1
|
Liu H, Sun L, Zhang J, Wang Y, Lu H. Siderophore-synthesizing NRPS reprogram lipid metabolic profiles for phenotype and function changes of Arthrobotrys oligospora. World J Microbiol Biotechnol 2023; 40:46. [PMID: 38114752 DOI: 10.1007/s11274-023-03840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
The objective of this paper is to explore the function of the AOL-s00215g415 (Aog415) gene, which encodes for the synthesis of siderophore in the nematode trapping fungal model strain A. oligospora, in order to understand the relationship between siderophore biosynthesis and nematode trapping activity. After a through sequence analysis, it was determined that Aog415 is a siderophore-synthesizing NRPS. The product of this gene was then identified to be the hydroxamate siderophore desferriferrichrome, using mass spectrometry analysis. When compared to the WT strains, the Aog415 knockout strain exhibited a 60% decrease in siderophore content in fermentation broth. Additionally, the number of predatory rings of decreased by 23.21%, while the spore yield increased by 37.34%. The deletion of Aog415 did not affect the growth of A. oligospora in diverse nutrient medium. Lipid metabolism-related pathways were the primary targets of Aog415 disruption as revealed by the metabolomic analysis. In comparison to the WT, a significant reduction in the levels of glycerophospholipids, and glycolipids was observed in the mutation. The metabolic alteration in fatty acyls and amino acid-like molecules were significantly disrupted. The knockout of Aog415 impaired the biosynthesis of the hydroxamate siderophore desferriferrichrome, remodeled the flow of fatty acid in A. oligospora, and mainly reprogrammed the membrane lipid metabolism in cells. Desferriferrichrome, a hydroxamate siderophore affects the growth, metabolism and nematode trapping ability of A. oligospora by regulating iron intake and cell membrane homeostasis. Our study uncovered the significant contribution of siderophores to the growth and nematode trapping ability and constructed the relationship among siderophores biosynthesis, lipid metabolism and nematode trapping activity of A. oligospora, which provides a new insight for the development of nematode biocontrol agents based on nematode trapping fungi.
Collapse
Affiliation(s)
- Huiwen Liu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Liangyin Sun
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Jintao Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
2
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
3
|
Shen Y, Zhao J, Zou X, Shi Z, Liao Y, He Y, Wang H, Chen Q, Yang P, Li M. Differential Responses of Bacterial and Fungal Communities to Siderophore Supplementation in Soil Affected by Tobacco Bacterial Wilt ( Ralstonia solanacearum). Microorganisms 2023; 11:1535. [PMID: 37375037 DOI: 10.3390/microorganisms11061535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores secreted by microorganisms can promote ecological efficiency and could be used to regulate the unbalanced microbial community structure. The influence of the siderophore activity of Trichoderma yunnanense strain 2-14F2 and Beauveria pseudobassiana strain (2-8F2) on the physiological/biochemical functions and community structure of soil microbes affected by tobacco bacterial wilt (TBW) was studied. DNS Colorimetry and Biolog-eco plates were used to quantify the impacts of strain siderophores on soil enzyme activities and microbial metabolism. Based on Illumina MiSeq high-throughput sequencing, the soil 16S rDNA and ITS sequences were amplified to dissect the response characteristics of alpha/beta diversity and the structure/composition of a soil microbial community toward siderophores. The KEGG database was used to perform the PICRUSt functional prediction of the microbial community. We found that siderophores of 2-14F2 and 2-8F2, at certain concentrations, significantly increased the activities of sucrase (S-SC) and urease (S-UE) in the TBW soil and enhanced the average well color development (AWCD, carbon source utilization capacity) of the microbial community. The metabolic capacity of the diseased soil to amino acids, carbohydrates, polymers, aromatics, and carboxylic acids also increased significantly. The response of the bacterial community to siderophore active metabolites was more significant in alpha diversity, while the beta diversity of the fungal community responded more positively to siderophores. The relative abundance of Actinobacteria, Chloroflexi, and Acidobacteria increased and was accompanied by reductions in Proteobacteria and Firmicutes. LEfSe analysis showed that Pseudonocardiaceae, Gemmatimonas, Castellaniella, Chloridiumand and Acrophialophora altered the most under different concentrations of siderophore active metabolites. The PICRUSt functional prediction results showed that siderophore increased the abundance of the redox-related enzymes of the microbial community in TBW soil. The BugBase phenotypic prediction results showed that the siderophore activity could decrease the abundance of pathogenic bacteria. The study concludes that siderophore activity could decrease the abundance of pathogenic bacteria and regulate the composition of the microbial community in TBW soil. The activities of sucrase (S-SC) and urease (S-UE) in TBW soil were significantly increased. Overall, the siderophore regulation of community structures is a sustainable management strategy for soil ecosystems.
Collapse
Affiliation(s)
- Yunxin Shen
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Jiangyuan Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650106, China
| | - Xuefeng Zou
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Zhufeng Shi
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Yongqin Liao
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Yonghong He
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
| | - Hang Wang
- National Plateau Wetlands Research Center, Wetlands College, Southwest Forestry University, Kunming 650233, China
| | - Qibin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
| | - Peiweng Yang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Minggang Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650106, China
| |
Collapse
|
4
|
Zhumakayev AR, Varga M, Vörös M, Kocsubé S, Ramteke PW, Szekeres A, Vágvölgyi C, Hatvani L, Marik T. Characterization of the antagonistic potential of the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 strain against the plant pathogenic bacterium Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2022; 13:1034237. [PMID: 36518497 PMCID: PMC9743988 DOI: 10.3389/fpls.2022.1034237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The utilization of microorganisms with biocontrol activity against fungal and bacterial pathogens of plants is recognized as a promising, effective, and environment-friendly strategy to protect agricultural crops. We report the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 isolate as a novel strain with antagonistic potential towards the plant pathogenic bacterium Agrobacterium tumefaciens. In our studies, the growth of the P. resinovorans SZMC 25872 and A. tumefaciens SZMC 14557 isolates in the presence of 74 different carbon sources, and the effect of 11 carbon sources utilized by both strains on the biocontrol efficacy was examined. Seven variations of media with different carbon sources were selected for the assays to observe the biocontrol potential of the P. resinovorans strain. Also, 50% concentrations of the cell-free culture filtrates (CCF) obtained from medium amended with L-alanine or succinic acid as sole carbon source were found to be effective for the growth suppression of A. tumefaciens by 83.03 and 56.80%, respectively. The effect of 7 media on siderophore amount and the activity of extracellular trypsin- and chymotrypsin-like proteases, as well as esterases were also evaluated. Significant positive correlation was found between the siderophore amount and the percentage of inhibition, and the inhibitory effect of the CCFs obtained from medium amended with succinic acid was eliminated in the presence of an additional iron source, suggesting that siderophores produced by P. resinovorans play an important role in its antagonistic potential. The metabolic profile analysis of the P. resinovorans SZMC 25872 strain, performed by high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS), has identified several previously not reported metabolites that might play role in the antagonistic effect against A. tumefaciens. Based on our findings we suggest that the possible inhibition modes of A. tumefaciens SZMC 14557 by P. resinovorans SZMC 25872 include siderophore-mediated suppression, extracellular enzyme activities and novel bioactive metabolites.
Collapse
Affiliation(s)
- Anuar R. Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Pramod W. Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Deekshbhoomi, Nagpur, India
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223065. [PMID: 36432794 PMCID: PMC9694258 DOI: 10.3390/plants11223065] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/07/2023]
Abstract
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on various bacterial strains that positively affect plant growth and development through synthesizing siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe-siderophore complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular-biological, and physiological features of siderophore synthesis by bacteria and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing plant biomass, which is highly relevant for sustainable agriculture.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria R. Galyamova
- Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Characterization of bacterial communities associated with blood-fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis. Sci Rep 2021; 11:8465. [PMID: 33875727 PMCID: PMC8055992 DOI: 10.1038/s41598-021-87946-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well-studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood-fed and starved tropical bed bugs were analysed and characterized by amplifying the v3-v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha-proteobacterium Wolbachia and gamma-proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood-fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood-fed bed bugs.
Collapse
|
7
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
8
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
9
|
Llamas MA, Imperi F, Visca P, Lamont IL. Cell-surface signaling inPseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 2014; 38:569-97. [DOI: 10.1111/1574-6976.12078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
|
10
|
Olucha J, Lamb AL. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases. Bioorg Chem 2011; 39:171-7. [PMID: 21871647 PMCID: PMC3188341 DOI: 10.1016/j.bioorg.2011.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The N-hydroxylating flavoprotein monooxygenases are siderophore biosynthetic enzymes that catalyze the hydroxylation of the sidechain amino-group of ornithine or lysine or the primary amino-group of putrescine. This hydroxylated product is subsequently formylated or acylated and incorporated into the siderophore. Importantly, the modified amino-group is a hydroxamate and serves as an iron chelating moiety in the siderophore. This review describes recent work to characterize the ornithine hydroxylases from Pseudomonas aeruginosa (PvdA) and Aspergillus fumigatus (SidA) and the lysine hydroxylase from Escherichia coli (IucD). This includes summaries of steady and transient state kinetic data for all three enzymes and the X-ray crystallographic structure of PvdA.
Collapse
Affiliation(s)
- Jose Olucha
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, Kansas
| | - Audrey L. Lamb
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, Kansas
| |
Collapse
|
11
|
Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358. Appl Environ Microbiol 2011; 78:726-34. [PMID: 22113916 DOI: 10.1128/aem.06442-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many bacteria, quorum sensing (QS) systems rely on a signal receptor and a synthase producing N-acyl-homoserine lactone(s) as the signal molecule(s). In some species, the rsaL gene, located between the signal receptor and synthase genes, encodes a repressor limiting signal synthase expression and hence signal molecule production. Here we investigate the molecular mechanism of action of the RsaL protein in the plant growth-promoting rhizobacterium Pseudomonas putida WCS358 (RsaL(WCS)). In P. putida WCS358, RsaL(WCS) displayed a strong repressive effect on the promoter of the QS signal synthase gene, ppuI, while it did not repress the same promoter in Pseudomonas aeruginosa. DNase I protection assays showed that purified RsaL(WCS) specifically binds to ppuI on a DNA region overlapping the predicted σ(70)-binding site, but such protection was observed only at high protein concentrations. Accordingly, electrophoretic mobility shift assays showed that the RsaL(WCS) protein was not able to form stable complexes efficiently with a probe encompassing the ppuI promoter, while it formed stable complexes with the promoter of lasI, the gene orthologous to ppuI in P. aeruginosa. This difference seems to be dictated by the lower dyad symmetry of the RsaL(WCS)-binding sequence on the ppuI promoter relative to that on the lasI promoter. Comparison of the results obtained in vivo and in vitro suggests that RsaL(WCS) needs a molecular interactor/cofactor specific for P. putida WCS358 to repress ppuI transcription. We also demonstrate that RsaL(WCS) regulates siderophore-mediated growth limitation of plant pathogens and biofilm formation, two processes relevant for plant growth-promoting activity.
Collapse
|
12
|
Sarma M, Sahai V, Bisaria V. Genetic algorithm-based medium optimization for enhanced production of fluorescent pseudomonad R81 and siderophore. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Pohlmann V, Marahiel MA. Delta-amino group hydroxylation of L-ornithine during coelichelin biosynthesis. Org Biomol Chem 2008; 6:1843-8. [PMID: 18452021 DOI: 10.1039/b801016a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nonribosomally produced hydroxamate siderophore coelichelin from Streptomyces coelicolor contains the nonproteinogenic amino acids N(5)-hydroxyornithine and N(5)-hydroxyformylornithine that are important for iron assembly. The hydroxylation of the delta-amino group of L-ornithine is catalyzed by the flavin-dependent monooxygenase CchB. During the redox reaction nicotinamide adenine dinucleotide phosphate (NADPH) and molecular oxygen are consumed and flavin adenine dinucleotide (FAD) is needed as a cofactor. During this work the monooxygenase was biochemically characterized and it could be shown that the hydroxylation of l-ornithine is most likely the first step in the biosynthesis of the siderophore coelichelin.
Collapse
Affiliation(s)
- Verena Pohlmann
- Chemistry/Biochemistry Department, Philipps-University Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|
14
|
Monds RD, Newell PD, Schwartzman JA, O'Toole GA. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol 2006; 72:1910-24. [PMID: 16517638 PMCID: PMC1393216 DOI: 10.1128/aem.72.3.1910-1924.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pho regulon integrates the sensing of environmental inorganic phosphate (Pi) availability with coregulation of gene expression, mediating an adaptive response to Pi limitation. Many aspects of the Pho regulon have been addressed in studies of Escherichia coli; however, it is unclear how transferable this knowledge is to other bacterial systems. Here, we report work to discern the conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. We demonstrate by mutational studies that PhoB/PhoR and the Pst system have conserved functions in the regulation of Pi-induced phosphatase activities, as well as expression of other Pi-regulated genes. A genetic screen was carried out to isolate factors that affect Pho-regulated phosphatase activity. We identified the Pho-regulated phosphatases PhoX and PhoD and present evidence that these enzymes are exported via the Tat system. The phoX and phoD genes were shown to be members of the Pho regulon by reverse transcription-PCR, as well as by functional assessment of putative PhoB binding sites (Pho boxes). Our data also suggested that at least one other non-Tat-secreted Pho-regulated phosphatase exists. From the genetic screen, numerous siderophore mutants that displayed severe defects in Pho-activated phosphatase activity were isolated. Subsequently, iron was shown to be important for modulating the activity of Pho-regulated phosphatases, but it does not regulate this activity at the level of transcription. We also identify and demonstrate a novel role in siderophore production and Pho-regulated phosphatase activity for ApaH, the hydrolase for the nucleotide-signaling molecule AppppA. Finally, numerous mutations in multiple cellular pathways were recovered that may be required for maximal induction of the Pho regulon under Pi-limiting conditions.
Collapse
Affiliation(s)
- Russell D Monds
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
15
|
Lamont IL, Martin LW, Sims T, Scott A, Wallace M. Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa. J Bacteriol 2006; 188:3149-52. [PMID: 16585778 PMCID: PMC1446982 DOI: 10.1128/jb.188.8.3149-3152.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Pseudomonas aeruginosa secrete one of three pyoverdine siderophores (types I to III). We have characterized a gene, pvdY(II) (for the pvdY gene present in type II P. aeruginosa strains), that is only present in strains that make type II pyoverdine. A mutation in pvdY(II) prevented pyoverdine synthesis. Bioinformatic, genetic, and biochemical approaches indicate that the PvdYII enzyme catalyzes acetylation of hydroxyornithine. Expression of pvdY(II) is repressed by the presence of iron and upregulated by the presence of type II pyoverdine. Characterization of pvdY(II) provides insights into the molecular basis for production of different pyoverdines by different strains of P. aeruginosa.
Collapse
Affiliation(s)
- Iain L Lamont
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Ballou DP, Entsch B, Cole LJ. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem Biophys Res Commun 2005; 338:590-8. [PMID: 16236251 DOI: 10.1016/j.bbrc.2005.09.081] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
Flavoprotein monooxygenases are involved in a wide variety of biological processes including drug detoxification, biodegradation of aromatic compounds in the environment, biosynthesis of antibiotics and siderophores, and many others. The reactions use NAD(P)H and O2 as co-substrates and insert one atom of oxygen into the substrate. The flavin-dependent monooxygenases utilize a general cycle in which NAD(P)H reduces the flavin, and the reduced flavin reacts with O2 to form a C4a-(hydro)peroxyflavin intermediate, which is the oxygenating agent. This complicated catalytic process has diverse requirements that are difficult to be satisfied by a single site. Two general strategies have evolved to satisfy these requirements. para-Hydroxybenzoate hydroxylase, the paradigm for the single-component flavoprotein monooxygenases, is one of the most thoroughly studied of all enzymes. This enzyme undergoes significant protein and flavin dynamics during catalysis. There is an open conformation that gives access of substrate and product to solvent, and a closed or in conformation for the reaction with oxygen and the hydroxylation to occur. This closed form prevents solvent from destabilizing the hydroperoxyflavin intermediate. Finally, there is an out conformation achieved by movement of the isoalloxazine toward the solvent, which exposes its N5 for hydride delivery from NAD(P)H. The protein coordinates these dynamic events during catalysis. The second strategy uses a reductase to catalyze the reduction of the flavin and an oxygenase that uses the reduced flavin as a substrate to react with oxygen and hydroxylate the organic substrate. These two-component systems must be able to transfer reduced flavin from the reductase to the oxygenase and stabilize a C4a-peroxyflavin until a substrate binds to be hydroxylated, all before flavin oxidation and release of H2O2. Again, protein dynamics are important for catalytic success.
Collapse
Affiliation(s)
- David P Ballou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.
| | | | | |
Collapse
|
17
|
Budzikiewicz H. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2004; 87:81-237. [PMID: 15079896 DOI: 10.1007/978-3-7091-0581-8_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- H Budzikiewicz
- Institut für Organische Chemie, Universität zu Köln, Germany
| |
Collapse
|
18
|
Putignani L, Ambrosi C, Ascenzi P, Visca P. Expression of l-ornithine Nδ-oxygenase (PvdA) in fluorescent Pseudomonas species: an immunochemical and in silico study. Biochem Biophys Res Commun 2004; 313:245-57. [PMID: 14684153 DOI: 10.1016/j.bbrc.2003.11.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Omega-amino acid monooxygenases (EC 1.14.13.-), catalysing the formation of hydroxamate precursors of microbial siderophores (e.g., pyoverdine), have so far eluded structural and biochemical characterisation. Here, the expression of recombinant L-ornithine-Ndelta-oxygenase (PvdA) from Pseudomonas aeruginosa PAO1 is reported. A library of eight monoclonal antibodies (MAbs) directed against PvdA has been generated. Two MAb families recognising the N- and C-terminal regions of PvdA were identified. The MAbs made it possible to demonstrate that 45-48 kDa PvdA homologues are expressed in response to iron limitation by different species and strains of fluorescent pseudomonads. Despite the different degrees in sequence similarity between P. aeruginosa PvdA and putative homologues from Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae, Burkholderia cepacia, and Ralstonia solanacearum, in silico domain scanning predicts an impressive conservation of putative cofactor and substrate binding domains. The MAb library was also used to monitor PvdA expression during the transition of P. aeruginosa from iron-sufficient to iron-deficient growth.
Collapse
Affiliation(s)
- Lorenza Putignani
- Unità di Microbiologia Molecolare, Istituto Nazionale per le Malattie Infettive I.R.C.C.S. Lazzaro Spallanzani, Via Portuense 292, 00149 Roma, Italy
| | | | | | | |
Collapse
|
19
|
Lamont IL, Martin LW. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2003; 149:833-842. [PMID: 12686626 DOI: 10.1099/mic.0.26085-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fluorescent pseudomonads secrete yellow-green siderophores named pyoverdines or pseudobactins. These comprise a dihydroxyquinoline derivative joined to a type-specific peptide and, usually, a carboxylic acid or amide. In Pseudomonas aeruginosa strain PAO1, six genes that encode proteins required for pyoverdine synthesis (pvd genes) have been identified previously. Expression of all of these genes requires an alternative sigma factor PvdS. The purpose of this research was to identify other genes that are required for pyoverdine synthesis in P. aeruginosa PAO1. Fourteen candidate genes were identified from the PAO1 genome sequence on the basis of their location in the genome, the functions of homologues in other bacteria, and whether their expression was likely to be PvdS-dependent. The candidate genes were mutated and the effects of the mutations on pyoverdine production were determined. Eight new pvd genes were identified. The presence of homologues of pvd genes in other strains of P. aeruginosa was determined by Southern blotting and in other fluorescent pseudomonads by interrogation of genome sequences. Five pvd genes were restricted to strains of P. aeruginosa that make the same pyoverdine as strain PAO1, suggesting that they direct synthesis of the type-specific peptide. The remaining genes were present in all strains of P. aeruginosa that were examined and homologues were present in other Pseudomonas species. These genes are likely to direct synthesis of the dihydroxyquinoline moiety and the attached carboxylic acid/amide group. It is likely that most if not all of the genes required for pyoverdine synthesis in P. aeruginosa PAO1 have now been identified and this will form the basis for a biochemical description of the pathway of pyoverdine synthesis.
Collapse
Affiliation(s)
- Iain L Lamont
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
20
|
Mossialos D, Ochsner U, Baysse C, Chablain P, Pirnay JP, Koedam N, Budzikiewicz H, Fernández DU, Schäfer M, Ravel J, Cornelis P. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 2002; 45:1673-85. [PMID: 12354233 DOI: 10.1046/j.1365-2958.2002.03120.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyoverdines, the main siderophores of fluorescent pseudomonads, contain a peptide moiety, different for each pyoverdine, and an identical chromophore. While it has been shown that non-ribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of the peptide chain of pyoverdines, this was not demonstrated for the biosynthesis of the chromo-phore part. We found that PvsA, from Pseudomonas fluorescens ATCC 17400, and PvdL (PA2424), from Pseudomonas aeruginosa are similar NRPSs and functional homologues, necessary for the production of pyoverdine. Transcriptional lacZ fusions showed that pvdL is co-transcribed with the upstream PA2425 gene, encoding a putative thioesterase, and is iron-regulated via PvdS. Similarly, RT-PCR analysis revealed that expression of pvsA is repressed by iron. Analysis of the adenylation domains of PvsA, PvdL and their homologues, revealed that their N-terminus starts with an acyl-CoA ligase module, followed by three amino acid activation domains. Computer modelling of these domains suggests that PvsA in P. fluorescens and PvdL in P. aeruginosa are orthologues involved in the biosynthesis of the pyoverdine chromophore.
Collapse
Affiliation(s)
- Dimitris Mossialos
- Flanders Interuniversity Institute of Biotechnology, Vrije Universitiet, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ambrosi C, Leoni L, Visca P. Different responses of pyoverdine genes to autoinduction in Pseudomonas aeruginosa and the group Pseudomonas fluorescens-Pseudomonas putida. Appl Environ Microbiol 2002; 68:4122-6. [PMID: 12147517 PMCID: PMC124028 DOI: 10.1128/aem.68.8.4122-4126.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the regulation of the psbA and pvdA pyoverdine biosynthesis genes, which encode the L-ornithine N(5)-oxygenase homologues in Pseudomonas strain B10 and Pseudomonas aeruginosa PAO1, respectively. We demonstrate that pyoverdine(B10), as the end product of its biosynthetic pathway, is a key participant of the control circuit regulating its own production in Pseudomonas strain B10. In P. aeruginosa PAO1, however, pyoverdine(PAO1) has no apparent role in the positive regulation of the pvdA gene.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Unità di Microbiologia Molecolare, I.R.C.C.S. Lazzaro Spallanzani, 00149 Rome, Italy
| | | | | |
Collapse
|
22
|
Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB. Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett 2002; 518:43-7. [PMID: 11997015 DOI: 10.1016/s0014-5793(02)02623-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXHXXXW(P/D). Studies with site-directed mutants of 4-hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB suggest that this fingerprint sequence is critically involved in catalysis. Further sequence analysis showed that the BVMOs belong to a novel superfamily that comprises three known classes of FAD-dependent monooxygenases: the so-called flavin-containing monooxygenases (FMOs), the N-hydroxylating monooxygenases (NMOs), and the BVMOs. Interestingly, FMOs contain an almost identical sequence motif when compared to the BVMO sequences: FXGXXXHXXX(Y/F). Using these novel amino acid sequence fingerprints, BVMOs and FMOs can be readily identified in the protein sequence databank.
Collapse
Affiliation(s)
- Marco W Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Leoni L, Ambrosi C, Petrucca A, Visca P. Transcriptional regulation of pseudobactin synthesis in the plant growth-promoting Pseudomonas B10. FEMS Microbiol Lett 2002; 208:219-25. [PMID: 11959440 DOI: 10.1111/j.1574-6968.2002.tb11085.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have investigated the iron-dependent regulation of the psbA gene, encoding the enzyme L-ornithine N(5)-oxygenase in the rhizobacterium Pseudomonas B10. We have cloned and characterized a Pseudomonas B10 gene, designated psbS, required for psbA expression. PsbS is endowed with structural and functional features of extracytoplasmatic function (ECF) sigma factors, and is closely related to the iron starvation sigmas PvdS, PbrA, and PfrI, which mediate the iron-repressible expression of pseudobactin biosynthesis genes in different Pseudomonas species. Expression of psbA was found to be indirectly controlled by Fur, which abrogates psbS transcription in the presence of sufficient iron.
Collapse
Affiliation(s)
- Livia Leoni
- Dipartimento di Biologia, Università di Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | | | | | | |
Collapse
|