dependent on the presence of GBAP-induced proteases. Induction of GelE and SprE by GBAP via Fsr resulted in accumulation of mRNA encoding lrgAB, and this induction was found to be lytRS dependent. Drosophila infection was used to discern varying levels of toxicity stemming from mutations in the fsr quorum regulatory system and the genes that it regulates, highlighting the contribution of LrgAB and bacteriocin EF1097 to infection toxicity. A contribution of SprE to infection toxicity was also detected. This work brought to light new players in E. faecalis success as a pathogen and paves the way for future studies on host tolerance mechanisms to infections caused by this important nosocomial pathogen.
Collapse
Affiliation(s)
- Neuza Teixeira
- ITQB Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sriram Varahan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Matthew J. Gorman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Kelli L. Palmer
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anna Zaidman-Remy
- CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ryoji Yokohata
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Lynn E. Hancock
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - António Jacinto
- CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michael S. Gilmore
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria de Fátima Silva Lopes
- ITQB Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- IBET Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
15
|
Priest NK, Rudkin JK, Feil EJ, van den Elsen JMH, Cheung A, Peacock SJ, Laabei M, Lucks DA, Recker M, Massey RC. From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence? Nat Rev Microbiol 2012; 10:791-7. [PMID: 23070558 PMCID: PMC7097209 DOI: 10.1038/nrmicro2880] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
With the advent of high-throughput whole-genome sequencing, it is now possible to sequence a bacterial genome in a matter of hours. However, although the presence or absence of a particular gene can be determined, we do not yet have the tools to extract information about the true virulence potential of an organism from sequence data alone. Here, we focus on the important human pathogen Staphylococcus aureus and present a framework for the construction of a broad systems biology-based tool that could be used to predict virulence phenotypes from S. aureus genomic sequences using existing technology.
Collapse
Affiliation(s)
- Nicholas K. Priest
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Justine K. Rudkin
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Edward J. Feil
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Jean M. H. van den Elsen
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - Ambrose Cheung
- Ambrose Cheung is at Dartmouth Medical School, Vail Building - HB 7550, Hanover, New Hampshire 03755, USA.,
| | - Sharon J. Peacock
- Sharon J. Peacock is at the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.,
| | - Maisem Laabei
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| | - David A. Lucks
- David A. Lucks is at Western Infectious Disease Consultants, PC, 3885 Upham Street Suite 200, Wheat Ridge, Colorado 80033, USA.,
| | - Mario Recker
- Mario Recker is at the Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.,
| | - Ruth C. Massey
- Maisem Laabei and Ruth C. Massey are at the Department of Biology and Biochemistry, Nicholas K. Priest, Justine K. Rudkin, Edward J. Feil, Jean M. H. van den Elsen, University of Bath, Bath BA2 7AY, UK.,
| |
Collapse
|
16
|
Pruneau M, Mitchell G, Moisan H, Dumont-Blanchette É, Jacob CL, Malouin F. Transcriptional analysis of antibiotic resistance and virulence genes in multiresistant hospital-acquired MRSA. ACTA ACUST UNITED AC 2011; 63:54-64. [DOI: 10.1111/j.1574-695x.2011.00830.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Fujimoto DF, Higginbotham RH, Sterba KM, Maleki SJ, Segall AM, Smeltzer MS, Hurlburt BK. Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase-mediated excision/recombination. Mol Microbiol 2009; 74:1445-58. [PMID: 19919677 DOI: 10.1111/j.1365-2958.2009.06942.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator. Using competitive ELISA assays, we demonstrate that SarA is present at approximately 50 000 copies per cell, which is not characteristic of classical transcription factors. We also demonstrate that SarA is present at all stages of growth in vitro and is capable of binding DNA with high affinity but that its binding affinity and pattern of shifted complexes in electrophoretic mobility shift assays is responsive to the redox state. We also show that SarA binds to the bacteriophage lambda (lambda) attachment site, attL, producing SarA-DNA complexes similar to intasomes, which consist of bacteriophage lambda integrase, Escherichia coli integration host factor and attL DNA. In addition, SarA stimulates intramolecular excision recombination in the absence of lambda excisionase, a DNA binding accessory protein. Taken together, these data suggest that SarA may function as an architectural accessory protein.
Collapse
Affiliation(s)
- David F Fujimoto
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
19
|
Khalichi P, Singh J, Cvitkovitch DG, Santerre JP. The influence of triethylene glycol derived from dental composite resins on the regulation of Streptococcus mutans gene expression. Biomaterials 2009; 30:452-9. [DOI: 10.1016/j.biomaterials.2008.09.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022]
|
20
|
Renzoni A, Barras C, François P, Charbonnier Y, Huggler E, Garzoni C, Kelley WL, Majcherczyk P, Schrenzel J, Lew DP, Vaudaux P. Transcriptomic and functional analysis of an autolysis-deficient, teicoplanin-resistant derivative of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:3048-61. [PMID: 16940101 PMCID: PMC1563528 DOI: 10.1128/aac.00113-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular basis of glycopeptide-intermediate S. aureus (GISA) isolates is not well defined though frequently involves phenotypes such as thickened cell walls and decreased autolysis. We have exploited an isogenic pair of teicoplanin-susceptible (strain MRGR3) and teicoplanin-resistant (strain 14-4) methicillin-resistant S. aureus strains for detailed transcriptomic profiling and analysis of altered autolytic properties. Strain 14-4 displayed markedly deficient Triton X-100-triggered autolysis compared to its teicoplanin-susceptible parent, although microarray analysis paradoxically did not reveal significant reductions in expression levels of major autolytic genes atl, lytM, and lytN, except for sle1, which showed a slight decrease. The most important paradox was a more-than-twofold increase in expression of the cidABC operon in 14-4 compared to MRGR3, which was correlated with decreased expression of autolysis negative regulators lytSR and lrgAB. In contrast, the autolysis-deficient phenotype of 14-4 was correlated with both increased expression of negative autolysis regulators (arlRS, mgrA, and sarA) and decreased expression of positive regulators (agr RNAII and RNAIII). Quantitative bacteriolytic assays and zymographic analysis of concentrated culture supernatants showed a striking reduction in Atl-derived, extracellular bacteriolytic hydrolase activities in 14-4 compared to MRGR3. This observed difference was independent of the source of cell wall substrate (MRGR3 or 14-4) used for analysis. Collectively, our results suggest that altered autolytic properties in 14-4 are apparently not driven by significant changes in the transcription of key autolytic effectors. Instead, our analysis points to alternate regulatory mechanisms that impact autolysis effectors which may include changes in posttranscriptional processing or export.
Collapse
Affiliation(s)
- Adriana Renzoni
- Service of Infectious Diseases, University Hospitals of Geneva, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang SJ, Dunman PM, Projan SJ, Bayles KW. Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol Microbiol 2006; 60:458-68. [PMID: 16573694 DOI: 10.1111/j.1365-2958.2006.05105.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Staphylococcus aureus cid and lrg operons encode a novel regulatory system that affects murein hydrolase activity, stationary-phase survival and antibiotic tolerance. Expression of the lrgAB operon is positively regulated by a two-component regulatory system encoded by the lytSR operon located immediately upstream to lrgAB. By comparison, the cidABC operon lies downstream from the cidR gene, encoding a protein homologous to the LysR-type family of transcriptional regulators. Transcription analysis of a cidR mutant revealed that CidR enhances cidABC expression in the presence of acetic acid generated by the metabolism of excess glucose. Microarray studies identified additional CidR-regulated operons including the IrgAB and alsSD encoding proteins involved in acetoin production. Surprisingly, Northern blot analyses revealed that cidABC and lrgAB transcription was uninducible in an alsSD mutant grown in the presence of excess glucose, suggesting that the CidR-mediated upregulation of cidABC and lrgAB transcription is dependent on the presence of intact alsSD genes. Zymographic and quantitative analyses of murein hydrolase activity also revealed that disruption of the alsSD genes results in significantly decreased extracellular murein hydrolase activity compared with that of the parental strain, UAMS-1. Furthermore, the alsSD mutant displayed decreased stationary-phase survival relative to UAMS-1, both in the presence and absence of glucose. The results of this study define the CidR regulon and demonstrate that the generation of acetoin is linked to the control of cell death and lysis in S. aureus.
Collapse
Affiliation(s)
- Soo-Jin Yang
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
22
|
Chang W, Small DA, Toghrol F, Bentley WE. Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 2006; 188:1648-59. [PMID: 16452450 PMCID: PMC1367260 DOI: 10.1128/jb.188.4.1648-1659.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism.
Collapse
Affiliation(s)
- Wook Chang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park 20742, USA
| | | | | | | |
Collapse
|
23
|
Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Saïd-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, DeLeo FR. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 175:3907-19. [PMID: 16148137 DOI: 10.4049/jimmunol.175.6.3907] [Citation(s) in RCA: 427] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymorphonuclear leukocytes (PMNs, or neutrophils) are critical for human innate immunity and kill most invading bacteria. However, pathogens such as Staphylococcus aureus avoid destruction by PMNs to survive, thereby causing human infections. The molecular mechanisms used by pathogens to circumvent killing by the immune system remain largely undefined. To that end, we studied S. aureus pathogenesis and bacteria-PMN interactions using strains originally isolated from individuals with community-acquired (CA) and hospital-acquired infections. Compared with strains from hospital infections (COL and MRSA252), strain MW2 and a methicillin-susceptible relative, MnCop, were significantly more virulent in a mouse model of S. aureus infection, and caused the greatest level of pathology in major vital organs. Although phagocytosis of each strain triggered production of reactive oxygen species and granule-phagosome fusion, those from CA infections were significantly more resistant to killing by human PMNs and caused greater host cell lysis. Microarray analysis of the strains during neutrophil phagocytosis identified genes comprising a global S. aureus response to human innate host defense. Genes involved in capsule synthesis, gene regulation, oxidative stress, and virulence, were up-regulated following ingestion of the pathogen. Notably, phagocytosis of strains from CA infections induced changes in gene expression not observed in the other strains, including up-regulation of genes encoding virulence factors and hypothetical proteins. Our studies reveal a gene transcription program in a prominent human pathogen that likely contributes to evasion of innate host defense.
Collapse
Affiliation(s)
- Jovanka M Voyich
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li D, Renzoni A, Estoppey T, Bisognano C, Francois P, Kelley WL, Lew DP, Schrenzel J, Vaudaux P. Induction of fibronectin adhesins in quinolone-resistant Staphylococcus aureus by subinhibitory levels of ciprofloxacin or by sigma B transcription factor activity is mediated by two separate pathways. Antimicrob Agents Chemother 2005; 49:916-24. [PMID: 15728884 PMCID: PMC549254 DOI: 10.1128/aac.49.3.916-924.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We recently reported on the involvement of a RecA-LexA-dependent pathway in the ciprofloxacin-triggered upregulation of fibronectin-binding proteins (FnBPs) by fluoroquinolone-resistant Staphylococcus aureus. The potential additional contribution of the transcription factor sigma B (SigB) to the ciprofloxacin-triggered upregulation of FnBPs was studied in isogenic mutants of fluoroquinolone-resistant strain RA1 (a topoisomerase IV gyrase double mutant of S. aureus NCTC strain 8325), which exhibited widely different levels of SigB activity, as assessed by quantitative reverse transcription-PCR of their respective sigB and SigB-dependent asp23 transcript levels. These mutants were Tn551 insertion sigB strain TE1 and rsbU(+) complemented strain TE2, which exhibited a wild-type SigB operon. Levels of FnBP surface display and fibronectin-mediated adhesion were lower in sigB mutant TE1 or higher in the rsbU(+)-restored strain TE2 compared to their sigB(+) but rsbU parent, strain RA1, exhibiting low levels of SigB activity. Steady-state fnbA and fnbB transcripts levels were similar in strains TE1 and RA1 but increased by 4- and 12-fold, respectively, in strain TE2 compared to those in strain RA1. In contrast, fibronectin-mediated adhesion of strains TE1, RA1, and TE2 was similarly enhanced by growth in the presence of one-eighth the MIC of ciprofloxacin, which led to a significantly higher increase in their fnbB transcript levels compared to the increase in their fnbA transcript levels. Increased SigB levels led to a significant reduction in agr RNAIII; in contrast, it led to a slight increase in sarA transcript levels. In conclusion, upregulation of FnBPs by increased SigB levels and ciprofloxacin exposure in fluoroquinolone-resistant S. aureus occurs via independent pathways whose concerted actions may significantly promote bacterial adhesion and colonization.
Collapse
Affiliation(s)
- Dongmei Li
- Service of Infectious Diseases, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chatfield CH, Koo H, Quivey RG. The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. MICROBIOLOGY-SGM 2005; 151:625-631. [PMID: 15699211 DOI: 10.1099/mic.0.27604-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans is the primary odontopathogen present in supragingival plaque and causes the oral disease known as dental caries. Colonization of the oral cavity by S. mutans requires the bacteria to adhere to the tooth surface and occurs by both sucrose-dependent and -independent mechanisms. Sucrose-independent adhesion of S. mutans in vitro has been shown to involve an ORF (ORF0317) encoding a homologue (39 %) to LytR, a regulator of autolysin activity in Bacillus subtilis. The protein encoded by ORF0317, LytR, belongs to the LytR/CpsA/Psr protein family. This family has a putative role in cell-wall structural maintenance, possibly through autolysin regulation. Autolysins have also been shown to be important in surface adhesion in Lactococcus lactis and in the pathogenic properties of Streptococcus pneumoniae. To investigate the role of autolysins in the adhesion and pathogenesis of S. mutans, a LytR mutant was constructed. The mutant grows in long chains, which may indicate a defect in cell division. Further experiments with the mutant strain show increased autolytic activity, indicating that LytR attenuates S. mutans autolytic activity, possibly through regulation of the expression of autolytic enzymes. No defect in cell-to-surface adherence or biofilm growth was seen in the LytR mutant. However, a connection between cell growth phase and transcription of lytR was found.
Collapse
Affiliation(s)
- Christa H Chatfield
- in the Aab Institute for Biomedical Sciences and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Hyun Koo
- Eastman Department of Dentistry, University of Rochester, Rochester, NY 14642, USA
- Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA
| | - Robert G Quivey
- in the Aab Institute for Biomedical Sciences and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
- Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Rice KC, Nelson JB, Patton TG, Yang SJ, Bayles KW. Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J Bacteriol 2005; 187:813-21. [PMID: 15659658 PMCID: PMC545714 DOI: 10.1128/jb.187.3.813-821.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus lrg and cid operons encode homologous proteins that regulate extracellular murein hydrolase activity and penicillin tolerance in a diametrically opposing manner. Although their specific regulatory functions remain unknown, it has been postulated that the functions of CidA and LrgA are analogous to those of bacteriophage holins and antiholins, respectively, and that these proteins serve as molecular control elements of bacterial programmed cell death. Although these studies demonstrated that cidBC transcription is abundant in sigmaB-proficient strains, cidABC transcription was only minimally expressed under standard growth conditions. In this study, we demonstrate that cidABC and lrgAB transcription in the clinical isolate UAMS-1 is induced by growth in the presence of 35 mM glucose and that this enhances murein hydrolase activity and decreases tolerance to vancomycin and rifampin. The effect of glucose on murein hydrolase activity was not observed in the cidA mutant, indicating that the induction of this activity was dependent on enhanced cidABC expression. Furthermore, we demonstrate that the effects of glucose on cidABC and lrgAB transcription are mediated by the generation of acetic acid produced by the metabolism of this and other carbon sources. These results shed new light on the control of the S. aureus cidABC and lrgAB genes and demonstrate that these operons, as well as murein hydrolase activity and antibiotic tolerance, are responsive to carbohydrate metabolism.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | |
Collapse
|
27
|
Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, Berger-Bächi B, Projan S. Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol 2004; 186:4085-99. [PMID: 15205410 PMCID: PMC421609 DOI: 10.1128/jb.186.13.4085-4099.2004] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 03/18/2004] [Indexed: 01/30/2023] Open
Abstract
Microarray-based analysis of the transcriptional profiles of the genetically distinct Staphylococcus aureus strains COL, GP268, and Newman indicate that a total of 251 open reading frames (ORFs) are influenced by sigmaB activity. While sigmaB was found to positively control 198 genes by a factor of > or =2 in at least two of the three genetic lineages analyzed, 53 ORFs were repressed in the presence of sigmaB. Gene products that were found to be influenced by sigmaB are putatively involved in all manner of cellular processes, including cell envelope biosynthesis and turnover, intermediary metabolism, and signaling pathways. Most of the genes and/or operons identified as upregulated by sigmaB were preceded by a nucleotide sequence that resembled the sigmaB consensus promoter sequence of Bacillus subtilis. A conspicuous number of virulence-associated genes were identified as regulated by sigmaB activity, with many adhesins upregulated and prominently represented in this group, while transcription of various exoproteins and toxins were repressed. The data presented here suggest that the sigmaB of S. aureus controls a large regulon and is an important modulator of virulence gene expression that is likely to act conversely to RNAIII, the effector molecule of the agr locus. We propose that this alternative transcription factor may be of importance for the invading pathogen to fine-tune its virulence factor production in response to changing host environments.
Collapse
Affiliation(s)
- Markus Bischoff
- Department of Medical Microbiology, University of Zurich, CH-8028 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rice KC, Patton T, Yang SJ, Dumoulin A, Bischoff M, Bayles KW. Transcription of the Staphylococcus aureus cid and lrg murein hydrolase regulators is affected by sigma factor B. J Bacteriol 2004; 186:3029-37. [PMID: 15126464 PMCID: PMC400629 DOI: 10.1128/jb.186.10.3029-3037.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Staphylococcus aureus lrg and cid loci are homologous operons that have been shown to regulate murein hydrolase activity and affect sensitivity to penicillin. Although the mode of action of these operons has not been demonstrated, a model based on the similarities of the lrgA and cidA gene products to the bacteriophage holin family of proteins has been proposed. In this study, the transcription organization and regulation of these operons were examined by Northern blot analyses. Unexpectedly, cidB and a gene located immediately downstream, designated cidC, were found to be cotranscribed on a 2.7-kb transcript. Maximal cidBC transcription occurred during early exponential growth, and high-level transcription of cidBC was dependent on the rsbU-mediated activation of the alternative sigma factor B (sigmaB). In contrast, lrgAB transcription in stationary phase was negatively regulated by sigmaB. Although cidABC transcription was not detected by Northern blot analysis, reverse transcriptase PCR revealed that these genes are also cotranscribed as a single RNA message in early exponential growth. Primer extension analysis revealed the presence of two cidBC transcription start sites, but no apparent sigmaB-dependent promoter consensus sequence was identified in these regions. The rsbU gene was also shown to have a positive impact on murein hydrolase activity but a negligible effect on sensitivity to penicillin-induced killing. These results suggest that the lrgAB and cidBC genes may be part of the S. aureus sigmaB-controlled stress regulon.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bronner S, Monteil H, Prévost G. Regulation of virulence determinants inStaphylococcus aureus: complexity and applications. FEMS Microbiol Rev 2004; 28:183-200. [PMID: 15109784 DOI: 10.1016/j.femsre.2003.09.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 05/16/2003] [Accepted: 09/15/2003] [Indexed: 11/22/2022] Open
Abstract
The virulence of Staphylococcus aureus is essentially determined by cell wall associated proteins and secreted toxins that are regulated and expressed according to growth phases and/or growth conditions. Gene expression is regulated by specific and sensitive mechanisms, most of which act at the transcriptional level. Regulatory factors constitute numerous complex networks, driving specific interactions with target gene promoters. These factors are largely regulated by two-component regulatory systems, such as the agr, saeRS, srrAB, arlSR and lytRS systems. These systems are sensitive to environmental signals and consist of a sensor histidine kinase and a response regulator protein. DNA-binding proteins, such as SarA and the recently identified SarA homologues (SarR, Rot, SarS, SarT, SarU), also regulate virulence factor expression. These homologues might be intermediates in the regulatory networks. The multiple pathways generated by these factors allow the bacterium to adapt to environmental conditions rapidly and specifically, and to develop infection. Precise knowledge of these regulatory mechanisms and how they control virulence factor expression would open up new perspectives for antimicrobial chemotherapy using key inhibitors of these systems.
Collapse
Affiliation(s)
- Stéphane Bronner
- Institut de Bactériologie, Faculté de Médecine, Université Louis Pasteur - Hôpitaux, Universitaires de Strasbourg, 3, rue Koeberlé, F-67000 Strasbourg, France
| | | | | |
Collapse
|
30
|
Sterba KM, Mackintosh SG, Blevins JS, Hurlburt BK, Smeltzer MS. Characterization of Staphylococcus aureus SarA binding sites. J Bacteriol 2003; 185:4410-7. [PMID: 12867449 PMCID: PMC165759 DOI: 10.1128/jb.185.15.4410-4417.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The staphylococcal accessory regulator locus (sarA) encodes a DNA-binding protein (SarA) that modulates expression of over 100 genes. Whether this occurs via a direct interaction between SarA and cis elements associated with its target genes is unclear, partly because the definitive characteristics of a SarA binding site have not been identified. In this work, electrophoretic mobility shift assays (EMSAs) were used to identify a SarA binding site(s) upstream of the SarA-regulated gene cna. The results suggest the existence of multiple high-affinity binding sites within the cna promoter region. Using a SELEX (systematic evolution of ligands by exponential enrichment) procedure and purified, recombinant SarA, we also selected DNA targets that contain a high-affinity SarA binding site from a random pool of DNA fragments. These fragments were subsequently cloned and sequenced. Randomly chosen clones were also examined by EMSA. These DNA fragments bound SarA with affinities comparable to those of recognized SarA-regulated genes, including cna, fnbA, and sspA. The composition of SarA-selected DNAs was AT rich, which is consistent with the nucleotide composition of the Staphylococcus aureus genome. Alignment of selected DNAs revealed a 7-bp consensus (ATTTTAT) that was present with no more than one mismatch in 46 of 56 sequenced clones. By using the same criteria, consensus binding sites were also identified upstream of the S. aureus genes spa, fnbA, sspA, agr, hla, and cna. With the exception of cna, which has not been previously examined, this 7-bp motif was within the putative SarA binding site previously associated with each gene.
Collapse
Affiliation(s)
- Kristen M Sterba
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The Staphylococcus aureus cid and lrg operons have been shown to encode putative membrane proteins that are involved in the regulation of murein hydrolase activity and penicillin tolerance. Cid proteins enhance murein hydrolase activity and penicillin sensitivity, whereas Lrg proteins have an inhibitory effect on these processes. It has been proposed that the Cid and Lrg proteins function in a way analogous to bacteriophage-encoded holins and antiholins, respectively, which control the timing of bacteriophage-induced lysis. This article explores the possibility that the Cid-Lrg regulatory system controls bacterial programmed cell death using a molecular strategy that it is functionally analogous to that mediated by the eukaryotic Bcl-2 family of apoptosis regulatory proteins.
Collapse
Affiliation(s)
- Kenneth W Bayles
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA.
| |
Collapse
|
32
|
Boyle-Vavra S, Challapalli M, Daum RS. Resistance to autolysis in vancomycin-selected Staphylococcus aureus isolates precedes vancomycin-intermediate resistance. Antimicrob Agents Chemother 2003; 47:2036-9. [PMID: 12760894 PMCID: PMC155830 DOI: 10.1128/aac.47.6.2036-2039.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four clinical U.S. glycopeptide intermediate resistant Staphylococcus aureus (GISA) isolates were resistant to Triton X-100-induced autolysis. Similar resistance was demonstrated in an isolate obtained after a single passage of a susceptible clinical isolate in low-level vancomycin. Strains with the vancomycin-induced Triton X-100 resistance phenotype produced active murein hydrolases but were resistant to lysis by murein hydrolases.
Collapse
Affiliation(s)
- Susan Boyle-Vavra
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
33
|
Ingavale SS, Van Wamel W, Cheung AL. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol 2003; 48:1451-66. [PMID: 12791130 DOI: 10.1046/j.1365-2958.2003.03503.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In trying to identify genetic loci involved in the regulation of cap5 genes in Staphylococcus aureus, we isolated a transposon mutant that exhibited a growth defect, enhanced autolysis and increased sensitivity to Triton X-100 and penicillin, attributable in part to increased murein hydrolase activity. Analysis of the chromosomal sequence flanking the transposon insertion site revealed that the gene disrupted in the mutant encodes an open reading frame of 147 amino acids. We named this gene rat, which stands for regulator of autolytic activity. Sequence analysis indicated that Rat is homologous to the MarR and, to a lesser extent, the SarA protein families. Mutations in rat resulted in decreased expression of known autolytic regulators lytSR, lrgAB and arlRS. Gel shift studies indicated that Rat binds to the lytRS and arlRS promoters, thus confirming Rat as a DNA-binding protein to these known repressors of autolytic activity. As anticipated, rat appears to be a negative regulator of autolysin genes including lytM and lytN. These data suggest that the rat gene product is an important regulator of autolytic activity in S. aureus.
Collapse
Affiliation(s)
- S S Ingavale
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
34
|
Yoshida A, Kuramitsu HK. Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation. Appl Environ Microbiol 2002; 68:6283-91. [PMID: 12450853 PMCID: PMC134449 DOI: 10.1128/aem.68.12.6283-6291.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Oral Biology, State University of New York, Buffalo 14214, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- A L Koch
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-6801, USA.
| |
Collapse
|
36
|
Bischoff M, Entenza JM, Giachino P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 2001; 183:5171-9. [PMID: 11489871 PMCID: PMC95394 DOI: 10.1128/jb.183.17.5171-5179.2001] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The growth phase-dependent activity profile of the alternate transcription factor sigma(B) and its effects on the expression of sar and agr were examined in three different Staphylococcus aureus strains by Northern blot analyses and by the use of reporter gene fusion experiments. Significant sigma(B) activity was detectable only in the clinical isolates MSSA1112 and Newman, carrying the wild-type rsbU allele, but not in the NCTC8325 derivative BB255, which is defective in rsbU. sigma(B) activity peaked in the late exponential phase and diminished towards the stationary phase when bacteria were grown in Luria-Bertani medium. Transcriptional analysis and a sarP1-sarP2-sarP3 (sarP1-P2-P3)-driven firefly luciferase (luc+) reporter gene fusion demonstrated a strong sigma(B) activity- and growth phase-dependent increase in sar expression that was totally absent in either rsbU or Delta rsbUVWsigB mutants. In contrast, expression of the agr locus, as measured by RNAIII levels and by an hldp::luc+ fusion, was found to be higher in the absence of sigma(B) activity, such as in rsbU or Delta rsbUVWsigB mutants, than in wild-type strains. Overexpression of sigma(B) in BB255 derivatives resulted in a clear increase in sarP1-P2-P3::luc+ expression as well as a strong decrease in hldp::luc+ expression. The data presented here suggest that sigma(B) increases sar expression while simultaneously reducing the RNAIII level in a growth phase-dependent manner.
Collapse
Affiliation(s)
- M Bischoff
- Institute of Medical Microbiology, University of Zürich, CH-8028 Zürich, Switzerland.
| | | | | |
Collapse
|