1
|
Beetham CM, Schuster CF, Kviatkovski I, Santiago M, Walker S, Gründling A. Histidine transport is essential for the growth of Staphylococcus aureus at low pH. PLoS Pathog 2024; 20:e1011927. [PMID: 38227607 PMCID: PMC10817146 DOI: 10.1371/journal.ppat.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/26/2024] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen capable of causing many different human diseases. During colonization and infection, S. aureus will encounter a range of hostile environments, including acidic conditions such as those found on the skin and within macrophages. However, little is known about the mechanisms that S. aureus uses to detect and respond to low pH. Here, we employed a transposon sequencing approach to determine on a genome-wide level the genes required or detrimental for growth at low pH. We identified 31 genes that were essential for the growth of S. aureus at pH 4.5 and confirmed the importance of many of them through follow up experiments using mutant strains inactivated for individual genes. Most of the genes identified code for proteins with functions in cell wall assembly and maintenance. These data suggest that the cell wall has a more important role than previously appreciated in promoting bacterial survival when under acid stress. We also identified several novel processes previously not linked to the acid stress response in S. aureus. These include aerobic respiration and histidine transport, the latter by showing that one of the most important genes, SAUSA300_0846, codes for a previously uncharacterized histidine transporter. We further show that under acid stress, the expression of the histidine transporter gene is increased in WT S. aureus. In a S. aureus SAUSA300_0846 mutant strain expression of the histidine biosynthesis genes is induced under acid stress conditions allowing the bacteria to maintain cytosolic histidine levels. This strain is, however, unable to maintain its cytosolic pH to the same extent as a WT strain, revealing an important function specifically for histidine transport in the acid stress response of S. aureus.
Collapse
Affiliation(s)
- Catrin M. Beetham
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Christopher F. Schuster
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Igor Kviatkovski
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Faozia S, Hossain T, Cho KH. The Dlt and LiaFSR systems derepress SpeB production independently in the Δpde2 mutant of Streptococcus pyogenes. Front Cell Infect Microbiol 2023; 13:1293095. [PMID: 38029265 PMCID: PMC10679467 DOI: 10.3389/fcimb.2023.1293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The second messenger molecule, c-di-AMP, plays a critical role in pathogenesis and virulence in S. pyogenes. We previously reported that deleting the c-di-AMP phosphodiesterase gene pde2 severely suppresses SpeB production at the transcriptional level. We performed transposon mutagenesis to gain insight into the mechanism of how Pde2 is involved in SpeB regulation. We identified one of the genes of the dlt operon, dltX, as a suppressor of the SpeB-null phenotype of the Δpde2 mutant. The dlt operon consists of five genes, dltX, dltA, dltB, dltC, and dltD in many Gram-positive bacteria, and its function is to incorporate D-alanine into lipoteichoic acids. DltX, a small membrane protein, is a newly identified member of the operon. The in-frame deletion of dltX or insertional inactivation of dltA in the Δpde2 mutant restored SpeB production, indicating that D-alanylation is crucial for the suppressor phenotype. These mutations did not affect the growth in lab media but showed increased negative cell surface charge and enhanced sensitivity to polymyxin B. Considering that dlt mutations change cell surface charge and sensitivity to cationic antimicrobial peptides, we examined the LiaFSR system that senses and responds to cell envelope stress. The ΔliaR mutation in the Δpde2 mutant also derepressed SpeB production, like the ΔdltX mutation. LiaFSR controls speB expression by regulating the expression of the transcriptional regulator SpxA2. However, the Dlt system did not regulate spxA2 expression. The SpeB phenotype of the Δpde2ΔdltX mutant in higher salt media differed from that of the Δpde2ΔliaR mutant, suggesting a unique pathway for the Dlt system in SpeB production, possibly related to ion transport or turgor pressure regulation.
Collapse
Affiliation(s)
| | | | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| |
Collapse
|
3
|
Du J, Huang S, Wu M, Chen S, Zhou W, Zhan L, Huang X. Dlt operon regulates physiological function and cariogenic virulence in Streptococcus mutans. Future Microbiol 2023; 18:225-233. [PMID: 37097048 DOI: 10.2217/fmb-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Streptococcus mutans is one of the major cariogenic pathogens in the oral cavity. The dlt operon is responsible for the process of D-alanylation of lipoteichoic acid and is related to the virulence of S. mutans. The dlt operon contributes to the adhesion, biofilm formation, stress response, interspecies competitiveness and autolysis of S. mutans. In addition, we have summarized the possible regulatory networks of the dlt operon. This review highlights the significant role of the dlt operon in S. mutans and provides new ideas for ecological caries prevention.
Collapse
Affiliation(s)
- Jingyun Du
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Minjing Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ling Zhan
- Division of Pediatric Dentistry, Department of Orofacial Sciences, Department of Preventive & Restorative Dental Sciences, University of California, San Francisco, CA, USA
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Zhang Y, Li Z, Xu X, Peng X. Transposon mutagenesis in oral streptococcus. J Oral Microbiol 2022; 14:2104951. [PMID: 35903085 PMCID: PMC9318214 DOI: 10.1080/20002297.2022.2104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oral streptococci are gram-positive facultative anaerobic bacteria that are normal inhabitants of the human oral cavity and play an important role in maintaining oral microecological balance and pathogenesis. Transposon mutagenesis is an effective genetic manipulation strategy for studying the function of genomic features. In order to study cariogenic related genes and crucial biological element genes of oral Streptococcus, transposon mutagenesis was widely used to identify functional genes. With the advent of next-generation sequencing (NGS) technology and the development of transposon random mutation library construction methods, transposon insertion sequencing (TIS) came into being. Benefiting from high-throughput advances in NGS, TIS was able to evaluate the fitness contribution and essentiality of genetic features in the bacterial genome. The application of transposon mutagenesis, including TIS, to oral streptococci provided a massive amount of valuable detailed linkage data between genetic fitness and genetic backgrounds, further clarify the processes of colonization, virulence, and persistence and provides a more reliable basis for investigating relationships with host ecology and disease status. This review focuses on transposon mutagenesis, including TIS, and its applicability in oral streptococci.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liu X, Lv X, Sun Y, Liu C, Wang R, Liu R, Ma Y, Li Q. Probiotic properties of Lacticaseibacillus rhamnosus grx10 revolved with complete genome. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wu H, Zhang Y, Li L, Li Y, Yuan L, E Y, Qiao J. Positive regulation of the DLT operon by TCSR7 enhances acid tolerance of Lactococcus lactis F44. J Dairy Sci 2022; 105:7940-7950. [PMID: 36028342 DOI: 10.3168/jds.2022-21898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
Lactococcus lactis, a lactic acid bacterium, has been widely used in the fermented dairy products. The acid tolerance of L. lactis is of great importance to food fermentation and probiotic applications. As the first barrier of bacteria, the cell wall has a protective effect on strains under many stress conditions, whereas the regulatory mechanism has rarely been reported. Here, based on the transcription analysis of 9 cell wall or membrane-related genes of L. lactis F44 under acid stress, the transcription levels of DACB, DLTD, YLBA, HRTA, WP_080613266.1 (1610), and ERFK genes were significantly increased. We constructed 9 overexpressing strains with the cell wall or membrane-related genes, respectively. It was demonstrated that the survival rates under acid stress of DACB, DLTD, and ERFK were significantly higher than that of wild-type F44. To investigate the regulatory mechanism, a DNA pull-down assay was used to identify the transcriptional regulators of these 3 genes. It was discovered that the 2-component system (TCS) transcriptional regulator TCSR7 bound to the upstream region of DLTD involved in the teichoic acid (TA) alanylation. The combination was confirmed through an electrophoretic mobility shift assay in vitro. Reverse-transcription quantitative PCR results indicated that TCSR7 upregulated the expression of DLTD gene. In addition, the transcription level of TCSR7 increased approximately 1.8-fold (log2 fold change) under acidic conditions. In summary, this study found that TCSR7 was induced by acid stress to upregulate the transcription level of the DLT operon genes, which might increase the positive charge on the cell membrane surface to increase the acid tolerance of the strain. This study lays the foundation for the regulatory mechanism of TA alanylation under acid stress.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Yangling Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Department of Bioengineering, School of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300072, P. R. China
| | - Yue E
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| |
Collapse
|
7
|
Wu M, Huang S, Du J, Li Y, Jiang S, Zhan L, Huang X. D-alanylation of lipoteichoic acid contributes to biofilm formation and acidogenesis capacity of Streptococcusmutans. Microb Pathog 2022; 169:105666. [PMID: 35811023 DOI: 10.1016/j.micpath.2022.105666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND D-alanylation of Lipoteichoic acid (LTA) is considered to be essential for virulence factors expression in Gram-positive microorganism. The effects of the D-alanylation of LTA on biofilm formation and acidogenesis of Streptococcus mutans (S. mutans) are still not clearly understood. AIM This study was designed to investigate the impact of D-alanylation of LTA on biofilm formation and acidogenesis of S. mutans and explore the related mechanisms. METHODS AND MATERIAL We compared the biofilm formation process by fluorescence microscope observation of LTA D-alanylation blocking strain with that of the wildtype strain. Auto-aggregation, cell surface charge, and polysaccharide production assays were performed to investigate the related mechanisms. pH drop assay and glycolysis pH drop-down analysis were carried out to evaluate the acidogenesis capacity of S. mutans after LTA D-alanylation blocking. To identify the biofilm formation and adhesive-related genes expressions of S. mutans mutant, qRT-PCR was performed. RESULTS After blocking off the D-alanylation of LTA, S. mutans could not form the three-dimensional structural biofilm, in which cells were scattered on the substratum as small clusters. The auto-aggregation was prompted due to the mutant strain cell morphology change (*p < 0.05). Furthermore, more negative charges were found on the mutant strain cells surfaces and fewer water-insoluble glucans were produced in mutant biofilm (*p < 0.05). The adhesion capacity of the S. mutans biofilm was impaired after LTA D-alanylation blocking (*p < 0.05). Biofilm formation and adhesive-related genes expressions decreased (*p < 0.05), especially at the early stages of biofilm formation. S. mutans mutant strains exhibited suppressed acidogenesis because its glycolytic activity was impaired. CONCLUSION The results of this study suggest that blocking of LTA D-alanylation disrupts normal biofilm formation in S. mutans predominantly if not entirely by altering intercellular auto-aggregation, cell adhesion, and extracellular matrix formation. Moreover, our study results suggest that the LTA D-alanylation plays an important role in S. mutans acidogenesis by altering glycolytic activity. These findings add to the knowledge about mechanisms underlying biofilm formation and acid tolerance in S. mutans.
Collapse
Affiliation(s)
- Minjing Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Jingyun Du
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), China
| | - Ling Zhan
- Division of Pediatric Dentistry, Department of Orofacial Sciences, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, USA.
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
杜 景, 吴 敏, 李 艺, 黄 珊, 江 山, 陈 帅, 黄 晓. [Effect of Lipoteichoic Acid Synthesis-Related Gene dltD on Acid Tolerance of Highly Cariogenic Strains of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:235-241. [PMID: 35332723 PMCID: PMC10409349 DOI: 10.12182/20220360102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 06/14/2023]
Abstract
Objective To study the role and possible mechanism of dltD in the acid tolerance of Streptococcus mutans 593 (SM593), and to provide a theoretical basis for the ecological prevention and control of dental caries by constructing the dltD gene deletion strain of SM593 (SM593-ΔdltD). Methods 1) SM593-Δ dltD was constructed by homologous recombination. 2) The growth curve of SM593 dltD and SM593-Δ dltD under different pH culture conditions was drawn by the automatic growth curve analyzer to compare their acid tolerance. Colony forming unit (CFU) at different time points was used to calculate the survival rate and to compare the acid tolerance response (ATR) of SM593 and SM593-Δ dltD. 3) Under different pH conditions, glycolysis experiments, proton permeability test and H +-ATPase activity test were conducted to make preliminary exploration into the mechanisms of how dltD gene deletion may affect acid tolerance. Results 1) PCR and sequencing results showed that the SM593-Δ dltD was constructed successfully. 2) With decreasing pH value of the culture medium, the growth of SM593-Δ dltD slowed down. When the pH value of the culture medium was 5.0, SM593-Δ dltD was not allowed to grow, and its acid tolerance was lower than that of SM593. Compared with SM593, the ATR capability of SM593-Δ dltD was decreased. 3) SM593 dltD and SM593-Δ dltD did not show obvious difference in their glycolysis ability under different pH conditions. Compared with SM593 dltD, the proton permeability of SM593-Δ dltD under different pH conditions was increased significantly (P<0.05), and H +-ATPase activity decreased significantly (P<0.05). Conclusion Compared with SM593 dltD, SM593-Δ dltD showed obvious decrease in acid tolerance, which may be caused by the significant increase in proton permeability and significant decrease in the H +-ATPase activity induced by the deletion of the dltD gene, hence reducing its ability to maintain intracellular pH homeostasis.
Collapse
Affiliation(s)
- 景云 杜
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| | - 敏婧 吴
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
- 南方医科大学口腔医院 牙体牙髓科 (广州 510000)Department of Cariology and Endodontics, Southern Medical University Stomatological Hospital, Guangzhou 510000, China
| | - 艺君 李
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| | - 珊 黄
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| | - 山 江
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
- 南方医科大学口腔医院 牙体牙髓科 (广州 510000)Department of Cariology and Endodontics, Southern Medical University Stomatological Hospital, Guangzhou 510000, China
| | - 帅 陈
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| | - 晓晶 黄
- 福建省口腔疾病研究重点实验室,福建省口腔生物材料工程技术研究中心,福建省高校口腔医学重点实验室,福建医科大学口腔医学院/附属口腔医院 牙体牙髓一科 (福州 350000)Fujian Provincial Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Key Lab of Stomatology for Higher Education Institutions in Fujian Province, and Cariology and Endodontics Department Ⅰ, School/Hospital of Stomatology, Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
9
|
Chafsey I, Ostrowski R, Guilbaud M, Teixeira P, Herry JM, Caccia N, Chambon C, Hébraud M, Azeredo J, Bellon-Fontaine MN, Popowska M, Desvaux M. Deep impact of the inactivation of the SecA2-only protein export pathway on the proteosurfaceome of Listeria monocytogenes. J Proteomics 2022; 250:104388. [PMID: 34601155 DOI: 10.1016/j.jprot.2021.104388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023]
Abstract
Listeria monocytogenes presents a dimorphism associated to the SecA2 activity with cells having a normal rod shape or a dysmorphic elongated filamentous form. Besides variation of the cell and colony morphotype, this cell differentiation has profound ecophysiological and physiopathological implications with collateral effects on virulence and pathogenicity, biotope colonisation, bacterial adhesion and biofilm formation. This suggests the SecA2-only protein export could influence the listerial cell surface, which was investigated first by characterising its properties in L. monocytogenes wt and ΔsecA2. The degree of hydrophilicity and Lewis acid-base properties appeared significantly affected upon SecA2 inactivation. As modification of electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteosurfaceome was further investigated by shotgun label-free proteomic analysis with a comparative relative quantitative approach. Following secretomic analysis, the protein secretion routes of the identified proteins were mapped considering the cognate transport and post-translocational maturation systems, as well as protein categories and subcellular localisation. Differential protein abundance profiles coupled to network analysis revealed the SecA2 dependence of 48 proteins, including some related to cell envelope biogenesis, translation and protein export, which could account for modifications of adhesion and surface properties of L. monocytogenes upon SecA2 inactivation. This investigation unravelled the profound influence of SecA2 activity on the cell surface properties and proteosurfaceome of L. monocytogenes, which provides advanced insights about its ecophysiopathology. SIGNIFICANCE: L. monocytogenes is a foodborne zoonotic pathogen and etiological agent of human listeriosis. This species presents a cellular dimorphism associated to the SecA2 activity that has profound physiopathological and ecophysiological implications with collateral effects on bacterial virulence and colonisation. To explore the influence of the SecA2-only protein export on the listerial cell, the surface properties of L. monocytogenes expressing or depleted of SecA2 was characterised by microelectrophoresis, microbial affinity to solvents and contact angles analyses. As modifications of hydrophilicity and Lewis acid-base electrostatic properties would owe to modification in the composition of cell-surface proteins, the proteinaceous subset of the surfaceome, i.e. the proteosurfaceome, was investigated further by shotgun label-free proteomic analysis. This subproteome appeared quite impacted upon SecA2 inactivation with the identification of proteins accounting for modifications in the cell surface properties. The profound influence of SecA2 activity on the cell surface of L. monocytogenes was unravelled, which provides advanced insights about its ecophysiopathology.
Collapse
Affiliation(s)
- Ingrid Chafsey
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | - Rafal Ostrowski
- University of Warsaw, Faculty of Biology, Department of Bacterial Physiology, Applied Microbiology, Institute of Microbiology, Warsaw, Poland
| | - Morgan Guilbaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
| | - Pilar Teixeira
- University of Minho, Centre of Biological Engineering, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jean-Marie Herry
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
| | - Nelly Caccia
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, 63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France; INRAE, Plateforme d'Exploration du Métabolisme, 63122 Saint-Genès Champanelle, France
| | - Joana Azeredo
- University of Minho, Centre of Biological Engineering, Campus de Gualtar, Braga 4710-057, Portugal
| | | | - Magdalena Popowska
- University of Warsaw, Faculty of Biology, Department of Bacterial Physiology, Applied Microbiology, Institute of Microbiology, Warsaw, Poland.
| | - Mickaël Desvaux
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000 Clermont-Ferrand, France.
| |
Collapse
|
10
|
Wu M, Huang S, Du J, Jiang S, Cai Z, Zhan L, Huang X. Role of D-alanylation of Streptococcus mutans lipoteichoic acid in interspecies competitiveness. Mol Oral Microbiol 2021; 36:233-242. [PMID: 33977670 DOI: 10.1111/omi.12344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The D-alanylation of lipoteichoic acid (LTA) is essential for the physiological metabolism of Streptococcus mutans (S. mutans). This study was designed to investigate the influence of D-alanylation of LTA on interspecies competitiveness of S. mutans. METHODS The process of D-alanylation was blocked by the inactivation of dltC. Agar competition assays, conditioned medium assays, and qRT-PCR were used to evaluate the production of antimicrobial compounds in S. mutans mutant. Dual-species biofilm was formed to investigate the competitiveness of S. mutans mutant cocultured with S. sanguinis or S. gordonii. RESULTS S. mutans mutant could not produce antimicrobial compounds efficiently when cocultured with commensal bacteria (*p < 0.05). The mutant showed compromised competitiveness in dual-species biofilms. The ratio of the mutant in dual-species biofilms decreased, and the terminal pH of the culture medium in mutant groups (mutant+S. sanguinis/S. gordonii) was higher than that in wild-type groups (*p < 0.05). Scanning electron microscope (SEM) showed weaker demineralization of enamel treated with dual-species biofilms consisting of mutant and commensal bacteria. CONCLUSION D-Alanylation is involved in interspecies competitiveness of S. mutans within oral biofilm by regulating mutacins and lactic acid production, which may modulate the profiles of dental biofilms. Results provide new insights into dental caries prevention and treatment.
Collapse
Affiliation(s)
- Minjing Wu
- Fujian Key Laboratory of Oral Diseases &, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases &, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingyun Du
- Fujian Key Laboratory of Oral Diseases &, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- School of Stomatology, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ling Zhan
- Division of Pediatric Dentistry, Department of Orofacial Sciences, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases &, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme pH environments and their effect on microbial corrosion are presented and discussed.
Collapse
|
12
|
Effect of high levels of CO2 and O2 on membrane fatty acid profile and membrane physiology of meat spoilage bacteria. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe membrane is the major protective barrier separating the cell from the environment and is thus important for bacteria to survive environmental stress. This study investigates changes in membrane lipid compositions and membrane physiology of meat spoiling bacteria in response to high CO2 (30%) and O2 (70%) concentrations, as commonly used for modified atmosphere packaging of meat. Therefore, the fatty acid profile as well as membrane fluidity, permeability and cell surface were determined and correlated to the genomic settings of five meat spoiling bacteria Brochothrix (B.) thermosphacta, Carnobacterium (C.) divergens, C. maltaromaticum, Leuconostoc (L.) gelidum subsp. gelidum and L. gelidum subsp. gasicomitatum cultivated under different gas atmospheres. We identified different genomic potentials for fatty acid adaptations, which were in accordance with actual measured changes in the fatty acid composition for each species in response to CO2 and/or O2, e.g., an increase in saturated, iso and cyclopropane fatty acids. Even though fatty acid changes were species-specific, the general physiological responses were similar, comprising a decreased membrane permeability and fluidity. Thus, we concluded that meat spoiling bacteria facilitate a change in membrane fatty acids upon exposure to O2 and CO2, what leads to alteration of membrane fluidity and permeability. The observed adaptations might contribute to the resistance of meat spoilers against detrimental effects of the gases O2 and CO2 and thus help to explain their ability to grow under different modified atmospheres. Furthermore, this study provides fundamental knowledge regarding the impact of fatty acid changes on important membrane properties of bacteria.
Collapse
|
13
|
何 晓, 张 安, 龚 涛, 李 雨. [Transcriptomic Analysis of csn2 Gene Mutant Strains of Streptococcus mutans CRISPR-Cas9 System]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:76-81. [PMID: 33474893 PMCID: PMC10408943 DOI: 10.12182/20210160505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the differences in transcriptional levels between mutant strains of csn2 gene of CRISPR-Cas9 system of Streptococcus mutans( S. mutans) and wild-type strains. METHODS The S. mutans UA159, csn2-gene-deleted strains (Δ csn2) and csn2-gene-covering strains (Δ csn2/pDL278- csn2) of S. mutans were cultivated. Total RNA was extracted, and high-throughput sequencing technology was used for transcriptome sequencing. Based on the GO analysis and the KEGG analysis of the differentially expressed genes, the biological processes involved were thoroughly examined. The qRT-PCR method was used to verify the transcriptome sequencing results. RESULTS The transcriptome results showed that, compared with UA159, there were 176 genes in Δ csn2 whose gene expression changed more than one fold ( P<0.05), of which 72 were up-regulated and 104 were down-regulated. The GO enrichment analysis and the KEGG enrichment analysis revealed that both the up-regulated and down-regulated differentially expressed genes (DEG) were involved in amino acid transport and metabolism. In addition, the biological processes that up-regulated DEGs participated in were mainly related to carbohydrate metabolism, energy production and conversion, and transcription; down-regulated DEGs were mainly related to lipid metabolism, DNA replication, recombination and repair, signal transduction mechanisms, nucleotide transport and metabolism. The functions of some DEGs were still unclear. Results of qRT-PCR verified that the expressions of leuA, leuC and leuD(genes related to the formation of branched-chain amino acids) were significantly down-regulated in Δ csn2 when compared with UA159 and Δ csn2/pDL278- csn2. CONCLUSION Through transcriptome sequencing and qRT-PCR verification, it was found that the expression of genes related to branched-chain amino acid synthesis and cell membrane permeability in Δ csn2 changed significantly.
Collapse
Affiliation(s)
- 晓雅 何
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 安琪 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 涛 龚
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 雨庆 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Wu X, Han J, Gong G, Koffas MAG, Zha J. Wall teichoic acids: physiology and applications. FEMS Microbiol Rev 2020; 45:6019871. [DOI: 10.1093/femsre/fuaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Wall teichoic acids (WTAs) are charged glycopolymers containing phosphodiester-linked polyol units and represent one of the major components of Gram-positive cell envelope. WTAs have important physiological functions in cell division, gene transfer, surface adhesion, drug resistance and biofilm formation, and are critical virulence factors and vital determinants in mediating cell interaction with and tolerance to environmental factors. Here, we first briefly introduce WTA structure, biosynthesis and its regulation, and then summarize in detail four major physiological roles played by WTAs, i.e. WTA-mediated resistance to antimicrobials, virulence to mammalian cells, interaction with bacteriolytic enzymes and regulation of cell metabolism. We also review the applications of WTAs in these fields that are closely related to the human society, including antibacterial drug discovery targeting WTA biosynthesis, development of vaccines and antibodies regarding WTA-mediated pathogenicity, specific and sensitive detection of pathogens in food using WTAs as a surface epitope and regulation of WTA-related pathways for efficient microbial production of useful compounds. We also point out major problems remaining in these fields, and discuss some possible directions in the future exploration of WTA physiology and applications.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
15
|
Ao X, Zhao J, Yan J, Liu S, Zhao K. Comparative transcriptomic analysis of Lactiplantibacillus plantarum RS66CD biofilm in high-salt conditions and planktonic cells. PeerJ 2020; 8:e9639. [PMID: 32832272 PMCID: PMC7409786 DOI: 10.7717/peerj.9639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Lactiplantibacillus plantarum (L. plantarum), a dominant strain in traditional fermented foods, is widely used in fermentation industry because of its fast acid production. However, L. plantarum is easily inactivated due to acidity, high temperature and other factors. The formation of biofilm by bacteria can effectively increase environmental tolerance. Therefore, it is important to improve the environmental tolerance of L. plantarum by studying its biofilm formation conditions and regulatory mechanisms. Methods After determining a suitable NaCl concentration for promoting biofilm formation, L. plantarum was grown with 48 g L−1 NaCl. Differential gene expressions in L. plantarum biofilm vs. planktonic cells were analyzed using RNA sequencing and validated using qPCR. Result L. plantarum RS66CD biofilm formation formed highest amount of when grown at 48 g L−1 NaCl. Altogether 447 genes were up-regulated and 426 genes were down-regulated in the biofilm. KEGG pathway analysis showed that genes coding for D-Alanine metabolism, peptidoglycan biosynthesis, two-component system, carbon metabolism, bacterial secretion system, lysine biosynthesis and fatty acid metabolism were crucial for biofilm formation. In addition, eight other genes related to biofilm formation were differentially expressed. Our results provide insights into the differential gene expression involved in biofilm formation, which can help to reveal gene regulation during L. plantarum biofilm formation.
Collapse
Affiliation(s)
- Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jiawei Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Junling Yan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Ke Zhao
- Colloge of Resources, Sichuan Agricultural University, Cheng'du', China
| |
Collapse
|
16
|
Transcriptome Analysis of the Acid Stress Response of Desulfovibrio vulgaris ATCC 7757. Curr Microbiol 2020; 77:2702-2712. [DOI: 10.1007/s00284-020-02051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/23/2020] [Indexed: 01/23/2023]
|
17
|
Abstract
Mutant libraries, generated by transposons and screened for various phenotypes, have led to many important discoveries regarding gene functions in various organisms. In this chapter we describe the use of plasmid pMN100, a transposon vector constructed to perform in vivo transposition primarily in oral streptococci. Compared to in vitro transposition systems the conditional replicative features of the plasmid, and the inducible expression of the mariner Himar1 transposase, makes pMN100 particularly useful for bacterial strains showing a low transformation frequency. We outline how to transform plasmid pMN100 into Streptococcus mutans, carry out transposon mutagenesis, and determine the chromosomal location of inserted transposons. It is our prospect that the protocols can be used as guidelines for transposon mutagenesis in S. mutans as well as other species of streptococci.
Collapse
Affiliation(s)
- Martin Nilsson
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Wood BM, Santa Maria JP, Matano LM, Vickery CR, Walker S. A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem 2018; 293:17985-17996. [PMID: 30237166 PMCID: PMC6240853 DOI: 10.1074/jbc.ra118.004561] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.
Collapse
Affiliation(s)
- B McKay Wood
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - John P Santa Maria
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Leigh M Matano
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher R Vickery
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
19
|
李 转, 许 晓, 陈 璇, 吴 昕, 赵 望. [Role of SMU.2055 gene in regulating acid resistance of Streptococcus mutans UA159]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:198-204. [PMID: 29502060 PMCID: PMC6743886 DOI: 10.3969/j.issn.1673-4254.2018.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To evaluate the effect of SMU.2055 gene on acid resistance of Streptococcus mutans. METHODS A SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique. The growth of the wild-type and mutant strains was monitored in both normal and acidic conditions. The lethal pH level, glycolysis, proton permeability, cell permeability and biofilm formation of the two strains were compared. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. The growth and biofilm formation capacity of the mutant strain were obviously lowered in both normal and acidic conditions. The mutant strain also showed increased lethal pH level, proton permeability, and cell permeability with impaired H+-ATPase activity in acidic conditions, but its minimum glycolytic pH remained unaffected. CONCLUSION The SMU.2055-deficient S. mutans mutant exhibits a lowered acid resistance, which affects the growth, lethal pH, proton permeability, H+-ATPase activity, cell permeability and biofilm formation but not the minimum glycolytic pH of the mutant strain.
Collapse
Affiliation(s)
- 转玲 李
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 璇 陈
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 昕彧 吴
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 望泓 赵
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
李 转, 许 晓, 陈 璇, 吴 昕, 赵 望. [Role of SMU.2055 gene in regulating acid resistance of Streptococcus mutans UA159]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:198-204. [PMID: 29502060 PMCID: PMC6743886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To evaluate the effect of SMU.2055 gene on acid resistance of Streptococcus mutans. METHODS A SMU.2055-dificient mutant strain of S. mutans was constructed using homologous recombination technique. The growth of the wild-type and mutant strains was monitored in both normal and acidic conditions. The lethal pH level, glycolysis, proton permeability, cell permeability and biofilm formation of the two strains were compared. RESULTS PCR and sequence analyses verified the successful construction of the SMU.2055-dificient mutant strain. The growth and biofilm formation capacity of the mutant strain were obviously lowered in both normal and acidic conditions. The mutant strain also showed increased lethal pH level, proton permeability, and cell permeability with impaired H+-ATPase activity in acidic conditions, but its minimum glycolytic pH remained unaffected. CONCLUSION The SMU.2055-deficient S. mutans mutant exhibits a lowered acid resistance, which affects the growth, lethal pH, proton permeability, H+-ATPase activity, cell permeability and biofilm formation but not the minimum glycolytic pH of the mutant strain.
Collapse
Affiliation(s)
- 转玲 李
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓虎 许
- 深圳市龙华新区中心医院口腔科,广东 深圳 518110Department of Stomatology, Longhua New District Central Hospital, Shenzhen 518110, China
| | - 璇 陈
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 昕彧 吴
- 南方医科大学口腔医院,广东 广州 510280Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - 望泓 赵
- 南方医科大学南方医院口腔科,广东 广州 510515Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans. J Bacteriol 2017; 200:JB.00508-17. [PMID: 29109185 DOI: 10.1128/jb.00508-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes.IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we used transposon mutagenesis and genomic technologies to identify novel genes involved in competence development. In addition to identifying genes previously known to be required for comX expression, 20 additional genes were identified and characterized. The findings create opportunities to diminish the pathogenic potential of S. mutans, while validating technologies that can rapidly advance our understanding of the physiology, biology, and genetics of S. mutans and related pathogens.
Collapse
|
22
|
RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans. J Bacteriol 2017; 199:JB.00497-17. [PMID: 28924033 DOI: 10.1128/jb.00497-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 02/01/2023] Open
Abstract
Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans, the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF, the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The ΔrgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the ΔrgpF mutant strain was unable to induce activity of the F1Fo ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF The ΔrgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the ΔrgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivoGalleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutansIMPORTANCE The cell wall of Streptococcus mutans, the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S. mutans, the process by which they are formed and the enzymes leading to their construction are well conserved among streptococci. The present study describes the consequences of the loss of RgpF, a rhamnosyltransferase involved in RGP construction. The deletion of rgpF resulted in severe ablation of the organism's overall fitness, culminating in significantly attenuated virulence. Our data demonstrate an important link between the RGP and cell wall physiology of S. mutans, affecting critical features used by the organism to cause disease and providing a potential novel target for inhibiting the pathogenesis of S. mutans.
Collapse
|
23
|
The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics. J Proteomics 2017; 168:1-14. [DOI: 10.1016/j.jprot.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/31/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022]
|
24
|
Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products. Microorganisms 2017; 5:microorganisms5030052. [PMID: 28850086 PMCID: PMC5620643 DOI: 10.3390/microorganisms5030052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus xylosus belongs to the vast group of coagulase-negative staphylococci. It is frequently isolated from meat products, either fermented or salted and dried, and is commonly used as starter cultures in sausage manufacturing. Analysis of the S. xylosus genome together with expression in situ in a meat model revealed that this bacterium is well adapted to meat substrates, being able to use diverse substrates as sources of carbon and energy and different sources of nitrogen. It is well-equipped with genes involved in osmotic, oxidative/nitrosative, and acidic stress responses. It is responsible for the development of the typical colour of cured meat products via its nitrate reductase activity. It contributes to sensorial properties, mainly by the the catabolism of pyruvate and amino acids resulting in odorous compounds and by the limiting of the oxidation of fatty acids, thereby avoiding rancidity.
Collapse
|
25
|
Liao S, De A, Thompson T, Chapman L, Bitoun JP, Yao X, Yu Q, Ma F, Wen ZT. Expression of BrpA in Streptococcus mutans is regulated by FNR-box mediated repression. Mol Oral Microbiol 2017; 32:517-525. [PMID: 28744965 DOI: 10.1111/omi.12193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Our previous studies showed that brpA in Streptococcus mutans, which encodes a member of the LytR-CpsA-Psr family of proteins, can be co-transcribed with brpB upstream as a bicistronic operon, and the intergenic region also has strong promoter activity. To elucidate how brpA expression is regulated, the promoter regions were analyzed using polymerase chain reaction-based deletions and site-directed mutagenesis and a promoterless luciferase gene as a reporter. Allelic exchange mutagenesis was also used to examine genes encoding putative trans-acting factors, and the impact of such mutations on brpA expression was analyzed by reporter assays. Multiple elements in the short brpA promoter (nucleotide -1 to -344 relative to start cordon ATG) were shown to have a major impact on brpA expression, including an FNR-box, for a putative binding site of an FNR-type of transcriptional regulator. When compared with the intact brpA promoter, mutations of the highly conserved nucleotides in FNR-box from TTGATgtttAcCtt to TTACAgaaaGtTac resulted in 1362-fold increases of luciferase activity (P < .001), indicative of the FNR-box-mediated repression as a major mechanism in regulation of brpA expression. When luciferase reporter was fused to the upstream brpBA promoter (nucleotides -784 to -1144), luciferase activity was decreased by 4.5-fold (P < .001) in the brpA mutant, TW14D, and by 67.7-fold (P < .001) in the brpB mutant, JB409, compared with the wild-type, UA159. However, no such effects were observed when the reporter gene was fused to the short brpA promoter and its derivatives. These results also suggest that brpA expression in S. mutans is auto-regulated through the upstream brpBA promoter.
Collapse
Affiliation(s)
- S Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - T Thompson
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Chapman
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J P Bitoun
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - X Yao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Q Yu
- Department of Biostatistics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - F Ma
- Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Z T Wen
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
26
|
Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans. Appl Environ Microbiol 2017; 83:AEM.00928-17. [PMID: 28687645 DOI: 10.1128/aem.00928-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG, encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation (P < 0.01). Double and triple mutants with deficiency in brpA and/or psr, genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically (P < 0.001). Under transmission electron microscopy, both double mutants resembled the rgpG mutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope.IMPORTANCEStreptococcus mutans, a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S. mutans, indicative of a significant role of RGP in cell division and biofilm formation in S. mutans These results are novel not only in S. mutans, but also other streptococci that produce RGP. This study also shows that the LytR-CpsA-Psr family proteins BrpA and Psr in S. mutans are involved in attachment of RGP and probably other cell wall glycopolymers to the peptidoglycan. In addition, the results also suggest that BrpA and Psr may play a direct role in cell division and biofilm formation in S. mutans This study reveals new potential targets to develop anticaries therapeutics.
Collapse
|
27
|
Exploring the Genomic Diversity and Cariogenic Differences of Streptococcus mutans Strains Through Pan-Genome and Comparative Genome Analysis. Curr Microbiol 2017; 74:1200-1209. [PMID: 28717847 DOI: 10.1007/s00284-017-1305-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Pan-genome refers to the sum of genes that can be found in a given bacterial species, including the core-genome and the dispensable genome. In this study, the genomes from 183 Streptococcus mutans (S. mutans) isolates were analyzed from the pan-genome perspective. This analysis revealed that S. mutans has an "open" pan-genome, implying that there are plenty of new genes to be found as more genomes are sequenced. Additionally, S. mutans has a limited core-genome, which is composed of genes related to vital activities within the bacterium, such as metabolism and hereditary information storage or processing, occupying 35.6 and 26.6% of the core genes, respectively. We estimate the theoretical core-genome size to be about 1083 genes, which are fewer than other Streptococcus species. In addition, core genes suffer larger selection pressures in comparison to those that are less widely distributed. Not surprisingly, the distribution of putative virulence genes in S. mutans strains does not correlate with caries status, indicating that other factors are also responsible for cariogenesis. These results contribute to a more understanding of the evolutionary characteristics and dynamic changes within the genome components of the species. This also helps to form a new theoretical foundation for preventing dental caries. Furthermore, this study sets an example for analyzing large genomic datasets of pathogens from the pan-genome perspective.
Collapse
|
28
|
Yin H, Zhang R, Xia M, Bai X, Mou J, Zheng Y, Wang M. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell Fact 2017; 16:109. [PMID: 28619110 PMCID: PMC5472864 DOI: 10.1186/s12934-017-0717-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. Results In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane fluidity, stability and integrity. Conclusions The present work is the study to show the effectiveness of Asp and Glu on metabolism and acid stress resistance of A. pasteurianus as well as their working mechanism. The research results will be helpful for development of nutrient salts, the optimization and regulation of high concentration of cider vinegar production process. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0717-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haisong Yin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,School of Bioengineering, Tianjin Modern Vocational Technology College, Tianjin, 300350, People's Republic of China
| | - Renkuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Xiaolei Bai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Jun Mou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
29
|
Wang J, Dong X, Shao Y, Guo H, Pan L, Hui W, Kwok LY, Zhang H, Zhang W. Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures. BMC Genomics 2017; 18:320. [PMID: 28438179 PMCID: PMC5402323 DOI: 10.1186/s12864-017-3710-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/01/2023] Open
Abstract
Background The extensive use of antibiotics in medicine has raised serious concerns about biosafety. However, the effect of antibiotic application on the adaptive evolution of microorganisms, especially to probiotic bacteria, has not been well characterized. Thus, the objective of the current work was to investigate how antibiotic selection forces might drive genome adaptation using Lactobacillus (L.) casei Zhang as a model. Methods Two antibiotics, amoxicillin and gentamicin, were consistently applied to the laboratory culture of L. casei Zhang. We then monitored the mutations in the bacterial genome and changes in the minimum inhibitory concentrations (MICs) of these two antibiotics along a 2000-generation-cultivation lasted over 10 months. Results We found an approximately 4-fold increase in the genome mutation frequency of L. casei Zhang, i.e. 3.5 × 10-9 per base pair per generation under either amoxicillin or gentamicin stress, when compared with the parallel controls grown without application of any antibiotics. The increase in mutation frequency is significantly lower than that previously reported in Escherichia (E.) coli. The rate of de novo mutations, i.e. 20 per genome, remained low and stable throughout the long-term cultivation. Moreover, the accumulation of new mutations stopped shortly after the maximum bacterial fitness (i.e. the antibiotic MICs) was reached. Conclusions Our study has shown that the probiotic species, L. casei Zhang, has high genome stability even in the presence of long-term antibiotic stresses. However, whether this is a species-specific or universal characteristic for all probiotic bacteria remains to be explored. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3710-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Xiao Dong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Yuyu Shao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Huiling Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
30
|
The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 2016; 48:298-304. [DOI: 10.1016/j.ijantimicag.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/23/2022]
|
31
|
Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE, Hutkins RW, Walter J. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. Environ Microbiol 2015; 18:2172-84. [PMID: 26530032 DOI: 10.1111/1462-2920.13108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts.
Collapse
Affiliation(s)
- Janina A Krumbeck
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Nathan L Marsteller
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Steven A Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Daniel A Peterson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Jens Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Wobser D, Ali L, Grohmann E, Huebner J, Sakinc T. A novel role for D-alanylation of lipoteichoic acid of enterococcus faecalis in urinary tract infection. PLoS One 2014; 9:e107827. [PMID: 25296179 PMCID: PMC4189791 DOI: 10.1371/journal.pone.0107827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
Background Enterococci are the third most common cause of healthcare-associated infections, which include urinary tract infections, bacteremia and endocarditis. Cell-surface structures such as lipoteichoic acid (LTA) have been poorly examined in E. faecalis, especially with respect to urinary tract infections (UTIs). The dlt operon is responsible for the D-alanylation of LTA and includes the gene dltA, which encodes the D-alanyl carrier protein ligase (Dcl). The involvement of LTA in UTI infection by E. faecalis has not been studied so far. Here, we examined the role of teichoic acid alanylation in the adhesion of enterococci to uroepithelial cells. Results In a mouse model of urinary tract infection, we showed that E. faecalis 12030ΔdltA mutant colonizes uroepithelial surfaces more efficiently than wild type bacteria. We also demonstrated that this mutant adhered four fold better to human bladder carcinoma cell line T24 compared to the wild type strain. Bacterial adherence could be significantly inhibited by purified lipoteichoic acid (LTA) and inhibition was specific. Conclusion In contrast to bacteraemia model and adherence to colon surfaces, E. faecalis 12030ΔdltA mutant colonized uroepithelial surfaces more efficiently than wild-type bacteria. In the case of the uroepithelial surface the adherence to specific host cells could be prevented by purified LTA. Our results therefore suggest a novel function of alanylation of LTA in E. faecalis.
Collapse
Affiliation(s)
- Dominique Wobser
- Division of Infectious Diseases, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Liaqat Ali
- Division of Infectious Diseases, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
- Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Elisabeth Grohmann
- Division of Infectious Diseases, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
- Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. Von Hauner Children's Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Türkan Sakinc
- Division of Infectious Diseases, Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Abstract
Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis.
Collapse
|
34
|
Schwab C, Tveit AT, Schleper C, Urich T. Gene expression of lactobacilli in murine forestomach biofilms. Microb Biotechnol 2014; 7:347-59. [PMID: 24702817 PMCID: PMC4241727 DOI: 10.1111/1751-7915.12126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/20/2014] [Accepted: 03/02/2014] [Indexed: 02/01/2023] Open
Abstract
Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62-82% of rRNA reads), followed by Clostridiales (8-31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans.
Collapse
Affiliation(s)
- Clarissa Schwab
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaWien, Austria
| | | | - Christa Schleper
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaWien, Austria
| | - Tim Urich
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaWien, Austria
| |
Collapse
|
35
|
Nilsson M, Christiansen N, Høiby N, Twetman S, Givskov M, Tolker-Nielsen T. A mariner transposon vector adapted for mutagenesis in oral streptococci. Microbiologyopen 2014; 3:333-40. [PMID: 24753509 PMCID: PMC4082707 DOI: 10.1002/mbo3.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/06/2022] Open
Abstract
This article describes the construction and characterization of a mariner-based transposon vector designed for use in oral streptococci, but with a potential use in other Gram-positive bacteria. The new transposon vector, termed pMN100, contains the temperature-sensitive origin of replication repATs-pWV01, a selectable kanamycin resistance gene, a Himar1 transposase gene regulated by a xylose-inducible promoter, and an erythromycin resistance gene flanked by himar inverted repeats. The pMN100 plasmid was transformed into Streptococcus mutans UA159 and transposon mutagenesis was performed via a protocol established to perform high numbers of separate transpositions despite a low frequency of transposition. The distribution of transposon inserts in 30 randomly picked mutants suggested that mariner transposon mutagenesis is unbiased in S. mutans. A generated transposon mutant library containing 5000 mutants was used in a screen to identify genes involved in the production of sucrose-dependent extracellular matrix components. Mutants with transposon inserts in genes encoding glycosyltransferases and the competence-related secretory locus were predominantly found in this screen.
Collapse
Affiliation(s)
- Martin Nilsson
- Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Revilla-Guarinos A, Gebhard S, Mascher T, Zúñiga M. Defence against antimicrobial peptides: different strategies inFirmicutes. Environ Microbiol 2014; 16:1225-37. [DOI: 10.1111/1462-2920.12400] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Ainhoa Revilla-Guarinos
- Departamento de Biotecnología; Instituto de Agroquímica y Tecnología de Alimentos (IATA); Consejo Superior de Investigaciones Científicas (CSIC); Paterna Valencia Spain
| | - Susanne Gebhard
- Department Biologie I, Mikrobiologie; Ludwig-Maximilians-Universität München; Planegg-Martinsried Germany
| | - Thorsten Mascher
- Department Biologie I, Mikrobiologie; Ludwig-Maximilians-Universität München; Planegg-Martinsried Germany
| | - Manuel Zúñiga
- Departamento de Biotecnología; Instituto de Agroquímica y Tecnología de Alimentos (IATA); Consejo Superior de Investigaciones Científicas (CSIC); Paterna Valencia Spain
| |
Collapse
|
37
|
Revilla-Guarinos A, Alcántara C, Rozès N, Voigt B, Zúñiga M. Characterization of the response to low pH of Lactobacillus casei
ΔRR12, a mutant strain with low D-alanylation activity and sensitivity to low pH. J Appl Microbiol 2014; 116:1250-61. [DOI: 10.1111/jam.12442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
- A. Revilla-Guarinos
- Dpto. Biotecnología de Alimentos; Consejo Superior de Investigaciones Científicas (CSIC); Instituto de Agroquímica y Tecnología de Alimentos (IATA); Paterna Valencia Spain
| | - C. Alcántara
- Dpto. Biotecnología de Alimentos; Consejo Superior de Investigaciones Científicas (CSIC); Instituto de Agroquímica y Tecnología de Alimentos (IATA); Paterna Valencia Spain
| | - N. Rozès
- Dpt. Bioquímica i Biotecnología; Facultat d'Enologia; Universitat Rovira i Virgili; Tarragona Spain
| | - B. Voigt
- Institute for Microbiology; University of Greifswald; Greifswald Germany
| | - M. Zúñiga
- Dpto. Biotecnología de Alimentos; Consejo Superior de Investigaciones Científicas (CSIC); Instituto de Agroquímica y Tecnología de Alimentos (IATA); Paterna Valencia Spain
| |
Collapse
|
38
|
SMU.746-SMU.747, a putative membrane permease complex, is involved in aciduricity, acidogenesis, and biofilm formation in Streptococcus mutans. J Bacteriol 2013; 196:129-39. [PMID: 24142257 DOI: 10.1128/jb.00960-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental caries induced by Streptococcus mutans is one of the most prevalent chronic infectious diseases worldwide. The pathogenicity of S. mutans relies on the bacterium's ability to colonize tooth surfaces and survive a strongly acidic environment. We performed an ISS1 transposon mutagenesis to screen for acid-sensitive mutants of S. mutans and identified an SMU.746-SMU.747 gene cluster that is needed for aciduricity. SMU.746 and SMU.747 appear to be organized in an operon and encode a putative membrane-associated permease. SMU.746- and SMU.747-deficient mutants showed a reduced ability to grow in acidified medium. However, the short-term or long-term acid survival capacity and F1F0 ATPase activity remained unaffected in the mutants. Furthermore, deletion of both genes did not change cell membrane permeability and the oxidative and heat stress responses. Growth was severely affected even with slight acidification of the defined medium (pH 6.5). The ability of the mutant strain to acidify the defined medium during growth in the presence of glucose and sucrose was significantly reduced, although the glycolysis rate was only slightly affected. Surprisingly, deletion of the SMU.746-SMU.747 genes triggered increased biofilm formation in low-pH medium. The observed effects were more striking in a chemically defined medium. We speculate that the SMU.746-SMU.747 complex is responsible for amino acid transport, and we discuss its possible role in colonization and survival in the oral environment.
Collapse
|
39
|
A novel gene involved in the survival of Streptococcus mutans under stress conditions. Appl Environ Microbiol 2013; 80:97-103. [PMID: 24123744 DOI: 10.1128/aem.02549-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Streptococcus mutans mutant defective in aciduricity was constructed by random-insertion mutagenesis. Sequence analysis of the mutant revealed a mutation in gidA, which is known to be involved in tRNA modification in Streptococcus pyogenes. Complementation of gidA by S. pyogenes gidA recovered the acid tolerance of S. mutans. Although the gidA-inactivated S. pyogenes mutant exhibited significantly reduced expression of multiple extracellular virulence proteins, the S. mutans mutant did not. On the other hand, the gidA mutant of S. mutans showed reduced ability to withstand exposure to other stress conditions (high osmotic pressure, high temperature, and bacitracin stress) besides an acidic environment. In addition, loss of GidA decreased the capacity for glucose-dependent biofilm formation by over 50%. This study revealed that gidA plays critical roles in the survival of S. mutans under stress conditions, including lower pH.
Collapse
|
40
|
D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing. J Bacteriol 2013; 195:5102-11. [PMID: 24013634 DOI: 10.1128/jb.00510-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis is the causative agent of pertussis, a highly contagious disease of the human respiratory tract. Despite very high vaccine coverage, pertussis has reemerged as a serious threat in the United States and many developing countries. Thus, it is important to pursue research to discover unknown pathogenic mechanisms of B. pertussis. We have investigated a previously uncharacterized locus in B. pertussis, the dra locus, which is homologous to the dlt operons of Gram-positive bacteria. The absence of the dra locus resulted in increased sensitivity to the killing action of antimicrobial peptides (AMPs) and human phagocytes. Compared to the wild-type cells, the mutant cells bound higher levels of cationic proteins and peptides, suggesting that dra contributes to AMP resistance by decreasing the electronegativity of the cell surface. The presence of dra led to the incorporation of d-alanine into an outer membrane component that is susceptible to proteinase K cleavage. We conclude that dra encodes a virulence-associated determinant and contributes to the immune resistance of B. pertussis. With these findings, we have identified a new mechanism of surface modification in B. pertussis which may also be relevant in other Gram-negative pathogens.
Collapse
|
41
|
Radiation tolerance of Bacillus cereus pre-treated with carvacrol alone or in combination with nisin after exposure to single and multiple sub-lethal radiation treatment. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol 2013; 79:3160-70. [PMID: 23455349 DOI: 10.1128/aem.00178-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCS) are major signal transduction pathways that allow bacteria to detect and respond to environmental and intracellular changes. A group of TCS has been shown to be involved in the response against antimicrobial peptides (AMPs). These TCS are characterized by the possession of intramembrane-sensing histidine kinases, and they are usually associated with ABC transporters of the peptide-7 exporter family (Pep7E). Lactobacillus casei BL23 encodes two TCS belonging to this group (TCS09 and TCS12) that are located next to two ABC transporters (ABC09 and ABC12), as well as a third Pep7E ABC transporter not genetically associated with any TCS (orphan ABC). This study addressed the involvement of modules TCS09/ABC09 and TCS12/ABC12 in AMP resistance. Results showed that both systems contribute to L. casei resistance to AMPs, and that each TCS constitutes a functional unit with its corresponding ABC transporter. Analysis of transcriptional levels showed that module 09 is required for the induction of ABC09 expression in response to nisin. In contrast, module 12 controls a wider regulon that encompasses the orphan ABC, the dlt operon (d-alanylation of teichoid acids), and the mprF gene (l-lysinylation of phospholipids), thereby controlling properties of the cell envelope. Furthermore, the characterization of a dltA mutant showed that Dlt plays a major role in AMP resistance in L. casei. This is the first report on the regulation of the response of L. casei to AMPs, giving insight into its ability to adapt to the challenging environments that it encounters as a probiotic microorganism.
Collapse
|
43
|
Bitoun JP, Liao S, McKey BA, Yao X, Fan Y, Abranches J, Beatty WL, Wen ZT. Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans. MICROBIOLOGY-SGM 2013; 159:493-506. [PMID: 23288544 DOI: 10.1099/mic.0.063032-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by brpA and psr, respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by Strep. mutans, traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by Strep. mutans. Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like Bacillus subtilis but different from Staphylococcus aureus, a functional BrpA or Psr is required for viability in Strep. mutans.
Collapse
Affiliation(s)
- Jacob P Bitoun
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sumei Liao
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Briggs A McKey
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xin Yao
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Yuwei Fan
- Department of Comprehensive Dentistry and Biomaterials, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zezhang T Wen
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
44
|
Klein MI, Xiao J, Lu B, Delahunty CM, Yates JR, Koo H. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS One 2012; 7:e45795. [PMID: 23049864 PMCID: PMC3458072 DOI: 10.1371/journal.pone.0045795] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/24/2012] [Indexed: 01/15/2023] Open
Abstract
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
Collapse
Affiliation(s)
- Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| | - Jin Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, People’s Republic of China
| | - Bingwen Lu
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Claire M. Delahunty
- The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| |
Collapse
|
45
|
Tessema GT, Møretrø T, Snipen L, Heir E, Holck A, Naterstad K, Axelsson L. Microarray-based transcriptome ofListeria monocytogenesadapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid. Can J Microbiol 2012; 58:1112-23. [DOI: 10.1139/w2012-091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.
Collapse
Affiliation(s)
- Girum Tadesse Tessema
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Trond Møretrø
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Even Heir
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Askild Holck
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Kristine Naterstad
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Lars Axelsson
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| |
Collapse
|
46
|
Popowska M, Osińska M, Rzeczkowska M. N-acetylglucosamine-6-phosphate deacetylase (NagA) of Listeria monocytogenes EGD, an essential enzyme for the metabolism and recycling of amino sugars. Arch Microbiol 2012; 194:255-68. [PMID: 21947170 PMCID: PMC3304070 DOI: 10.1007/s00203-011-0752-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 02/01/2023]
Abstract
The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.
Collapse
Affiliation(s)
- Magdalena Popowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | | | | |
Collapse
|
47
|
Effect of D-alanine in teichoic acid from the Streptococcus thermophilus cell wall on the barrier-protection of intestinal epithelial cells. Biosci Biotechnol Biochem 2012; 76:283-8. [PMID: 22313760 DOI: 10.1271/bbb.110646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
D-Alanylation of teichoic acid (TA) affects various functions of Gram-positive bacteria, including immunomodulatory effects. We investigated in this study the impact of D-alanine (D-Ala) in TA from Streptococcus thermophilus ATCC 19258(T) on the barrier-protecting effect in human intestinal Caco-2 cells. ATCC 19258(T) suppressed the tumor necrosis factor-α-induced decrease in transepithelial electrical resistance (TER), an indicator of the barrier function. The D-alanylation of TA in ATCC 19258(T) was growth phase- and culture temperature-dependent. Treatment of ATCC 19258(T) with Mg(2+) decreased the dlt mRNA expression and D-Ala content in TA and also abolished the suppressive effect on the TER decrease. Supplementation with L-alanine (L-Ala) to the broth led to an increase of D-Ala in ATCC 19258(T) and of the intestinal barrier-protecting effect. Taken together, D-Ala in TA played an important role in the barrier-protecting effect of S. thermophilus in the intestinal epithelium, and these beneficial effects could be enhanced by exogenous L-Ala.
Collapse
|
48
|
Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y, Miyawaki S, Komatsuzawa H. Association of CiaRH with resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol Oral Microbiol 2012; 27:124-35. [DOI: 10.1111/j.2041-1014.2012.00637.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. J Virol 2011; 85:12032-42. [PMID: 21880765 DOI: 10.1128/jvi.00275-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, whole-genome microarrays were used to gain insights into the global molecular response of Lactococcus lactis subsp. lactis IL1403 at an early stage of infection with the lytic phage c2. The bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, including cell envelope processes (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of these genes suggests a complex response involving four main mechanisms: (i) induction of membrane stress proteins, (ii) d-alanylation of cell wall lipoteichoic acids (LTAs), (iii) maintenance of the proton motive force (PMF), and (iv) energy conservation. The phage presence is sensed as a membrane stress in L. lactis subsp. lactis IL1403, which activated a cell wall-targeted response probably orchestrated by the concerted action of membrane phage shock protein C-like homologues, the global regulator SpxB, and the two-component system CesSR. The bacterium upregulated genes (ddl and dltABCD) responsible for incorporation of d-alanine esters into LTAs, an event associated with increased resistance to phage attack in Gram-positive bacteria. The expression of genes (yshC, citE, citF) affecting both PMF components was also regulated to restore the physiological PMF, which was disrupted following phage infection. While mobilizing the response to the phage-mediated stress, the bacterium activated an energy-saving program by repressing growth-related functions and switching to anaerobic respiration, probably to sustain the PMF and the overall cell response to phage. To our knowledge, this represents the first detailed description in L. lactis of the molecular mechanisms involved in the host response to the membrane perturbations mediated by phage infection.
Collapse
|
50
|
Regulation of d-alanylation of lipoteichoic acid in Streptococcus gordonii. Microbiology (Reading) 2011; 157:2248-2256. [DOI: 10.1099/mic.0.048140-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d-Alanyl esters on lipoteichoic acid (LTA) are involved in adhesion, biofilm formation, resistance to cationic antimicrobial peptides, and immune stimulation. There is evidence that bacteria can modulate the level of d-alanyl esters on LTA in response to challenge, but the mechanism of regulation appears to be different among bacteria. In this study, expression of the dlt operon responsible for d-alanylation of LTA was examined in the commensal bacterium Streptococcus gordonii. dlt expression was assessed using the dlt promoter–lacZ reporter gene assay, LTA d-alanine content measurements and dlt mRNA quantification. The results showed that dlt expression was growth phase-dependent, with the greatest expression at the mid-exponential phase of growth. In contrast to Staphylococcus aureus, dlt expression in Strep. gordonii was not affected by the exogenous addition of Mg2+ or K+. Interestingly, dlt expression was upregulated under acidic conditions or when cells were stressed with polymyxin B, indicating that cell envelope stress may be a signal for dlt expression. In view of these results, mutants defective in the cell envelope stress LiaSR two-component regulatory system were constructed. The liaS and liaR mutants showed an increase in dlt expression over the parent strain at neutral pH. The mutants failed to respond to low pH and polymyxin B stress; dlt expression remained the same in the presence or absence of these stresses. These results suggest that dlt expression in Strep. gordonii is regulated by the LiaSR regulatory system in response to environmental signals such as pH and polymyxin B. The regulation appears to be complex, involving both repression and activation mechanisms.
Collapse
|