1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Tjo H, Conway JM. Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion. J Ind Microbiol Biotechnol 2024; 51:kuae020. [PMID: 38866721 PMCID: PMC11212667 DOI: 10.1093/jimb/kuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products. ONE-SENTENCE SUMMARY Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.
Collapse
Affiliation(s)
- Hansen Tjo
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan M Conway
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Corbett MK, Gifford A, Fimognari N, Watkin ELJ. Analysis of element yield, bacterial community structure and the impact of carbon sources for bioleaching rare earth elements from high grade monazite. Res Microbiol 2024; 175:104133. [PMID: 37683878 DOI: 10.1016/j.resmic.2023.104133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Rare earth element (REE) recovery from waste streams, mine tailings or recyclable components using bioleaching is gaining traction due to the shortage and security of REE supply as well as the environmental problems that occur from processing and refining. Four heterotrophic microbial species with known phosphate solubilizing capabilities were evaluated for their ability to leach REE from a high-grade monazite when provided with either galactose, fructose or maltose. Supplying fructose resulted in the greatest amount of REE leached from the ore due to the largest amount of organic acid produced. Gluconic acid was the dominant organic acid identified produced by the cultures, followed by acetic acid. The monazite proved difficult to leach with the different carbon sources, with preferential release of Ce over La, Nd and Pr.
Collapse
Affiliation(s)
- Melissa K Corbett
- Curtin Medical School, Curtin University GPO Box U1987, Perth, Australia.
| | - April Gifford
- Curtin Medical School, Curtin University GPO Box U1987, Perth, Australia.
| | - Nick Fimognari
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Australia.
| | - Elizabeth L J Watkin
- Curtin Medical School, Curtin University GPO Box U1987, Perth, Australia; School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Australia.
| |
Collapse
|
4
|
Aranda-Caraballo J, Saenz RA, López-Zavala AA, Velazquez-Cruz B, Espinosa-Barrera L, Cárdenas-Conejo Y, Zárate-Romero A, Linares-Vergara O, Osuna-Castro JA, Bonales-Alatorre E, Centeno-Leija S, Serrano-Posada H. Binding Specificity of a Novel Cyclo/Maltodextrin-Binding Protein and Its Role in the Cyclodextrin ABC Importer System from Thermoanaerobacterales. Molecules 2023; 28:6080. [PMID: 37630332 PMCID: PMC10458862 DOI: 10.3390/molecules28166080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular synthesis of functional cyclodextrins (CDs) as intermediates of starch assimilation is a convenient microbial adaptation to sequester substrates, increase the half-life of the carbon source, carry bioactive compounds, and alleviate chemical toxicity through the formation of CD-guest complexes. Bacteria encoding the four steps of the carbohydrate metabolism pathway via cyclodextrins (CM-CD) actively internalize CDs across the microbial membrane via a putative type I ATP-dependent ABC sugar importer system, MdxEFG-(X/MsmX). While the first step of the CM-CD pathway encompasses extracellular starch-active cyclomaltodextrin glucanotransferases (CGTases) to synthesize linear dextrins and CDs, it is the ABC importer system in the second step that is the critical factor in determining which molecules from the CGTase activity will be internalized by the cell. Here, structure-function relationship studies of the cyclo⁄maltodextrin-binding protein MdxE of the MdxEFG-MsmX importer system from Thermoanaerobacter mathranii subsp. mathranii A3 are presented. Calorimetric and fluorescence studies of recombinant MdxE using linear dextrins and CDs showed that although MdxE binds linear dextrins and CDs with high affinity, the open-to-closed conformational change is solely observed after α- and β-CD binding, suggesting that the CM-CD pathway from Thermoanaerobacterales is exclusive for cellular internalization of these molecules. Structural analysis of MdxE coupled with docking simulations showed an overall architecture typically found in sugar-binding proteins (SBPs) that comprised two N- and C-domains linked by three small hinge regions, including the conserved aromatic triad Tyr193/Trp269/Trp378 in the C-domain and Phe87 in the N-domain involved in CD recognition and stabilization. Structural bioinformatic analysis of the entire MdxFG-MsmX importer system provided further insights into the binding, internalization, and delivery mechanisms of CDs. Hence, while the MdxE-CD complex couples to the permease subunits MdxFG to deliver the CD into the transmembrane channel, the dimerization of the cytoplasmatic promiscuous ATPase MsmX triggers active transport into the cytoplasm. This research provides the first results on a novel thermofunctional SBP and its role in the internalization of CDs in extremely thermophilic bacteria.
Collapse
Affiliation(s)
- Jorge Aranda-Caraballo
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Roberto A. Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima 28045, Mexico;
| | - Alonso A. López-Zavala
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Beatriz Velazquez-Cruz
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Laura Espinosa-Barrera
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Yair Cárdenas-Conejo
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| | - Andrés Zárate-Romero
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 CarreteraTijuana-Ensenada, Ensenada 22860, Mexico;
| | - Oscar Linares-Vergara
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Juan A. Osuna-Castro
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Autopista Colima-Manzanillo, Tecomán 28100, Mexico;
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colonia Villa de San Sebastián, Colima 28045, Mexico;
| | - Sara Centeno-Leija
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| | - Hugo Serrano-Posada
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| |
Collapse
|
5
|
Bidart GN, Gharabli H, Welner DH. Functional characterization of the phosphotransferase system in Parageobacillus thermoglucosidasius. Sci Rep 2023; 13:7131. [PMID: 37130962 PMCID: PMC10154347 DOI: 10.1038/s41598-023-33918-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Parageobacillus thermoglucosidasius is a thermophilic bacterium characterized by rapid growth, low nutrient requirements, and amenability to genetic manipulation. These characteristics along with its ability to ferment a broad range of carbohydrates make P. thermoglucosidasius a potential workhorse in whole-cell biocatalysis. The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) catalyzes the transport and phosphorylation of carbohydrates and sugar derivatives in bacteria, making it important for their physiological characterization. In this study, the role of PTS elements on the catabolism of PTS and non-PTS substrates was investigated for P. thermoglucosidasius DSM 2542. Knockout of the common enzyme I, part of all PTSs, showed that arbutin, cellobiose, fructose, glucose, glycerol, mannitol, mannose, N-acetylglucosamine, N-acetylmuramic acid, sorbitol, salicin, sucrose, and trehalose were PTS-dependent on translocation and coupled to phosphorylation. The role of each putative PTS was investigated and six PTS-deletion variants could not grow on arbutin, mannitol, N-acetylglucosamine, sorbitol, and trehalose as the main carbon source, or showed diminished growth on N-acetylmuramic acid. We concluded that PTS is a pivotal factor in the sugar metabolism of P. thermoglucosidasius and established six PTS variants important for the translocation of specific carbohydrates. This study lays the groundwork for engineering efforts with P. thermoglucosidasius towards efficient utilization of diverse carbon substrates for whole-cell biocatalysis.
Collapse
Affiliation(s)
- Gonzalo N Bidart
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Wang L, Bu T, Bai X, He S, Zhang J, Jin L, Liu B, Dong Y, Ha NC, Quan C, Nam KH, Xu Y. Crystal structure of the domain-swapped dimeric maltodextrin-binding protein MalE from Salmonella enterica. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:613-622. [DOI: 10.1107/s2059798322003114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
MalE is a maltose/maltodextrin-binding protein (MBP) that plays a critical role in most bacterial maltose/maltodextrin-transport systems. Previously reported wild-type MBPs are monomers comprising an N-terminal domain (NTD) and a C-terminal domain (CTD), and maltose-like molecules are recognized between the NTD and CTD and transported to the cell system. Because MBP does not undergo artificial dimerization, it is widely used as a tag for protein expression and purification. Here, the crystal structure of a domain-swapped dimeric MalE from Salmonella enterica (named SeMalE) in complex with maltopentaose is reported for the first time, and its structure is distinct from typical monomeric MalE family members. In the domain-swapped dimer, SeMalE comprises two subdomains: the NTD and CTD. The NTD and CTD of one molecule of SeMalE interact with the CTD and NTD of the partner molecule, respectively. The domain-swapped dimeric conformation was stabilized by interactions between the NTDs, CTDs and linkers from two SeMalE molecules. Additionally, a maltopentaose molecule was found to be located at the interface between the NTD and CTD of different SeMalE molecules. These results provide new insights that will improve the understanding of maltodextrin-binding MalE proteins.
Collapse
|
7
|
Centeno-Leija S, Espinosa-Barrera L, Velazquez-Cruz B, Cárdenas-Conejo Y, Virgen-Ortíz R, Valencia-Cruz G, Saenz RA, Marín-Tovar Y, Gómez-Manzo S, Hernández-Ochoa B, Rocha-Ramirez LM, Zataraín-Palacios R, Osuna-Castro JA, López-Munguía A, Serrano-Posada H. Mining for novel cyclomaltodextrin glucanotransferases unravels the carbohydrate metabolism pathway via cyclodextrins in Thermoanaerobacterales. Sci Rep 2022; 12:730. [PMID: 35031648 PMCID: PMC8760340 DOI: 10.1038/s41598-021-04569-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Carbohydrate metabolism via cyclodextrins (CM-CD) is an uncommon starch-converting pathway that thoroughly depends on extracellular cyclomaltodextrin glucanotransferases (CGTases) to transform the surrounding starch substrate to α-(1,4)-linked oligosaccharides and cyclodextrins (CDs). The CM-CD pathway has emerged as a convenient microbial adaptation to thrive under extreme temperatures, as CDs are functional amphipathic toroids with higher heat-resistant values than linear dextrins. Nevertheless, although the CM-CD pathway has been described in a few mesophilic bacteria and archaea, it remains obscure in extremely thermophilic prokaryotes (Topt ≥ 70 °C). Here, a new monophyletic group of CGTases with an exceptional three-domain ABC architecture was detected by (meta)genome mining of extremely thermophilic Thermoanaerobacterales living in a wide variety of hot starch-poor environments on Earth. Functional studies of a representative member, CldA, showed a maximum activity in a thermoacidophilic range (pH 4.0 and 80 °C) with remarkable product diversification that yielded a mixture of α:β:γ-CDs (34:62:4) from soluble starch, as well as G3-G7 linear dextrins and fermentable sugars as the primary products. Together, comparative genomics and predictive functional analysis, combined with data of the functionally characterized key proteins of the gene clusters encoding CGTases, revealed the CM-CD pathway in Thermoanaerobacterales and showed that it is involved in the synthesis, transportation, degradation, and metabolic assimilation of CDs.
Collapse
Affiliation(s)
- Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico.
| | - Laura Espinosa-Barrera
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Beatriz Velazquez-Cruz
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Yair Cárdenas-Conejo
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Raúl Virgen-Ortíz
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colonia Villa de San Sebastián, 28045, Colima, Colima, Mexico
| | - Roberto A Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, 28045, Colima, Colima, Mexico
| | - Yerli Marín-Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530, Mexico City, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica y Biología Celular, Hospital Infantil de México Federico Gómez, Secretaría de Salud, 06720, Mexico City, Mexico
| | - Luz María Rocha-Ramirez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Colonia Doctores, 06720, Delegación Cuauhtémoc, Mexico
| | - Rocío Zataraín-Palacios
- Escuela de Medicina General, Universidad José Martí, Bosques del Decán 351, 28089, Colima, Colima, México
| | - Juan A Osuna-Castro
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Autopista Colima-Manzanillo, 28100, Tecomán, Colima, Mexico
| | - Agustín López-Munguía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico.
| |
Collapse
|
8
|
Aroob I, Ahmad N, Aslam M, Shaeer A, Rashid N. A highly active α-cyclodextrin preferring cyclomaltodextrinase from Geobacillus thermopakistaniensis. Carbohydr Res 2019; 481:1-8. [PMID: 31212108 DOI: 10.1016/j.carres.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Cyclomaltodextrinases show diverse hydrolyzing and/or transglycosylation activities against cyclodextrins, starch and pullulan. A gene annotated as cyclomaltodextrinase from Geobacillus thermopakistaniensis was cloned and overexpressed in Escherichia coli. The gene product, CDaseGt, was purified and biochemically characterized. The recombinant enzyme exhibited highest activity with α-cyclodextrin at 55 °C and pH 6.0. Specific hydrolytic activities towards α-, β- and γ-cyclodextrin were 1200, 735 and 360 μmol min-1 mg-1, respectively. To the best of our knowledge, the activity against α-cyclodextrin is the highest among the reported enzymes. Next to cyclodextrins, pullulan was the most preferred substrate with a specific activity of 105 μmol min-1 mg-1. CDaseGt was capable of hydrolysis of maltotriose and acarbose as well as transglycosylation of their hydrolytic products. At 65 °C, there was no significant loss in enzyme activity even after overnight incubation. Activity of CDaseGt was not metal ions dependent, however, the presence of Mn2+ significantly enhanced the α-CDase activity. EDTA had no significant effect on the CDaseGt activity, however, it enhanced the thermostability of the enzyme. CDaseGt existed in monomeric as well as dimeric form in solution. Dimeric form is more active compared to the monomeric one. Equilibrium between the two forms seems to be concentration dependent.
Collapse
Affiliation(s)
- Iqra Aroob
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Abeera Shaeer
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
9
|
Unban K, Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C. Molecular structure of cyclomaltodextrinase derived from amylolytic lactic acid bacterium Enterococcus faecium K-1 and properties of recombinant enzymes expressed in Escherichia coli and Lactobacillus plantarum. Int J Biol Macromol 2018; 107:898-905. [DOI: 10.1016/j.ijbiomac.2017.09.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
10
|
Identification of the ATPase Subunit of the Primary Maltose Transporter in the Hyperthermophilic Anaerobe Thermotoga maritima. Appl Environ Microbiol 2017; 83:AEM.00930-17. [PMID: 28687653 DOI: 10.1128/aem.00930-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Thermotoga maritima is a hyperthermophilic anaerobic bacterium that produces molecular hydrogen (H2) by fermentation. It catabolizes a broad range of carbohydrates through the action of diverse ABC transporters. However, in T. maritima and related species, highly similar genes with ambiguous annotation obscure a precise understanding of genome function. In T. maritima, three putative malK genes, all annotated as ATPase subunits, exhibited high identity to each other. To distinguish between these genes, malK disruption mutants were constructed by gene replacement, and the resulting mutant cell lines were characterized. Only a disruption of malK3 produced a defect in maltose catabolism. To verify that the mutant phenotype arose specifically from malK3 inactivation, the malK3 mutation was repaired by recombination, and maltose catabolism was restored. This study demonstrates the importance of a maltose ABC-type transporter and its relationship to sugar metabolism in T. maritimaIMPORTANCE The application and further development of a genetic system was used here to investigate gene paralogs in the hyperthermophile Thermotoga maritima The occurrence of three ABC transporter ATPase subunits all annotated as malK was evaluated using a combination of genetic and bioinformatic approaches. The results clarify the role of only one malK gene in maltose catabolism in a nonmodel organism noted for fermentative hydrogen production.
Collapse
|
11
|
Homburg C, Bommer M, Wuttge S, Hobe C, Beck S, Dobbek H, Deutscher J, Licht A, Schneider E. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr. Mol Microbiol 2017; 105:25-45. [PMID: 28370477 DOI: 10.1111/mmi.13680] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Catabolite repression is a mechanism that enables bacteria to control carbon utilization. As part of this global regulatory network, components of the phosphoenolpyruvate:carbohydrate phosphotransferase system inhibit the uptake of less favorable sugars when a preferred carbon source such as glucose is available. This process is termed inducer exclusion. In bacteria belonging to the phylum Firmicutes, HPr, phosphorylated at serine 46 (P-Ser46-HPr) is the key player but its mode of action is elusive. To address this question at the level of purified protein components, we have chosen a homolog of the Escherichia coli maltose/maltodextrin ATP-binding cassette transporter from Lactobacillus casei (MalE1-MalF1G1K12 ) as a model system. We show that the solute binding protein, MalE1, binds linear and cyclic maltodextrins but not maltose. Crystal structures of MalE1 complexed with these sugars provide a clue why maltose is not a substrate. P-Ser46-HPr inhibited MalE1/maltotetraose-stimulated ATPase activity of the transporter incorporated in proteoliposomes. Furthermore, cross-linking experiments revealed that P-Ser46-HPr contacts the nucleotide-binding subunit, MalK1, in proximity to the Walker A motif. However, P-Ser46-HPr did not block binding of ATP to MalK1. Together, our findings provide first biochemical evidence that P-Ser-HPr arrests the transport cycle by preventing ATP hydrolysis at the MalK1 subunits of the transporter.
Collapse
Affiliation(s)
- Constanze Homburg
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Martin Bommer
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Steven Wuttge
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Carolin Hobe
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Sebastian Beck
- Institut für Chemie/Angewandte Analytik und Umweltchemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Holger Dobbek
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78350, France.,Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UMR8261, Paris, F-75005, France
| | - Anke Licht
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Erwin Schneider
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| |
Collapse
|
12
|
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A. Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. J Proteomics 2015; 125:1-16. [DOI: 10.1016/j.jprot.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/05/2023]
|
13
|
Ichikawa K, Tonozuka T, Uotsu-Tomita R, Akeboshi H, Nishikawa A, Sakano Y. Purification, Characterization, and Subsite Affinities ofThermoactinomyces vulgarisR-47 Maltooligosaccharide-metabolizing Enzyme Homologous to Glucoamylases. Biosci Biotechnol Biochem 2014; 68:413-20. [PMID: 14981306 DOI: 10.1271/bbb.68.413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A maltooligosaccharide-metabolizing enzyme from Thermoactinomyces vulgaris R-47 (TGA) homologous to glucoamylases does not degrade starch efficiently unlike most glucoamylases such as fungal glucoamylases (Uotsu-Tomita et al., Appl. Microbiol. Biotechnol., 56, 465-473 (2001)). In this study, we purified and characterized TGA, and determined the subsite affinities of the enzyme. The optimal pH and temperature of the enzyme are 6.8 and 60 degrees C, respectively. Activity assays with 0.4% substrate showed that TGA was most active against maltotriose, but did not prefer soluble starch. Kinetic analysis using maltooligosaccharides ranging from maltose to maltoheptaose revealed that TGA has high catalytic efficiency for maltotriose and maltose. Based on the kinetics, subsite affinities were determined. The A1+A2 value of this enzyme was highly positive whereas A4-A6 values were negative and little affinity was detected at subsites 3 and 7. Thus, the subsite structure of TGA is different from that of any other GA. The results indicate that TGA is a metabolizing enzyme specific for small maltooligosaccharides.
Collapse
Affiliation(s)
- Kazuhiro Ichikawa
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Competitive interactions of ligands and macromolecular crowders with maltose binding protein. PLoS One 2013; 8:e74969. [PMID: 24124463 PMCID: PMC3790770 DOI: 10.1371/journal.pone.0074969] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/09/2013] [Indexed: 01/22/2023] Open
Abstract
Cellular signaling involves a cascade of recognition events occurring in a complex environment with high concentrations of proteins, polysaccharides, and other macromolecules. The influence of macromolecular crowders on protein binding affinity through hard-core repulsion is well studied, and possible contributions of protein-crowder soft attraction have been implicated recently. Here we present direct evidence for weak association of maltose binding protein (MBP) with a polysaccharide crowder Ficoll, and that this association effectively competes with the binding of the natural ligand, maltose. Titration data over wide ranges of maltose and Ficoll concentrations fit well with a three-state competitive binding model. Broadening of MBP 1H15N TROSY spectra by the addition of Ficoll indicates weak protein-crowder association, and subsequent recovery of sharp NMR peaks upon addition of maltose indicates that the interactions of the crowder and the ligand with MBP are competitive. We hypothesize that, in the Escherichia coli periplasm, the competitive interactions of polysaccharides and maltose with MBP could allow MBP to shuttle between the peptidoglycan attached to the outer membrane and the ATP-binding cassette transporter in the inner membrane.
Collapse
|
15
|
The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism. J Biotechnol 2013; 167:178-89. [DOI: 10.1016/j.jbiotec.2012.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/01/2012] [Accepted: 08/10/2012] [Indexed: 02/06/2023]
|
16
|
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. J Bacteriol 2013; 195:2573-84. [PMID: 23543710 DOI: 10.1128/jb.01629-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [(14)C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum.
Collapse
|
17
|
Bulut H, Ma Q, Moniot S, Saenger W, Schneider E, Vahedi-Faridi A. Crystal structures of receptors involved in small molecule transport across membranes. Eur J Cell Biol 2012; 91:318-25. [PMID: 22341528 DOI: 10.1016/j.ejcb.2011.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 10/28/2022] Open
Abstract
This paper briefly reviews contemporary protein crystallography and focuses on six receptor proteins of membrane-intrinsic ATP binding cassette (ABC) transporters. Three of these receptors are specific for carbohydrates and three for amino acids. The receptor GacH of the transporter GacFGH from Streptomyces glaucescens is specific for acarbose and its homologs, and MalE of Salmonella typhimurium is specific for maltose but also forms a complex with acarbose, and the third receptor is the highly specific d-galactose receptor AcbH of the transporter AcbFGH from Actinoplanes sp. Concerning the receptors for amino acids, ArtJ belongs to the ArtJ-(MP)(2) transporter of Geobacillus stearotermophilus and recognizes and binds to positively charged arginine, lysine, and histidine with different sizes of side chains, contrasting the receptors Ngo0372 and Ngo2014 from Neisseria gonorrhaeae that are highly specific for cystine and cysteine, respectively. The differences in the rather unspecific receptors GacH, MalE and ArtJ are compared with the highly specific receptors AcbH, Ngo0372 and Ngo2014.
Collapse
Affiliation(s)
- Haydar Bulut
- Institut für Chemie und Biochemie, Abteilung Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose. J Mol Biol 2010; 406:92-105. [PMID: 21168419 DOI: 10.1016/j.jmb.2010.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
Solute receptors (binding proteins) are indispensable components of canonical ATP-binding cassette importers in prokaryotes. Here, we report on the characterization and crystal structures in the closed and open conformations of AcbH, the solute receptor of the putative carbohydrate transporter AcbFG which is encoded in the acarbose (acarviosyl-1,4-maltose) biosynthetic gene cluster from Actinoplanes sp. SE50/110. Binding assays identified AcbH as a high-affinity monosaccharide-binding protein with a dissociation constant (K(d)) for β-d-galactopyranose of 9.8±1.0 nM. Neither galactose-containing di- and trisaccharides, such as lactose and raffinose, nor monosaccharides including d-galacturonic acid, l-arabinose, d-xylose and l-rhamnose competed with [(1)(4)C]galactose for binding to AcbH. Moreover, AcbH does not bind d-glucose, which is a common property of all but one d-galactose-binding proteins characterized to date. Strikingly, determination of the X-ray structure revealed that AcbH is structurally homologous to maltose-binding proteins rather than to glucose-binding proteins. Two helices are inserted in the substrate-binding pocket, which reduces the cavity size and allows the exclusive binding of monosaccharides, specifically β-d-galactopyranose, in the (4)C(1) conformation. Site-directed mutagenesis of three residues from the binding pocket (Arg82, Asp361 and Arg362) that interact with the axially oriented O4-H hydroxyl of the bound galactopyranose and subsequent functional analysis indicated that these residues are crucial for galactose binding. To our knowledge, this is the first report of the tertiary structure of a solute receptor with exclusive affinity for β-d-galactopyranose. The putative role of a galactose import system in the context of acarbose metabolism in Actinoplanes sp. is discussed.
Collapse
|
19
|
Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2010; 107:21761-6. [PMID: 21118978 PMCID: PMC3003129 DOI: 10.1073/pnas.1014642108] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an exclusively human pathogen that proliferates within phagosomes of host phagocytes. Host lipids are believed to provide the major carbon and energy sources for Mtb, with only limited availability of carbohydrates. There is an apparent paradox because five putative carbohydrate uptake permeases are present in Mtb, but there are essentially no host carbohydrates inside phagosomes. Nevertheless, carbohydrate transporters have been implicated in Mtb pathogenesis, suggesting that acquisition of host sugars is important during some stages of infection. Here we show, however, that the LpqY-SugA-SugB-SugC ATP-binding cassette transporter is highly specific for uptake of the disaccharide trehalose, a sugar not present in mammals, thus refuting a role in nutrient acquisition from the host. Trehalose release is known to occur as a byproduct of the biosynthesis of the mycolic acid cell envelope by Mtb's antigen 85 complex. The antigen 85 complex constitutes a group of extracellular mycolyl transferases, which transfer the lipid moiety of the glycolipid trehalose monomycolate (TMM) to arabinogalactan or another molecule of TMM, yielding trehalose dimycolate. These reactions also lead to the concomitant extracellular release of the trehalose moiety of TMM. We found that the LpqY-SugA-SugB-SugC ATP-binding cassette transporter is a recycling system mediating the retrograde transport of released trehalose. Perturbations in trehalose recycling strongly impaired virulence of Mtb. This study reveals an unexpected accessory component involved in the formation of the mycolic acid cell envelope in mycobacteria and provides a previously unknown role for sugar transporters in bacterial pathogenesis.
Collapse
Affiliation(s)
- Rainer Kalscheuer
- The Howard Hughes Medical Institute, Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Brian Weinrick
- The Howard Hughes Medical Institute, Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Usha Veeraraghavan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - William R. Jacobs
- The Howard Hughes Medical Institute, Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, NY 10461; and
| |
Collapse
|
20
|
Vahedi-Faridi A, Licht A, Bulut H, Scheffel F, Keller S, Wehmeier UF, Saenger W, Schneider E. Crystal structures of the solute receptor GacH of Streptomyces glaucescens in complex with acarbose and an acarbose homolog: comparison with the acarbose-loaded maltose-binding protein of Salmonella typhimurium. J Mol Biol 2010; 397:709-23. [PMID: 20132828 DOI: 10.1016/j.jmb.2010.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a 'carbophor,' the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalE(acarbose). Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.
Collapse
Affiliation(s)
- Ardeschir Vahedi-Faridi
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mavromatis K, Sikorski J, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Meincke L, Sims D, Chertkov O, Han C, Brettin T, Detter JC, Wahrenburg C, Rohde M, Pukall R, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IA). Stand Genomic Sci 2010; 2:9-18. [PMID: 21304673 PMCID: PMC3035248 DOI: 10.4056/sigs.591104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alicyclobacillus acidocaldarius (Darland and Brock 1971) is the type species of the larger of the two genera in the bacillal family 'Alicyclobacillaceae'. A. acidocaldarius is a free-living and non-pathogenic organism, but may also be associated with food and fruit spoilage. Due to its acidophilic nature, several enzymes from this species have since long been subjected to detailed molecular and biochemical studies. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family 'Alicyclobacillaceae'. The 3,205,686 bp long genome (chromosome and three plasmids) with its 3,153 protein-coding and 82 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
22
|
Nakagawa Y, Saburi W, Yamamoto T, Takada M, Ogawa K, Yamamoto M, Hatada Y, Nakamura N, Horikoshi K. Characterization of Two γ-Cyclodextrin-specific Enzymes from Bacillus clarkii 7364. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Yuji Hatada
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Nobuyuki Nakamura
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Koki Horikoshi
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
23
|
Wehmeier UF, Piepersberg W. Enzymology of aminoglycoside biosynthesis-deduction from gene clusters. Methods Enzymol 2009; 459:459-91. [PMID: 19362651 DOI: 10.1016/s0076-6879(09)04619-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The classical aminoglycosides are, with very few exceptions, typically actinobacterial secondary metabolites with antimicrobial activities all mediated by inhibiting translation on the 30S subunit of the bacterial ribosome. Some chemically related natural products inhibit glucosidases by mimicking oligo-alpha-1,4-glucosides. The biochemistry of the aminoglycoside biosynthetic pathways is still a developing field since none of the pathways has been analyzed to completeness as yet. In this chapter we treat the enzymology of aminoglycoside biosyntheses as far as it becomes apparent from recent investigations based on the availability of DNA sequence data of biosynthetic gene clusters for all major structural classes of these bacterial metabolites. We give a more general overview of the field, including descriptions of some key enzymes in various aminoglycoside pathways, whereas in Chapter 20 provides a detailed account of the better-studied enzymology thus far known for the neomycin and butirosin pathways.
Collapse
Affiliation(s)
- Udo F Wehmeier
- Department of Sports Medicine, Bergische University Wuppertal, Wuppertal, Germany
| | | |
Collapse
|
24
|
Nakagawa Y, Saburi W, Takada M, Hatada Y, Horikoshi K. Gene cloning and enzymatic characteristics of a novel γ-cyclodextrin-specific cyclodextrinase from alkalophilic Bacillus clarkii 7364. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2004-11. [DOI: 10.1016/j.bbapap.2008.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 08/09/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
|
25
|
Gul-Guven R, Guven K, Poli A, Nicolaus B. Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Di Lauro B, Rossi M, Moracci M. Characterization of a beta-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 2006; 10:301-10. [PMID: 16609814 DOI: 10.1007/s00792-005-0500-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 11/23/2005] [Indexed: 11/30/2022]
Abstract
In cell free extracts of the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius ATCC27009, we have identified beta-gluco- and galactosidase activities showing a specific activity of 0.1 and 12 U/mg, respectively. The two enzymatic activities are associated with different polypeptides and we show here the functional cloning, the expression in Escherichia coli and the characterisation of the beta-glucosidase (Aabeta-gly). The enzyme, which is optimally active and stable at temperatures above 65 degrees C, belongs to glycoside hydrolase family 1 (GH1) and shows wide substrate specificity on different aryl-glycosides and cello-oligosaccharides with k (cat)/K (M) for 4-nitrophenyl-beta-D-glucoside and cellobiose of 2,976 and 185 s(-1)mM(-1), respectively. Interestingly, upstream to the beta-glycosidase gene, we identified a second ORF homologous to the ATPase subunit of the bacterial ABC transporters (abc1) that is co-transcribed with the beta-glycosidase gene glyB and that could be involved in the carbohydrate import. The activity of the enzyme on cello-oligosaccharides of up to five glucose units strongly indicates that the enzyme could be involved in vivo in the degradation of glucans together with endoglucanase enzymes previously described. This, together with the co-expression of the two genes, suggests a role for the glyB-abc1 cluster in A. acidocaldarius in the degradation of cellulose and hemicelluloses.
Collapse
Affiliation(s)
- Barbara Di Lauro
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy
| | | | | |
Collapse
|
27
|
Zou Q, Yan X, Li B, Zeng X, Zhou J, Zhang J. Proteome analysis of sorbitol fermentation specific protein inVibrio cholerae by 2-DE and MS. Proteomics 2006; 6:1848-55. [PMID: 16525996 DOI: 10.1002/pmic.200401352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vibrio cholerae can be differentiated into epidemic and non-epidemic strains by sorbitol fermentation speed, but little research has been done on its mechanisms. In this study, we investigated differential protein expression of the two strains in response to sorbitol metabolism. V. cholerae strains were cultured in media with and without sorbitol, respectively. Proteins were separated by 2-DE, and those that showed different expression in the two media were identified by MALDI-TOF MS. Fifteen proteins in epidemic strains and 11 proteins in non-epidemic strains showed a different expression in sorbitol medium. Among them, 4 proteins were common to epidemic and non-epidemic strains. Gene sequence analysis showed that some mutations occurred in these proteins between the two strains. Potential functions of these proteins included sugar uptake, amino acid uptake, electron transport, sulfate and thiosulfate transport.
Collapse
Affiliation(s)
- QingHua Zou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Daus ML, Landmesser H, Schlosser A, Müller P, Herrmann A, Schneider E. ATP induces conformational changes of periplasmic loop regions of the maltose ATP-binding cassette transporter. J Biol Chem 2005; 281:3856-65. [PMID: 16352608 DOI: 10.1074/jbc.m511953200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have studied cofactor-induced conformational changes of the maltose ATP-binding cassette transporter by employing limited proteolysis in detergent solution. The transport complex consists of one copy each of the transmembrane subunits, MalF and MalG, and of two copies of the nucleotide-binding subunit, MalK. Transport activity further requires the periplasmic maltose-binding protein, MalE. Binding of ATP to the MalK subunits increased the susceptibility of two tryptic cleavage sites in the periplasmic loops P2 of MalF and P1 of MalG, respectively. Lys(262) of MalF and Arg(73) of MalG were identified as probable cleavage sites, resulting in two N-terminal peptide fragments of 29 and 8 kDa, respectively. Trapping the complex in the transition state by vanadate further stabilized the fragments. In contrast, the tryptic cleavage profile of MalK remained largely unchanged. ATP-induced conformational changes of MalF-P2 and MalG-P1 were supported by fluorescence spectroscopy of complex variants labeled with 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. The results suggest that complex variants exhibiting a binding protein-independent phenotype (MalF500) or containing a mutation that affects the "catalytic carboxylate" (MalKE159Q) reside in a transition state-like conformation. A similar conclusion was drawn for a complex containing a replacement of MalKQ140 in the signature sequence by leucine, whereas substitution of lysine for Gln(140) appears to lock the transport complex in the ground state. Together, our data provide the first evidence for conformational changes of the transmembrane subunits of an ATP-binding cassette import system upon binding of ATP.
Collapse
Affiliation(s)
- Martin L Daus
- Institut für Biologie/Bakterienphysiologie, Humboldt Universität zu Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Brunkhorst C, Schneider E. Characterization of maltose and maltotriose transport in the acarbose-producing bacterium Actinoplanes sp. Res Microbiol 2005; 156:851-7. [PMID: 15939574 DOI: 10.1016/j.resmic.2005.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/14/2005] [Accepted: 03/29/2005] [Indexed: 11/16/2022]
Abstract
Acarbose, a pseudomaltotetraose, is produced by strains of the genus Actinoplanes. The compound is an inhibitor of alpha-glucosidases and is used in the treatment of patients suffering from type II diabetes. The benefits of acarbose for the producer are not known; however, a role as carbophor has been proposed. Acarbose synthesis is induced in the presence of maltose and maltotriose. We have investigated the transport activities for these sugars in Actinoplanes sp. strain SN 223/29 grown on different carbon sources, including acarbose. Under the conditions used, Actinoplanes sp. utilized acarbose as sole source of carbon and energy, although growth ceased after 24 h, possibly due to the accumulation of a toxic degradation product in the cytosol. Maltose transport was observed in cells grown on each of the substrates tested except glucose. Maltose transport of acarbose-grown cells was inhibited by sucrose and trehalose and, to a lesser extent, by maltodextrins but not by acarbose. In contrast, in maltose/maltotriose-grown cells maltose uptake was inhibited by acarbose. Maltotriose uptake in these cells was less inhibited by maltose but was more sensitive to acarbose than in acarbose-grown cells. The Km and Vmax values of maltose uptake are in the range of those reported for binding protein-dependent sugar ATP-binding cassette (ABC) transport systems. A maltose-binding protein that does not bind acarbose was isolated from cells grown on either acarbose, glycerol or maltose. These results suggest that an acarbose-insensitive maltose/sucrose/trehalose transporter that also accepts maltodextrins operates in acarbose-grown cells while a maltodextrin transporter that accepts maltose/sucrose/trehalose and is moderately sensitive to acarbose is found in cells grown in maltose/maltotriose-containing media.
Collapse
Affiliation(s)
- Claudia Brunkhorst
- Humboldt Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, Chausseestr. 117, 10115 Berlin, Germany
| | | |
Collapse
|
30
|
Nanavati DM, Nguyen TN, Noll KM. Substrate specificities and expression patterns reflect the evolutionary divergence of maltose ABC transporters in Thermotoga maritima. J Bacteriol 2005; 187:2002-9. [PMID: 15743948 PMCID: PMC1064059 DOI: 10.1128/jb.187.6.2002-2009.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duplication of transporter genes is apparent in the genome sequence of the hyperthermophilic bacterium Thermotoga maritima. The physiological impacts of these duplications are not well understood, so we used the bacterium's two putative maltose transporters to begin a study of the evolutionary relationship between a transporter's function and the control of expression of its genes. We show that the substrate binding proteins encoded by these operons, MalE1 and MalE2, have different substrate specificities and affinities and that they are expressed under different growth conditions. MalE1 binds maltose (dissociation constant [KD], 24 +/- 1 microM), maltotriose (KD, 8 +/- 0.5 nM), and beta-(1-->4)-mannotetraose (KD, 38 +/- 1 microM). In contrast, MalE2 binds maltose (KD, 8.4 +/- 1 microM), maltotriose (KD, 11.5 +/- 1.5 microM), and trehalose (KD, 9.5 +/- 1.0 microM) confirming the findings of Wassenberg et al. (J. Mol. Biol. 295:279-288, 2000). Neither protein binds lactose. We examined the expression of these operons at both the transcriptional and translational levels and found that MalE1 is expressed in cells grown on lactose or guar gum and that MalE2 is highly expressed in starch- and trehalose-grown cells. Evidence is provided that malE1, malF1, and perhaps malG1 are cotranscribed and so constitute an operon. An open reading frame encoding a putative transcriptional regulatory protein adjacent to this operon (TM1200) is also up-regulated in response to growth on lactose. These evolutionarily related transporter operons have diverged both in function and expression to assume apparently different physiological roles.
Collapse
Affiliation(s)
- Dhaval M Nanavati
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
31
|
Silva Z, Sampaio MM, Henne A, Böhm A, Gutzat R, Boos W, da Costa MS, Santos H. The high-affinity maltose/trehalose ABC transporter in the extremely thermophilic bacterium Thermus thermophilus HB27 also recognizes sucrose and palatinose. J Bacteriol 2005; 187:1210-8. [PMID: 15687184 PMCID: PMC545625 DOI: 10.1128/jb.187.4.1210-1218.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars examined and is not implicated in a maltose/maltodextrin transport system. This work demonstrates that malEFG1 and malK1 constitute the high-affinity ABC transport system of T. thermophilus HB27 for trehalose, maltose, sucrose, and palatinose.
Collapse
Affiliation(s)
- Zélia Silva
- Centro de Neurociências e Biologia Celular, Departamento de Zoologia, Universidade de Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fleischer R, Wengner A, Scheffel F, Landmesser H, Schneider E. Identification of a gene cluster encoding an arginine ATP-binding-cassette transporter in the genome of the thermophilic Gram-positive bacterium Geobacillus stearothermophilus strain DSMZ 13240. Microbiology (Reading) 2005; 151:835-840. [PMID: 15758229 DOI: 10.1099/mic.0.27591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single gene cluster encoding components of a putative ATP-binding cassette (ABC) transporter for basic amino acids was identified in the incomplete genome sequence of the thermophilic Gram-positive bacteriumGeobacillus stearothermophilusbyblastsearches. The cluster comprises three genes, and these were amplified from chromosomal DNA ofG. stearothermophilus, ligated into plasmid vectors and expressed inEscherichia coli. The purified solute-binding protein (designated ArtJ) was demonstrated to bindl-arginine with high affinity (Kd=0·39±0·06 μM). Competition experiments revealed only partial inhibition by excessl-lysine (38 %) andl-ornithine (46 %), while no inhibition was observed withl-histidine or other amino acids tested. The membrane-associated transport complex, composed of a permease (designated ArtM) and an ATPase component (designated ArtP), was solubilized fromE. colimembranes by decanoylsucrose and purified by metal-affinity chromatography. The ArtMP complex, when incorporated into liposomes formed from a crude extract ofG. stearothermophiluslipids, displayed ATPase activity in the presence of ArtJ only. Addition ofl-arginine further stimulated the activity twofold. ATP hydrolysis was optimal at 60 °C and sensitive to the specific inhibitor vanadate. Analysis of kinetic parameters revealed a maximal velocity of ATP hydrolysis of 0·71 μmol Pimin−1(mg protein)−1and aKm (ATP)of 1·59 mM. Together, these results identify the ArtJMP complex as a high-affinity arginine ABC transporter.
Collapse
Affiliation(s)
- Rebecca Fleischer
- Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | - Antje Wengner
- Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | - Frank Scheffel
- Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | - Heidi Landmesser
- Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | - Erwin Schneider
- Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| |
Collapse
|
33
|
Brunkhorst C, Wehmeier UF, Piepersberg W, Schneider E. The acbH gene of Actinoplanes sp. encodes a solute receptor with binding activities for acarbose and longer homologs. Res Microbiol 2004; 156:322-7. [PMID: 15808935 DOI: 10.1016/j.resmic.2004.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/12/2004] [Accepted: 10/25/2004] [Indexed: 11/15/2022]
Abstract
Acarbose, a pseudomaltotetraose, is produced by strains of the genus Actinoplanes and is a potent inhibitor of alpha-glucosidases, including those from the human intestine. Therefore, it is used in the treatment of patients suffering from type 2 diabetes. The benefits of acarbose for the producer are not known; however, besides acting as an inhibitor of alpha-amylases secreted by competitors, a role as a 'carbophor' has been proposed. This would require a transport system mediating its uptake into the cytoplasm of Actinoplanes sp. A putative sugar ATP binding cassette (ABC) transport system, the genes of which are included within the biosynthetic gene cluster for acarbose, was suggested to be a possible candidate. The genes acbHFG encode a possible sugar binding protein (AcbH) and two membrane integral subunits (AcbFG). A gene coding for an ATPase component is missing. Since Actinoplanes sp. cannot yet be genetically manipulated we performed experiments to identify the substrate(s) of the putative transporter by assessing the substrate specificity of AcbH. The protein was overproduced in Escherichia coli as His10-fusion protein, purified under denaturating conditions and renatured. Refolding was verified by circular dichroism spectroscopy. Surface plasmon resonance studies revealed that AcbH binds acarbose and longer derivatives, but not maltodextrins, maltose or sucrose. Immunoblot analysis revealed the association of AcbH with the membrane fraction of Actinoplanes cells that were grown in the presence of maltose, maltodextrins or acarbose. Together, these findings suggest that the AcbHFG complex might be involved in the uptake of acarbose and are consistent with a role for acarbose as a 'carbophor'.
Collapse
Affiliation(s)
- Claudia Brunkhorst
- Humboldt Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Bertoldo C, Dock C, Antranikian G. Thermoacidophilic Microorganisms and their Novel Biocatalysts. Eng Life Sci 2004. [DOI: 10.1002/elsc.200402155] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Scheffel F, Fleischer R, Schneider E. Functional reconstitution of a maltose ATP-binding cassette transporter from the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:57-65. [PMID: 15136159 DOI: 10.1016/j.bbabio.2004.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 01/20/2004] [Indexed: 11/28/2022]
Abstract
The thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius grows at 60 degrees C and pH 2-3. The organism can utilize maltose and maltodextrins as energy source that are taken up by an ATP-binding cassette (ABC) import system. Genes encoding a maltose binding protein, MalE, and two membrane-integral subunits, MalF and MalG, are clustered on the chromosome but a malK gene translating into a cognate ATPase subunit is lacking. Here we report the cloning of malK from genomic DNA by using the msiK gene of Streptomyces lividans as a probe. Purified MalK exhibited a spontaneous ATPase activity with a Vmax of 0.13 micromol Pi/min/mg and a Km of 330 microM that was optimal at the growth temperature of the organism. Coexpression of malK, malF and malG in Escherichia coli resulted in the formation of a complex that could be coeluted from an affinity matrix after solubilization of membranes with dodecylmaltoside. Proteoliposomes prepared from the MalFGK complex and preformed phospholipid vesicles of A. acidocaldarius displayed a low intrinsic ATPase activity that was stimulated sevenfold by maltose-loaded MalE, thereby indicating coupling of ATP hydrolysis to substrate translocation. These results provide evidence for MalK being the physiological ATPase subunit of the A. acidocaldarius maltose transporter. Moreover, to our knowledge, this is the first report on the functional reconstitution of an ABC transport system from a thermophilic microorganism.
Collapse
Affiliation(s)
- Frank Scheffel
- Institut für Biologie, Humboldt Universität zu Berlin, Bakterienphysiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | |
Collapse
|
36
|
Schäfer K, Magnusson U, Scheffel F, Schiefner A, Sandgren MOJ, Diederichs K, Welte W, Hülsmann A, Schneider E, Mowbray SL. X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J Mol Biol 2004; 335:261-74. [PMID: 14659755 DOI: 10.1016/j.jmb.2003.10.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maltose-binding proteins act as primary receptors in bacterial transport and chemotaxis systems. We report here crystal structures of the thermoacidostable maltose-binding protein from Alicyclobacillus acidocaldarius, and explore its modes of binding to maltose and maltotriose. Further, comparison with the structures of related proteins from Escherichia coli (a mesophile), and two hyperthermophiles (Pyrococcus furiosus and Thermococcus litoralis) allows an investigation of the basis of thermo- and acidostability in this family of proteins.The thermoacidophilic protein has fewer charged residues than the other three structures, which is compensated by an increase in the number of polar residues. Although the content of acidic and basic residues is approximately equal, more basic residues are exposed on its surface whereas most acidic residues are buried in the interior. As a consequence, this protein has a highly positive surface charge. Fewer salt bridges are buried than in the other MBP structures, but the number exposed on its surface does not appear to be unusual. These features appear to be correlated with the acidostability of the A. acidocaldarius protein rather than its thermostability. An analysis of cavities within the proteins shows that the extremophile proteins are more closely packed than the mesophilic one. Proline content is slightly higher in the hyperthermophiles and thermoacidophiles than in mesophiles, and this amino acid is more common at the second position of beta-turns, properties that are also probably related to thermostability. Secondary structural content does not vary greatly in the different structures, and so is not a contributing factor.
Collapse
Affiliation(s)
- Karsten Schäfer
- Fachbereich Biologie, Universität Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Eckert K, Schneider E. A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3593-602. [PMID: 12919323 DOI: 10.1046/j.1432-1033.2003.03744.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 100-kDa protein with endoglucanase activity was purified from Triton X-100 extract of cells of the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius. The enzyme exhibited activity towards carboxy methyl cellulose and oat spelt xylan with pH and temperature optima of 4 and 80 degrees C, respectively. Cloning and nucleotide sequence analysis of the corresponding gene (celB) revealed an ORF encoding a preprotein of 959 amino acids which is consistent with an extracellular localization. Purified recombinant CelB and a variant lacking the C-terminal 203 amino acid residues (CelBtrunc) displayed similar enzymatic properties as the wild-type protein. Analysis of product formation suggested an endo mode of action. Remarkable stability was observed at pH values between 1 and 7 and 60% of activity were retained after incubation for 1 h at 80 degrees C. CelB displayed homology to members of glycoside hydrolase family 51, being only the second entry with activity typical of an endoglucanase but lacking activity on p-nitrophenyl-alpha-l-arabinofuranoside (pNPAraf). Highest sequence similarity was found towards the other endoglucanase F from Fibrobacter succinogenes (EGF), forming a distinct group in the phylogenetic tree of this family. Analysis of the amino acid composition of the catalytic domains demonstrated that CelB contains fewer charged amino acids than its neutrophilic counterparts, which is in line with adaptation to low pH. Wild-type and full-length recombinant CelB were soluble only in Triton X-100. In contrast, CelBtrunc was completely water soluble, suggesting a role of the C-terminal region in cell association. This C-terminal hydrophobic region displayed local sequence similarities to an alpha-amylase from the same organism.
Collapse
Affiliation(s)
- Kelvin Eckert
- Humboldt Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, Berlin, Germany
| | | |
Collapse
|
38
|
Sutcliffe IC, Harrington DJ. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2065-2077. [PMID: 12101295 DOI: 10.1099/00221287-148-7-2065] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-terminal lipidation is a major mechanism by which bacteria can tether proteins to membranes and one which is of particular importance to Gram-positive bacteria due to the absence of a retentive outer membrane. Lipidation is directed by the presence of a cysteine-containing 'lipobox' within the lipoprotein signal peptide sequence and this feature has greatly facilitated the identification of putative lipoproteins by gene sequence analysis. The properties of lipoprotein signal peptides have been described previously by the Prosite pattern PS00013. Here, a dataset of 33 experimentally verified Gram-positive bacterial lipoproteins (excluding those from Mollicutes) has been identified by an extensive literature review. The signal peptide features of these lipoproteins have been analysed to create a refined pattern, G+LPP, which is more specific for the identification of Gram-positive bacterial lipoproteins. The ability of this pattern to identify probable lipoprotein sequences is demonstrated by a search of the genome of Streptococcus pyogenes, in comparison with sequences identified using PS00013. Greater discrimination against likely false-positives was evident from the use of G+LPP compared with PS00013. These data confirm the likely abundance of lipoproteins in Gram-positive bacterial genomes, with at least 25 probable lipoproteins identified in S. pyogenes
Collapse
Affiliation(s)
- Iain C Sutcliffe
- Fleming Building, Institute of Pharmacy, Chemistry and Biomedical Sciences, University of Sunderland, Sunderland SR2 3SD, UK1
| | | |
Collapse
|