1
|
Su C, Zhou H, Wang Y, Duan X, Jiang T, Zhang C, Gao H, Kong L, Wang M, Guo C. Contrasting Effects of Atmospheric Particulate Matter Deposition on Free-Living and Particle-Associated Bacteria in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40410126 DOI: 10.1021/acs.est.4c12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Atmospheric particulate matter (PM) deposition has become an important nutrient source in marine ecosystems, increasing particulate organic carbon and resource heterogeneity. However, their effects on marine bacterial communities remain unclear. In this study, by conducting on-board microcosm experiments with anthropogenic East Asian PM in the oligotrophic South China Sea, the response of particle-associated (PA) bacteria was investigated and compared with its free-living (FL) counterparts. Results showed that PM input increased nutrient heterogeneity, shifting bacterial community composition and lifestyle. Copiotrophic PA bacteria became more abundant and contributed a disproportionately higher percentage to total bacterial production despite a decline in total bacterial abundance. FL bacteria showed increased diversity, shifting from oligotrophs to copiotrophs, while PA bacteria displayed reduced diversity and nondirectional compositional changes, suggesting their distinct assembly mechanisms in response to external nutrient inputs. Metagenomic analysis further revealed that PM drives a shift toward a copiotrophic, particle-attached lifestyle with upregulated pathways for chemotaxis, motility, and biofilm formation. Notably, PM addition also increased the relative abundance of oil-degrading taxa. These findings reveal the complexity of microbial responses to environmental perturbations and underscore the need to consider unique ecological niches and bacterial lifestyles.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongyan Zhou
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yifei Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xueping Duan
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
| | - Liangliang Kong
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Min Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Cui Guo
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Billings A, Jones KC, Pereira MG, Spurgeon DJ. Kinetics of plasticiser release and degradation in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125997. [PMID: 40049276 DOI: 10.1016/j.envpol.2025.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Despite the increasing use of emerging phthalate and non-phthalate plasticisers as replacements for restricted phthalates, few studies have investigated their rates of entry and persistence in soils. We investigated release of the emerging plasticiser diethyl hexyl terephthalate (DEHTP) from polyvinyl chloride microplastics (PVC; 4 mm diameter; 21% DEHTP w/w) in soils in a 3-month laboratory study. DEHTP was released rapidly, with 6.6-12.1 ng DEHTP released per mg PVC within <2 h, although this was a small proportion of the amount in the pellets (<0.006%). Degradation rates of 8 phthalate plasticisers and 4 non-phthalate emerging plasticisers in the soils were measured in a separate 3-month laboratory study. For 7 of the 12 plasticisers, pseudo-first order half-lives were <30 days, suggesting relatively low persistence. 5 higher molecular weight plasticisers, including the emerging trioctyl trimellitate and DEHTP, were more persistent, with half-lives >100 days. Plasticiser half-lives in soils were significantly positively correlated with logKOW. Degradation was typically slower in acidic heathland (pH 3.8; organic matter 3.7%), than in alkaline grassland (pH 7.3; OM 16%) or sandy loam agricultural (pH 5.3; OM 5%) soils. Rapid release and potential persistence of some emerging plasticisers in soils indicates that presence of these contaminants may increase in the future.
Collapse
Affiliation(s)
- Alex Billings
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
3
|
Genitsaris S, Stefanidou N, Kourkoutmani P, Michaloudi E, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Do coastal bacterioplankton communities hold the molecular key to the rapid biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) from shipping scrubber effluent? ENVIRONMENTAL RESEARCH 2025; 277:121563. [PMID: 40203979 DOI: 10.1016/j.envres.2025.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Shipping scrubber effluents, containing a cocktail of Polycyclic Aromatic Hydrocarbons (PAHs), show undisputed effects at single-species experiments while PAHs fate in the marine environment after effluent discharge is still investigated. Bacterioplankton, composed of abundant diverse taxa with xenobiotic-degrading capabilities, are the first responders to scrubber emissions and can affect PAHs impacts on marine life. This work aims to examine the fate of scrubber effluent PAHs and alkyl-PAHs in mesocosms of coastal bacterioplankton communities from a pristine (phytoplankton carbon biomass was 8.16 μg C L-1) and a eutrophic (105.35 μg C L-1) coastal site. High-throughput 16S rRNA metabarcoding revealed differential responses of the bacterioplankton linked to their initial community structure and population abundances. Taxa known for their PAHs-degrading capacity were retrieved, including the genera Roseobacter, Porticoccus, Marinomonas, Arcobacter, Lentibacter, Lacinutrix, Pseudospirillum, Glaciecola, Vibrio, Marivita, and Mycobacterium, and were found to have increased roles in shifted communities by increasing their relative abundances at least 5-fold in treatments with high scrubber effluent additions. Additionally, metagenomic analysis of shotgun sequencing, indicated an increase on the number of Clusters of Orthologous Genes (COGs) associated with pathways involved in PAHs degradation. Up to 198 more COGs involved in signal transduction were retrieved in scrubber effluent enriched mesocosms compared to controls, while 15, 86, and 136 more COGs associated with naphthalene, aromatic compound, and benzoate degradation, respectively, were detected in the pristine mesocosms after effluent additions. In both experiments, bacterioplankton responses towards xenobiotic degradation under increased PAHs and alkyl-PAHs were coupled with a drop in their concentrations, below the limit of detection by Day 3 of the experiment in the eutrophic community, and by half in Day 6 in the pristine environment's community. Our findings indicate that PAHs and alkyl-PAHs impacts can be rapidly reduced in natural systems of high bacterial activity.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
4
|
Sorn S, Matsuura N, Honda R. Metagenome-Assembled Genomes and Metatranscriptome Analysis of Perfluorooctane Sulfonate-Reducing Bacteria Enriched From Activated Sludge. Environ Microbiol 2025; 27:e70087. [PMID: 40170341 PMCID: PMC11962240 DOI: 10.1111/1462-2920.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exhibit a widespread distribution across diverse global ecosystems throughout their lifecycle, posing substantial risks to human health. The persistence of PFAS makes biodegradation a challenging yet environmentally friendly solution for their treatment. In the authors' previous study, a bacterial consortium capable of reducing perfluorooctane sulfonate (PFOS) was successfully enriched from activated sludge. This study aimed to investigate the array of genes associated with PFOS reduction via biosorption and biotransformation to elucidate the metabolic pathways. Two metagenome-assembled genomes (MAGs) based on 16S rRNA sequences that share 99.86% and 97.88% similarity with Hyphomicrobium denitrificans and Paracoccus yeei, respectively were obtained. They were found to contain several genes encoding enzymes that potentially regulate biofilm formation of biosorption and facilitate the desulfonation and defluorination processes of biotransformation. Transcriptomic analysis demonstrated the high expression levels of these genes, including alkanesulfonate monooxygenase, catechol dioxygenase, (S)-2-haloacid dehalogenase and putative cytochrome P450, suggesting their involvement in PFOS biotransformation. The expression of these genes supports the presence of candidate metabolites of PFOS biotransformation detected in the previous study. These findings emphasise the significant potential of bacterial consortia and the crucial role played by genes encoding enzymes in facilitating the remediation of PFOS contaminants.
Collapse
Affiliation(s)
- Sovannlaksmy Sorn
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
- Faculty of Agricultural and Marine SciencesKochi UniversityNankokuKochiJapan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaIshikawaJapan
| | - Ryo Honda
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
5
|
Gamaralalage D, Rodgers S, Gill A, Meredith W, Bott T, West H, Alce J, Snape C, McKechnie J. Biowaste to biochar: a techno-economic and life cycle assessment of biochar production from food-waste digestate and its agricultural field application. BIOCHAR 2025; 7:50. [PMID: 40078517 PMCID: PMC11893672 DOI: 10.1007/s42773-025-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025]
Abstract
Biochar has high potential for long-term atmospheric carbon storage in terrestrial environments, contributing to meeting the UK and global greenhouse gas emission reduction targets. This study investigates the greenhouse gas emissions and techno-economics associated with biochar produced from food waste anaerobic digestate using hydrothermal carbonisation followed by high-temperature post carbonisation. Owing to high moisture contents, digestates are challenging to valorise. However, these low-value feedstocks have steady availability with minimal competition for other applications. The study focuses on food waste digestate supply, biochar production, biochar agricultural field application, and transportation activities. Minimising digestate transport through co-locating biochar production facilities with anaerobic digestion displayed greenhouse gas mitigation costs of < £100 tCO2eq-1 (125 USD tCO2eq-1). The 88% stable carbon fraction of the biochar, which is resistant to degradation in soil, is primarily responsible for the effective removal of atmospheric greenhouse gases. This results in net emissions reductions of 1.15-1.20 tCO2eq per tonne of biochar, predominantly due to the long-term storage of durable carbon (1.7 tCO2eq per tonne of biochar). Using 50% of the UK's projected available food waste digestate by 2030 offers a sequester potential of 93 ktCO2eq p.a., requiring 28 biochar facilities at 20 kt p.a. capacity. Sensitivity analysis emphasises the influence of the gate fee charged to process digestate, highlighting its importance for economic success of the biochar production. Further studies are needed to investigate the potential technology enhancements to reduce fossil-fuel use and provide greater certainty of the co-benefits of biochar application in agricultural soil. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42773-025-00456-0.
Collapse
Affiliation(s)
- Disni Gamaralalage
- Sustainable Process Technologies Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD UK
| | - Sarah Rodgers
- Sustainable Process Technologies Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD UK
| | - Andrew Gill
- R&D Manager, Invica Industries Ltd, The University of Nottingham, Energy Technologies Building, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Will Meredith
- Faculty of Engineering, The University of Nottingham, Energy Technologies Building, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Tom Bott
- School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire, LE12 5RD UK
| | - Helen West
- School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire, LE12 5RD UK
| | - Jessica Alce
- Strategy & Development, Severn Trent Green Power, The Stables, Radford, Chipping Norton, OX7 4EB UK
| | - Colin Snape
- Faculty of Engineering, The University of Nottingham, Energy Technologies Building, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Jon McKechnie
- Sustainable Process Technologies Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
6
|
Montano L, Baldini GM, Piscopo M, Liguori G, Lombardi R, Ricciardi M, Esposito G, Pinto G, Fontanarosa C, Spinelli M, Palmieri I, Sofia D, Brogna C, Carati C, Esposito M, Gallo P, Amoresano A, Motta O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. TOXICS 2025; 13:151. [PMID: 40137477 PMCID: PMC11946043 DOI: 10.3390/toxics13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (Eco Food Fertility Project), Oliveto Citra Hospital, 84124 Salerno, Italy
| | - Giorgio Maria Baldini
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Giovanna Liguori
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Daniele Sofia
- Research Department, Sense Square Srl, 84084 Salerno, Italy;
- Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Via P. Bucci, Cubo 44/a Rende, 87036 Arcavacata, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, 20091 Bresso, Italy;
| | - Cosimo Carati
- Student of Department of Medicine Surger, University Cattolica Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy;
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| |
Collapse
|
7
|
Zhang X, Qin J. Degradation of aliphatic and aromatic hydrocarbon mixture by a Rhodococcus sp. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:12-20. [PMID: 39815428 DOI: 10.2166/wst.2024.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Rhodococcus sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined. The results showed that the degradation of phenanthrene was enhanced in the presence of hexadecane or tetradecane due to increased bioavailability and improved cell surface hydrophobicity, which facilitated better substrate uptake. Conversely, the degradation of hexadecane and tetradecane decreased in the presence of aromatic hydrocarbons, likely due to the cometabolic effect, metabolic regulation, substrate competition, and the shift in enzyme activity. Moreover, the removal of 4.4 g L-1 diesel fuel, a complex mixture of aliphatic hydrocarbons and aromatic hydrocarbons, was investigated and 63.7% of oil contents were depleted within 96 h. Therefore, strain p52 showed the potential to remove petroleum pollutants.
Collapse
Affiliation(s)
- Xing Zhang
- Shandong Huamu Environmental Technology Co., Ltd, Room 2006, Building 1, Jinyu International, No. 2309 Weixian Middle Road, Weifang 261000, China E-mail:
| | - Jie Qin
- Zhijiang High tech Zone Yaojiagang Chemical Park Service Center, Yichang, China
| |
Collapse
|
8
|
Hepditch SLJ, Ahad JME, Martel R, To TA, Gutierrez-Villagomez JM, Larocque È, Vander Meullen IJ, Headley JV, Xin Q, Langlois VS. Behavior and toxicological impact of spilled diluted bitumen and conventional heavy crude oil in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124875. [PMID: 39233269 DOI: 10.1016/j.envpol.2024.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Demand for unconventional crude oils continues to drive the production of diluted bitumen (dilbit) within Western Canada, promoting increased transport volumes across the extensive 700,000 km pipeline system of Canada and the USA. Despite this vast extent of terrestrial transport, the current understanding of the behavior and fate of spilled dilbit within shallow groundwater systems is limited. To this end, oil spill experiments with a dilbit (Cold Lake Blend) and a physicochemically similar conventional heavy crude oil (Conventional Heavy Blend) were conducted for 104 days in large soil columns (1 m height × 0.6 m diameter) engineered to model contaminant transport in the unsaturated (vadose) zone. Around two-fold greater concentrations and 6-41 % faster rates of vadose zone transport of benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic compounds (PACs) were observed in the dilbit- compared to conventional heavy crude-contaminated columns. As determined by Orbitrap mass spectrometry, the OxSx species abundances in the acid extractable organics (AEOs) fraction of column leachate from both oil types increased over time, ostensibly due to microbial degradation of petroleum. Bioaccumulation of petroleum constituents in fathead minnow (Pimephales promelas) larvae exposed to contaminated leachate was confirmed through the induction of developmental malformations lasting up to 34 days and increased abundance of cyp1a mRNA observed throughout the experiment. Toxicity was comparable between the two oils but could not be fully attributed to metals, BTEX, PACs or AEOs, implying the presence of uncharacterized teratogens capable of being transported within the vadose zone following terrestrial dilbit and conventional heavy crude oil surface spills.
Collapse
Affiliation(s)
- Scott L J Hepditch
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec, QC, H7C 2M7, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada (NRCan), Québec, QC, G1K 9A9, Canada.
| | - Richard Martel
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Tuan Anh To
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | | | - Ève Larocque
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Ian J Vander Meullen
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - John V Headley
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB, T9G 1A8, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
9
|
Elyousfi S, Ishak S, Beyrem H, Al-Hoshani N, Abd-Elkader OH, Pacioglu O, Badraoui R, Ali MAM, Hedfi A, Boufahja F, Dellali M. Experimental exposure of bivalves (Ruditapes decussatus) and meiobenthos (Metoncholaimus pristiurus) to 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) assessed by biochemical, computational modeling, and microbial tools. MARINE POLLUTION BULLETIN 2024; 209:117191. [PMID: 39486207 DOI: 10.1016/j.marpolbul.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
PBDE-47, with lipophilic properties, was found in mussels, clams, and fish where it causes developmental issues, and endocrine and immune disruptions. The current study investigated the effects of PBDE-47 (0.1, 1, and 10 μg.l-1) on the clams Ruditapes decussatus and the nematode Metoncholaimus pristiurus. This flame retardant reduced CAT and GST activities in R. decussatus after only 2 days. The AChE activity was similar after 2 days but decreased after 7 days in the digestive gland. In gills, a decrease in AChE activities was observed for both time slots. The clearance rates increased following exposure for 2 days but decreased after one week. The exposure of M. pristiurus to PBDE-47 was accompanied by an increase in CAT and GST activities and a decrease in that of AChE. The microbial descriptors supported the obtained results for this nematode. Finally, the computational analyses supported the ecotoxicity of PBDE-47 for both invertebrate species.
Collapse
Affiliation(s)
- Souhail Elyousfi
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Hamouda Beyrem
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Omar H Abd-Elkader
- Physics & Astronomy Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Department of Bioinformatics, Splaiul Independenței 296, 060031 Bucharest, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Mohamed A M Ali
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Mohamed Dellali
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia.
| |
Collapse
|
10
|
Zhao X, Cheng X, Cai X, Wang S, Li J, Dai Y, Jiang L, Luo C, Zhang G. SIP-metagenomics reveals key drivers of rhizospheric Benzo[a]pyrene bioremediation via bioaugmentation with indigenous soil microbes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124620. [PMID: 39067741 DOI: 10.1016/j.envpol.2024.124620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rhizoremediation and bioaugmentation have proven effective in promoting benzo[a]pyrene (BaP) degradation in contaminated soils. However, the mechanism underlying bioaugmented rhizospheric BaP degradation with native microbes is poorly understood. In this study, an indigenous BaP degrader (Stenotrophomonas BaP-1) isolated from petroleum-contaminated soil was introduced into ryegrass rhizosphere to investigate the relationship between indigenous degraders and rhizospheric BaP degradation. Stable isotope probing and 16S rRNA gene amplicon sequencing subsequently revealed 15 BaP degraders, 8 of which were directly associated with BaP degradation including Bradyrhizobium and Streptomyces. Bioaugmentation with strain BaP-1 significantly enhanced rhizospheric BaP degradation and shaped the microbial community structure. A correlation of BaP degraders, BaP degradation efficiency, and functional genes identified active degraders and genes encoding polycyclic aromatic hydrocarbon-ring hydroxylating dioxygenase (PAH-RHD) genes as the primary drivers of rhizospheric BaP degradation. Furthermore, strain BaP-1 was shown to not only engage in BaP metabolism but also to increase the abundance of other BaP degraders and PAH-RHD genes, resulting in enhanced rhizospheric BaP degradation. Metagenomic and correlation analyses indicated a significant positive relationship between glyoxylate and dicarboxylate metabolism and BaP degradation, suggesting a role for these pathways in rhizospheric BaP biodegradation. By identifying BaP degraders and characterizing their metabolic characteristics within intricate microbial communities, our study offers valuable insights into the mechanisms of bioaugmented rhizoremediation with indigenous bacteria for high-molecular-weight PAHs in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming, 650214, China
| | - Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
11
|
Diner RE, Allard SM, Gilbert JA. Host-associated microbes mitigate the negative impacts of aquatic pollution. mSystems 2024; 9:e0086824. [PMID: 39207151 PMCID: PMC11495061 DOI: 10.1128/msystems.00868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.
Collapse
Affiliation(s)
- Rachel E. Diner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Sarah M. Allard
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Langeloh H, Hakvåg S, Øverjordet IB, Bakke I, Sørensen L, Brakstad OG. A seawater field study of crude and fuel oil depletion in Northern Norway at two different seasons - Chemistry and bacterial communities. MARINE POLLUTION BULLETIN 2024; 207:116851. [PMID: 39216254 DOI: 10.1016/j.marpolbul.2024.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
After marine oil spills, natural processes like photooxidation and biodegradation can remove the oil from the environment. However, these processes are strongly influenced by environmental conditions. To achieve a greater understanding of how seasonal variations in temperature, light exposure and the bacterial community affect oil depletion in the marine environment, we performed two field experiments during the spring and autumn. Field systems equipped with a thin oil film of Statfjord, Grane or ULSFO were deployed in northern Norway. Depletion of the total extractable matter was faster during the spring than during the autumn. Statfjord showed faster depletion of n-alkanes during spring, while depletion of polycyclic aromatic hydrocarbons varied between the seasons based on the degree of alkyl-substitutions. ULSFO displayed the overall slowest depletion. Biodegradation of the oils was associated with high abundances of unassigned bacteria during the spring but was governed by Alcanivorax, Cycloclasticus, Oleibacter and Oleispira during the autumn.
Collapse
Affiliation(s)
- Hendrik Langeloh
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Sem Sælandsvei 6/8, 7491 Trondheim, Norway.
| | - Sigrid Hakvåg
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ida B Øverjordet
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ingrid Bakke
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Sem Sælandsvei 6/8, 7491 Trondheim, Norway.
| | - Lisbet Sørensen
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Odd G Brakstad
- SINTEF Ocean, Dept. Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| |
Collapse
|
13
|
Zabarmawi M, Kenig F. Asphalt dust influence on the distribution of polycyclic aromatic hydrocarbon in crankcase oil stains of a concrete, covered parking structure. Heliyon 2024; 10:e35881. [PMID: 39229540 PMCID: PMC11369469 DOI: 10.1016/j.heliyon.2024.e35881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Used crankcase oil is an important source of environmental polycyclic aromatic hydrocarbons (PAHs). Here, we use gas chromatography-mass spectrometry (GC-MS) to measure and compare the concentration of PAHs, including alkylated PAHs, in used oil against new and old oil stains and parking dust collected from a concrete, covered, open parking structure to understand the distribution of PAH in crankcase oil stains. PAH concentration in used oils ranges from 606 ng/mg to 1,592 ng/mg. The PAH distribution in used oil does not match that observed in parking oils stains, parking background, or parking dust. A comparison with PAH distributions in traffic related dusts extracted from the literature and dust collected from a neighboring open asphalt-paved parking suggests that covered parking dust includes substantial contributions from asphalt-paved parking dust, road dust, and/or coal tar dust. The parking dust is the most concentrated source of PAHs in the covered parking structure (PAHs up to 4,371 ng/mg), a small contribution of which can alter the distribution of PAHs in oil stains. Even with this contribution, we were able to observe a significant decrease of the ratio of low molecular weight PAHs to high molecular weight PAHs, and a significant increase in values of the phenanthrene/anthracene and fluoranthene/(fluoranthene + pyrene) ratios when oil stains age, suggesting biodegradation is an active attenuation process in covered, open parking structures.
Collapse
Affiliation(s)
- Muna Zabarmawi
- Department of Environment and Agricultural Natural Resources, King Faisal University, Hofuf, Saudi Arabia
- Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Fabien Kenig
- Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Femi-Oloye OP, Sutton RT, Gordon HD, Ain Das A, Morenikeji GO, Odorisio MK, Francestscu OD, Myers RL, Oloye FF. An Assessment of Polycyclic Aromatic Hydrocarbons Using Estimation Programs. TOXICS 2024; 12:592. [PMID: 39195694 PMCID: PMC11360689 DOI: 10.3390/toxics12080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
In the environment, the class of chemicals known as polycyclic aromatic hydrocarbons (PAHs) behave somewhat differently. This review covers situations where PAHs can be 'labile' and where they can be persistent. The in-silico prediction of toxicity and the properties of selected 29 PAHs were estimated using programs developed by the U.S. Environmental Protection Agency (EPA), such as the Estimation Programs Interface (E.P.I.) and the Toxicity Estimation Software Tool (version 5.1.2) (TEST), with online software such as SwissADME and SwissDock. TEST was used to estimate the LC50 of the fathead minnow (with a range of 14.53 mg/L for 1-indanone and 2.14 × 10-2 mg/L for cyclopenta[c,d]pyrene), the LC50 of Daphnia magna (with a range of 14.95 mg/L for 1-indanone and 7.53 × 10-2 mg/L for coronene), the IGC50 of Tetrahymena pyriformis (with a range of 66.14 mg/L for 1-indanone and 0.36 mg/L for coronene), the bioconcentration factor (8.36 for 1,2-acenaphthylenedione and 910.1 for coronene), the developmental toxicity (0.30 (-) for 1,2-acenaphthylenedione and 0.82 (+) for 4-hydroxy-9-fluorenone), and the mutagenicity (0.25 (-) for 2-methyl-9-fluorenone and 1.09 (+) for coronene). The carbon chain and molecular weight have a significant effect on the properties of PAHs. Overall, it was found that PAHs with a lower molecular weight (LMW) have a higher water solubility and LC50 value and a smaller LogKow value, whereas the opposite is true for heavier PAHs, with TEST predicting that PAHs with an MW of over 168.2 g/mol, with a few exceptions, are mutagenic. Hence, LMW PAHs have a higher potential to be in the environment but are less toxic.
Collapse
Affiliation(s)
- Oluwabunmi P. Femi-Oloye
- Toxicology Center, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ryen T. Sutton
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Heidi D. Gordon
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Ayush Ain Das
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Grace O. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Melissa K. Odorisio
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
- Department of Environmental Science, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ovidiu D. Francestscu
- Department of Environmental Science, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ryan L. Myers
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Femi F. Oloye
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| |
Collapse
|
15
|
Guan Z, Weng X, Zhang L, Feng P. Association between polycyclic aromatic hydrocarbon exposure and cognitive performance in older adults: a cross-sectional study from NHANES 2011-2014. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1348-1359. [PMID: 38954438 DOI: 10.1039/d4em00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Background: polycyclic aromatic hydrocarbons (PAHs) are classified as neurotoxins, but the relationship between exposure to PAHs and cognition in adults is unclear, and their non-linear and mixed exposure association hasn't been explored. Objective: to evaluate the non-linear and joint association between co-exposure to PAHs and multiple cognitive tests in U.S. older people. Methods: restricted cubic spline (RCS) and Bayesian kernel machine regression (BKMR) were conducted to evaluate the non-linear and mixed exposure association, based on the cross-sectional data from NHANES 2011-2014: 772 participants over 60 years old, 4 cognitive test scores, including the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution test (DSST), and 5 urinary PAH metabolites. Results: a V-shaped nonlinear relationship was found between 3-hydroxyfluorene (3-FLUO), 2-hydroxyfluorene (2-FLUO), and DRT. Negative trends between mixed PAH exposure and IRT, DRT, and DSST scores were observed. 2-FLUO contributed the most to the negative association of multiple PAHs with IRT and DRT scores and 2-hydroxynaphthalene (2-NAP) played the most important role in the decreasing relationship between mixed PAH exposure and DSST scores. Conclusion: our study suggested that PAH exposure in the U.S. elderly might be related to their poor performances in IRT, DRT and DSST. Further prospective studies are needed to validate the association.
Collapse
Affiliation(s)
- Zerong Guan
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xueqiong Weng
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ligang Zhang
- School of Medicine, Foshan University, Foshan 528225, China
| | - Peiran Feng
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| |
Collapse
|
16
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
17
|
Guo L, Ouyang X, Wang W, Qiu X, Zhao YL, Xu P, Tang H. Fine-tuning an aromatic ring-hydroxylating oxygenase to degrade high molecular weight polycyclic aromatic hydrocarbon. J Biol Chem 2024; 300:107343. [PMID: 38705395 PMCID: PMC11176777 DOI: 10.1016/j.jbc.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Zhang D, Song J, Cai M, Li Y, Wu Y. Preliminary study on the enhanced bioremediation of PAH-contaminated soil in Beijing and assessment of remediation effects based on toxicity tests. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:103. [PMID: 38436752 DOI: 10.1007/s10653-024-01913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
In this study, we focused on soil contaminated by polycyclic aromatic hydrocarbons (PAHs) at typical coking-polluted sites in Beijing, conducted research on enhanced PAH bioremediation and methods to evaluate remediation effects based on toxicity testing, and examined changes in pollutant concentrations during ozone preoxidation coupled with biodegradation in test soil samples. The toxicity of mixed PAHs in soil was directly evaluated using the Ames test, and the correlation between mixed PAH mutagenicity and benzo(a)pyrene (BaP) toxicity was investigated in an effort to establish a carcinogenic risk assessment model based on biological toxicity tests to evaluate remediation effects on PAH-contaminated soil. This study provides a theoretical and methodological foundation for evaluating the effect of bioremediation on PAH-contaminated soil at industrially contaminated sites. The results revealed that the removal rate of PAHs after 5 min of O3 preoxidation and 4 weeks of soil reaction with saponin surfactants and medium was 83.22%. The soil PAH extract obtained after remediation had a positive effect on the TA98 strain at a dose of 2000 μg·dish-1, and the carcinogenic risk based on the Ames toxicity test was 8.98 times greater than that calculated by conventional carcinogenic PAH toxicity parameters. The total carcinogenic risk of the remediated soil samples was approximately one order of magnitude less than that of the original soil samples.
Collapse
Affiliation(s)
- Dan Zhang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing, 100037, China.
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing, 100037, China.
| | - Jinmei Song
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing, 100037, China
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing, 100037, China
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Minqi Cai
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing, 100037, China
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing, 100037, China
| | - Yandan Li
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing, 100037, China
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing, 100037, China
| | - Yang Wu
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing, 100037, China
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing, 100037, China
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
- Beijing Capital Air Environmental Science & Technology Co., Ltd., Beijing, 100044, China
| |
Collapse
|
19
|
Hegazy GE, Soliman NA, Farag S, El-Helow ER, Yusef HY, Abdel-Fattah YR. Isolation and characterization of Candida tropicalis B: a promising yeast strain for biodegradation of petroleum oil in marine environments. Microb Cell Fact 2024; 23:20. [PMID: 38218907 PMCID: PMC10790260 DOI: 10.1186/s12934-023-02292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Qaitbay Sq, El-Anfoushy, Alexandria, 11865, Egypt.
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt.
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt
| | - Soha Farag
- Environmental Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research &Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt
| | - Ehab R El-Helow
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hoda Y Yusef
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt.
| |
Collapse
|
20
|
Zhang S, Zhao J, Zhu L. New insights into thermal desorption remediation of pyrene-contaminated soil based on an optimized numerical model. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132687. [PMID: 37804758 DOI: 10.1016/j.jhazmat.2023.132687] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Thermal desorption (TD) is known as an effective technique to remediate PAHs-contaminated sites. However, effectively removing PAHs using TD while saving time, and energy, and minimizing soil damage remains a challenge. In this study, we examined the combined effects of various factors on the removal efficiency of pyrene (PYR) by TD and developed an optimal numerical model based on conducting a series of soil experiments. The results showed that temperature (T) and time (t) promoted the desorption of PYR, while water (Sw) and organic matter (fom) were just the opposite. Besides, water and organic matter had a synergistic effect proportionally. It was found that adjusting the soil-water ratio (which can be controlled by organic matter) maximized the desorption rate of PYR. An ideal Sw/fom 1.56 and a minimized recommended temperature (173 °C) were proposed based on the model. Finally, the efficacy of the optimized scheme was validated in real-world site soil. These findings not only mechanistically revealed the desorption behavior of PYR under the influence of various factors, but also provided an optimized scheme for efficiently removing PAHs using TD, thereby accelerating the remediation process and reducing energy consumption. The modeling ideas and conclusions obtained may be applicable to other PAHs, guiding the effective remediation of PAHs-polluted sites.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jiating Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
21
|
Zheng X, Chen F, Zhu Y, Zhang X, Li Z, Ji J, Wang G, Guan C. Laccase as a useful assistant for maize to accelerate the phenanthrene degradation in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4848-4863. [PMID: 38105330 DOI: 10.1007/s11356-023-31515-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution has attracted much attention due to their wide distribution in soil environment and serious harm to human health. In order to establish an efficient and eco-friendly technology for remediation of PAH-contaminated soil, phytoremediation utilizing maize assisted with enzyme remediation was explored in this study. The results showed that the participation of laccase could promote the degradation of phenanthrene (PHE) from soil and significantly reduce the accumulation of PHE in maize. The degradation efficiency of PHE in soil could reach 77.19% under laccase-assisted maize remediation treatment, while the accumulation of PHE in maize roots and leaves decreased by 41.23% and 74.63%, respectively, compared to that without laccase treatment, after 24 days of maize cultivation. Moreover, it was found that laccase addition shifted the soil microbial community structure and promoted the relative abundance of some PAH degrading bacteria, such as Pseudomonas and Sphingomonas. In addition, the activities of some enzymes that were involved in PAH degradation process and soil nutrient cycle increased with the treatment of laccase enzyme. Above all, the addition of laccase could not only improve the removal efficiency of PHE in soil, but also alter the soil environment and reduce the accumulation of PHE in maize. This study provided new perspective for exploring the efficiency of the laccase-assisted maize in the remediation of contaminated soil, evaluating the way for reducing the risk of secondary pollution of plants in the phytoremediation process.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
22
|
Wang T, Chen S, Liu R, Liu D, Fang Y. Spatial distribution and source apportionment of surface soil's polycyclic aromatic hydrocarbons in the Yangtze River Delta. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:3. [PMID: 38071689 DOI: 10.1007/s10653-023-01806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Soil acts as a crucial reservoir of polycyclic aromatic hydrocarbons (PAHs) in the environment, and its PAH content serves as a significant indicator of regional PAH pollution. Monitoring PAH levels in soil is important for assessing the potential risks to human and environmental health. In this study, 53 surface soil samples were collected from the Yangtze River Delta. These samples were monitored for 16 priority PAHs. Pollution levels, compositional profiles, and source differences of soil PAHs were analyzed among different regions, urban and rural areas, and functional zones. The total PAH content (Σ16PAHs) in the surface soil of the Yangtze River Delta was 2326.01 ± 2901.53 ng/g. High-ring PAHs (4-6 rings) accounted for the predominant portion (85.50%) of total PAHs. The average pollution level of soil PAHs in Jiangsu Province (2651.92 ± 3242.87 ng/g) was significantly higher than that of Zhejiang Province (2001.44 ± 2621.71 ng/g) and Shanghai (1669.13 ± 1758.34 ng/g), and high-ring PAHs constituted a predominant portion in these three regions. There was no significant difference in the PAH content between urban and rural areas. In different functional areas, automobile stations exhibited the highest PAH levels among the functional zones analyzed, with traffic emissions identified as a major source of soil PAH in this area. The primary factors influencing the distribution of soil PAHs in the study area were the duration of urbanization exposure (r = 0.753, p < 0.01) and soil organic carbon content (r = 0.452, p < 0.01). This provides novel evidence for the cumulative build-up of PAHs during urbanization. The positive matrix factorization model was used to analyze the sources of PAHs in the surface soil of the Yangtze River Delta, revealing that biomass and coal combustion (60.19%) and traffic emissions and coal combustion (31.82%) were the primary sources of PAHs in the region.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing , 210024, China.
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, Hohai University, Nanjing, 210024, China.
- College of Oceanography, Hohai University, Nanjing, 210024, China.
| | - Shenjie Chen
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Rongze Liu
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing , 210024, China
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Dongxiang Liu
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing , 210024, China
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yining Fang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing , 210024, China
- Jiangsu Province Engineering Research Center for Marine Bio-Resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| |
Collapse
|
23
|
Shanmuganathan R, Le QH, Gavurová B, Wadaan MA, Baabbad A. Nano-composite rGO-Ag-Cu-Ni mediated photocatalytic degradation of anthracene and benzene. CHEMOSPHERE 2023; 343:140076. [PMID: 37678600 DOI: 10.1016/j.chemosphere.2023.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are omnipresent, persistent, and carcinogenic pollutants continuously released in the atmosphere due to the rapid increase in population and industrialization worldwide. Hence, there is an ultimate rise in concern about eliminating the toxic PAHs and their related aromatic hydrocarbons from the air, water, and soil environment by employing efficient removal technologies using nanoparticles as a catalyst. Here, the degradation of selective PAHs viz., anthracene and benzene using laboratory synthesized rGO-Ag-Cu-Ni nanocomposite (catalyst) was studied. Characterization studies revealed the nanocomposites exhibited surface plasma resonance at 350 - 450 nm, confirming the presence of Ag, Cu, and Ni metal ions embedded on the reduced graphene substrate. It was found that the nanocomposites synthesized were spherical, amorphous in nature, and aggregated together with measurements ranging from 423 to 477 nm. An SEM-EDX analysis of the nanocomposite demonstrated that it contained 25.13% O, 14.24% Ni, 27.79% Cu, and 32.84% Ag, which confirms the synthesis of the nanocomposite. Crystalline, sharp nanocomposites of average size 17-41 nm with an average diameter of 118.5 nm (X-ray diffraction and DLS) were observed. FTIR spectra showed that the nanocomposites had the functional groups alkanes, alkenes, alkynes, carboxylic acids, and halogen derivatives. Batch adsorption studies revealed that the maximum degradation achieved at optimum nano-composite concentration of 10 μg/mL, pH value of 5, PAHs concentration of 2 μg/mL and effective irradiation source being UV radiations in the case of both benzene and anthracene pollutants. The degradation of benzene and anthracene followed Freundlich & Langmuir isotherm with the highest R2 value of 0.9894 & 0.9885, respectively. Adsorption kinetic studies under optimum conditions revealed that the adsorption of both benzene and anthracene followed Pseudo-second order kinetics. Antimicrobial studies revealed that the synthesized nano-composite exhibited potential antimicrobial activity against Gram positive bacterium (Bacillus subtilis, Staphylococcus aureus), Gram negative bacterium (Klebsiella pneumonia, Escherichia coli) and fungal strain (Aspergillus niger) respectively. Thus, the synthesized rGO-Ag-Cu-Ni nano-composite acts as an effective antimicrobial agent as well as a PAHs degrading agent, helping to overcome antibiotics resistance and to mitigate the overgrowing PAHs pollution in the environment.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Beata Gavurová
- Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letná 1/9, 042 00, Košice-Sever, Slovak Republic
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| | - Almohannad Baabbad
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| |
Collapse
|
24
|
Kaur R, Gupta S, Tripathi V, Chauhan A, Parashar D, Shankar P, Kashyap V. Microbiome based approaches for the degradation of polycyclic aromatic hydrocarbons (PAHs): A current perception. CHEMOSPHERE 2023; 341:139951. [PMID: 37652248 DOI: 10.1016/j.chemosphere.2023.139951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Globally, polycyclic aromatic hydrocarbons (PAHs) pollution is primarily driven by their release into the air through various combustion processes, including burning fossil fuels such as coal, oil, and gas in motor vehicles, power plants, and industries, as well as burning organic matter like wood, tobacco, and food in fireplaces, cigarettes, and grills. Apart from anthropogenic pollution sources, PAHs also occur naturally in crude oil, and their potential release during oil extraction, refining processes, and combustion further contributes to contamination and pollution concerns. PAHs are resistant and persistent in the environment because of their inherent features, viz., heterocyclic aromatic ring configurations, hydrophobicity, and thermostability. A wide range of microorganisms have been found to be effective degraders of these recalcitrant contaminants. The presence of hydrocarbons as a result of numerous anthropogenic activities is one of the primary environmental concerns. PAHs are found in soil, water, and the air, making them ubiquitous in nature. The presence of PAHs in the environment creates a problem, as their presence has a detrimental effect on humans and animals. For a variety of life forms, PAH pollutants are reported to be toxic, carcinogenic, mutation-inducing, teratogenic, and immune toxicogenics. Degradation of PAHs via biological activity is an extensively used approach in which diverse microorganisms (fungal, algal, clitellate, and protozoan) and plant species and their derived composites are utilized as biocatalysts and biosurfactants. Some microbes have the ability to transform and degrade these PAHs, allowing them to be removed from the environment. The goal of this review is to provide a critical overview of the existing understanding of PAH biodegradation. It also examines current advances in diverse methodologies for PAH degradation in order to shed light on fundamental challenges and future potential.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX-77555, USA
| | - Vivek Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
25
|
Dhar K, Abinandan S, Sana T, Venkateswarlu K, Megharaj M. Anaerobic biodegradation of phenanthrene and pyrene by sulfate-reducing cultures enriched from contaminated freshwater lake sediments. ENVIRONMENTAL RESEARCH 2023; 235:116616. [PMID: 37437866 DOI: 10.1016/j.envres.2023.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Our current understanding of the susceptibility of hazardous polycyclic aromatic hydrocarbons (PAHs) to anaerobic microbial degradation is very limited. In the present study, we obtained phenanthrene- and pyrene-degrading strictly anaerobic sulfate-reducing enrichments using contaminated freshwater lake sediments as the source material. The highly enriched phenanthrene-degrading culture, MMKS23, was dominated (98%) by a sulfate-reducing bacterium belonging to the genus Desulfovibrio. While Desulfovibrio sp. was also predominant (79%) in the pyrene-degrading enrichment culture, MMKS44, an anoxygenic purple non-sulfur bacterium, Rhodopseudomonas sp., constituted a significant fraction (18%) of the total microbial community. Phenanthrene or pyrene biodegradation by the enrichment cultures was coupled with sulfate reduction, as evident from near stoichiometric consumption of sulfate and accumulation of sulfide. Also, there was almost complete inhibition of substrate degradation in the presence of an inhibitor of sulfate reduction, i.e., 20 mM MoO42-, in the culture medium. After 180 days of incubation, about 79.40 μM phenanthrene was degraded in the MMKS23 culture, resulting in the consumption of 806.80 μM sulfate and accumulation of 625.80 μM sulfide. Anaerobic pyrene biodegradation by the MMKS44 culture was relatively slow. About 22.30 μM of the substrate was degraded after 180 days resulting in the depletion of 239 μM sulfate and accumulation of 196.90 μM sulfide. Biodegradation of phenanthrene by the enrichment yielded a metabolite, phenanthrene-2-carboxylic acid, suggesting that carboxylation could be a widespread initial step of phenanthrene activation under sulfate-reducing conditions. Overall, this novel study demonstrates the ability of sulfate-reducing bacteria (SRB), dwelling in contaminated freshwater sediments to anaerobically biodegrade three-ringed phenanthrene and highly recalcitrant four-ringed pyrene. Our findings suggest that SRB could play a crucial role in the natural attenuation of PAHs in anoxic freshwater sediments.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tanmoy Sana
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
26
|
Zhao X, Li J, Zhang D, Jiang L, Wang Y, Hu B, Wang S, Dai Y, Luo C, Zhang G. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation. ENVIRONMENT INTERNATIONAL 2023; 180:108215. [PMID: 37741005 DOI: 10.1016/j.envint.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
27
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Zea mays). Molecules 2023; 28:6104. [PMID: 37630356 PMCID: PMC10459520 DOI: 10.3390/molecules28166104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1-soil G6-3B2 + Zea mays; system 2-soil G6-3B2 + biopreparation B2 + Zea mays; system 3-soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | | | | | | |
Collapse
|
28
|
Yamini V, Rajeswari VD. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its microbe-mediated remediation. CHEMOSPHERE 2023; 329:138707. [PMID: 37068614 DOI: 10.1016/j.chemosphere.2023.138707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The elimination of contaminants caused by anthropogenic activities and rapid industrialization can be accomplished using the widely used technology of bioremediation. Recent years have seen significant advancement in our understanding of the bioremediation of coupled polycyclic aromatic hydrocarbon contamination caused by microbial communities including bacteria, algae, fungi, yeast, etc. One of the newest techniques is microbial-based bioremediation because of its greater productivity, high efficiency, and non-toxic approach. Microbes are appealing candidates for bioremediation because they have amazing metabolic capacity to alter most types of organic material and can endure harsh environmental conditions. Microbes have been characterized as extremophiles that can survive in a variety of environmental circumstances, making them the treasure troves for environmental cleanup and the recovery of contaminated soil. In this study, the mechanisms underlying the bioremediation process as well as the current situation of microbial bioremediation of polycyclic aromatic hydrocarbon are briefly described.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
29
|
Kumari S, Das S. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79676-79705. [PMID: 37330441 DOI: 10.1007/s11356-023-28130-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Contamination of soil and natural water bodies driven by increased organic pollutants remains a universal concern. Naturally, organic pollutants contain carcinogenic and toxic properties threatening all known life forms. The conventional physical and chemical methods employed to remove these organic pollutants ironically produce toxic and non-ecofriendly end-products. Whereas microbial-based degradation of organic pollutants provides an edge, they are usually cost-effective and take an eco-friendly approach towards remediation. Bacterial species, including Pseudomonas, Comamonas, Burkholderia, and Xanthomonas, have the unique genetic makeup to metabolically degrade toxic pollutants, conferring their survival in toxic environments. Several catabolic genes, such as alkB, xylE, catA, and nahAc, that encode enzymes and allow bacteria to degrade organic pollutants have been identified, characterized, and even engineered for better efficacy. Aerobic and anaerobic processes are followed by bacteria to metabolize aliphatic saturated and unsaturated hydrocarbons such as alkanes, cycloalkanes, aldehydes, and ethers. Bacteria use a variety of degrading pathways, including catechol, protocatechuate, gentisate, benzoate, and biphenyl, to remove aromatic organic contaminants such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides from the environment. A better understanding of the principle, mechanisms, and genetics would be beneficial for improving the metabolic efficacy of bacteria to such ends. With a focus on comprehending the mechanisms involved in various catabolic pathways and the genetics of the biotransformation of these xenobiotic compounds, the present review offers insight into the various sources and types of known organic pollutants and their toxic effects on health and the environment.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
30
|
Jiménez-Volkerink SN, Jordán M, Singleton DR, Grifoll M, Vila J. Bacterial benz(a)anthracene catabolic networks in contaminated soils and their modulation by other co-occurring HMW-PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121624. [PMID: 37059172 DOI: 10.1016/j.envpol.2023.121624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants in a number of point source contaminated sites, where they are found embedded in complex mixtures containing different polyaromatic compounds. The application of bioremediation technologies is often constrained by unpredictable end-point concentrations enriched in recalcitrant high molecular weight (HMW)-PAHs. The aim of this study was to elucidate the microbial populations and potential interactions involved in the biodegradation of benz(a)anthracene (BaA) in PAH-contaminated soils. The combination of DNA stable isotope probing (DNA-SIP) and shotgun metagenomics of 13C-labeled DNA identified a member of the recently described genus Immundisolibacter as the key BaA-degrading population. Analysis of the corresponding metagenome assembled genome (MAG) revealed a highly conserved and unique genetic organization in this genus, including novel aromatic ring-hydroxylating dioxygenases (RHD). The influence of other HMW-PAHs on BaA degradation was ascertained in soil microcosms spiked with BaA and fluoranthene (FT), pyrene (PY) or chrysene (CHY) in binary mixtures. The co-occurrence of PAHs resulted in a significant delay in the removal of PAHs that were more resistant to biodegradation, and this delay was associated with relevant microbial interactions. Members of Immundisolibacter, associated with the biodegradation of BaA and CHY, were outcompeted by Sphingobium and Mycobacterium, triggered by the presence of FT and PY, respectively. Our findings highlight that interacting microbial populations modulate the fate of PAHs during the biodegradation of contaminant mixtures in soils.
Collapse
Affiliation(s)
- Sara N Jiménez-Volkerink
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Maria Jordán
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708-0287, USA
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Joaquim Vila
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| |
Collapse
|
31
|
Zou X, Su Q, Yi Q, Guo L, Chen D, Wang B, Li Y, Li J. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131666. [PMID: 37236106 DOI: 10.1016/j.jhazmat.2023.131666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
In industrial wastewater treatment, organic pollutants are usually removed by in-situ microorganisms and exogenous bactericides. Benzo [a] pyrene (BaP) is a typical persistent organic pollutant and difficult to be removed. In this study, a new strain of BaP degrading bacteria Acinetobacter XS-4 was obtained and the degradation rate was optimized by response surface method. The results showed that the degradation rate of BaP was 62.73% when pH= 8, substrate concentration was 10 mg/L, temperature was 25 °C, inoculation amount was 15% and culture rate was 180 r/min. Its degradation rate was better than that of the reported degrading bacteria. XS-4 is active in the degradation of BaP. BaP is degraded into phenanthrene by 3, 4-dioxygenase (α subunit and β subunit) in pathway Ⅰ and rapidly forms aldehydes, esters and alkanes. The pathway Ⅱ is realized by the action of salicylic acid hydroxylase. When sodium alginate and polyvinyl alcohol were added to the actual coking wastewater to immobilize XS-4, the degradation rate of BaP was 72.68% after 7 days, and the removal effect was better than that of single BaP wastewater (62.36%), which has the application potential. This study provides theoretical and technical support for microbial degradation of BaP in industrial wastewater.
Collapse
Affiliation(s)
- Xiaoshuang Zou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qi Su
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qianwen Yi
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ling Guo
- Environmental Testing Department of Guizhou Provincial Testing Technology Research and Application Center, Guiyang 550000, China
| | - Diyong Chen
- Environmental Testing Department of Guizhou Provincial Testing Technology Research and Application Center, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
32
|
Márquez-Villa JM, Rodríguez-Sierra JC, Amtanus Chequer N, Cob-Calan NN, García-Maldonado JQ, Cadena S, Hernández-Núñez E. Phenanthrene Degradation by Photosynthetic Bacterial Consortium Dominated by Fischerella sp. Life (Basel) 2023; 13:life13051108. [PMID: 37240753 DOI: 10.3390/life13051108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial degradation of aromatic hydrocarbons is an emerging technology, and it is well recognized for its economic methods, efficiency, and safety; however, its exploration is still scarce and greater emphasis on cyanobacteria-bacterial mutualistic interactions is needed. We evaluated and characterized the phenanthrene biodegradation capacity of consortium dominated by Fischerella sp. under holoxenic conditions with aerobic heterotrophic bacteria and their molecular identification through 16S rRNA Illumina sequencing. Results indicated that our microbial consortium can degrade up to 92% of phenanthrene in five days. Bioinformatic analyses revealed that consortium was dominated by Fischerella sp., however different members of Nostocaceae and Weeksellaceae, as well as several other bacteria, such as Chryseobacterium, and Porphyrobacter, were found to be putatively involved in the biological degradation of phenanthrene. This work contributes to a better understanding of biodegradation of phenanthrene by cyanobacteria and identify the microbial diversity related.
Collapse
Affiliation(s)
| | | | - Nayem Amtanus Chequer
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| | - Nubia Noemí Cob-Calan
- Instituto Tecnológico Superior de Calkiní en el Estado de Campeche, Calkiní 24900, Campeche, Mexico
| | | | - Santiago Cadena
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| | - Emanuel Hernández-Núñez
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| |
Collapse
|
33
|
Guarnieri G, Becatti M, Squecco R, Comeglio P, Garella R, Tamburrino L, Marchiani S, Vignozzi L, Vannelli GB, Maggi M, Morelli A. Effects of benzo[a]pyrene on the reproductive axis: Impairment of kisspeptin signaling in human gonadotropin-releasing hormone primary neurons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120766. [PMID: 36460192 DOI: 10.1016/j.envpol.2022.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 μM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | | | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
34
|
Prosser CM, Davis CW, Bragin GE, Camenzuli L. Using weight of evidence to assess degradation potential of UVCB hydrocarbon solvents. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023. [PMID: 36600450 DOI: 10.1002/ieam.4731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Hydrocarbon solvents are a diverse group of petrochemical substances that are identified as unknown or variable composition, complex reaction products, or biological materials (UVCBs) and may contain tens of thousands of individual chemical constituents. As such, it is generally not possible to analytically resolve every chemical constituent in a hydrocarbon solvent. This, along with the low water solubility and/or high vapor pressure of constituents, precludes the use of many standardized tests designed to determine biodegradation in the environment (e.g., Organization for Economic Co-operation and Development [OECD] 309). A weight of evidence approach may be needed to reduce uncertainty to an acceptable level such that a determination on the biodegradation of the substance can be drawn. Based on the OECD 2019 weight of evidence guidance, we present a framework using various lines of evidence that can be used to evaluate the biodegradation of a UVCB solvent in a weight of evidence approach. The lines of evidence include whole substance testing, data on representative constituents, quantitative structure activity relationship (QSAR) models, and biological plausibility. Using these lines of evidence, "Hydrocarbon, C11-C14, normal alkane, isoalkane, cyclic, <2% aromatics" (EC# 926-141-6) was evaluated in a case study. Data from three whole substance tests, 43 constituents (representing 152 data points), three QSAR models and evidence of microbial degradation pathways were evaluated. Based on the available data, it is concluded that the solvent for the case study is not expected to persist in the environment. This framework sets out a real-world example of how the weight of evidence can be used to evaluate hydrocarbon solvents. While focused on persistence, similar approaches can be used to evaluate other endpoints such as bioaccumulation and toxicity. Integr Environ Assess Manag 2023;00:1-11. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Craig W Davis
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Gail E Bragin
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | | |
Collapse
|
35
|
Dhar K, Sivaram AK, Panneerselvan L, Venkateswarlu K, Megharaj M. Efficient bioremediation of laboratory wastewater co-contaminated with PAHs and dimethylformamide by a methylotrophic enrichment culture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116425. [PMID: 36240642 DOI: 10.1016/j.jenvman.2022.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
A methylotrophic enrichment culture, MM34X, has been assessed for its exceptional ability in biodegradation of dimethylformamide (DMF) and bioremediation of laboratory wastewater (LWW) co-contaminated with polycyclic aromatic hydrocarbons (PAHs). The culture MM34X tolerated high concentrations of DMF and efficiently degraded 98% of 20,000 mg L-1 DMF within 120 h. LWW bioremediation was performed in stirred bottle laboratory-scale bioreactor. After 35 days of incubation, 2760.8 ± 21.1 mg L-1 DMF, 131.8 ± 9.7 mg L-1 phenanthrene, 177.3 ± 7.5 mg L-1 pyrene and 39.5 ± 2.7 mg L-1 BaP in LWW were removed. Analysis of post-bioremediation residues indicated the absence of any known toxic intermediates. The efficacy of bioremediation was further evaluated through cyto-genotoxicity assays using Allium cepa. The roots of A. cepa exposed to bioremediated LWW showed improved mitotic index, whereas original LWW completely arrested cell growth. Similarly, the alkaline comet assay indicated alleviation of genotoxicity in bioremediated LWW, as evidenced by significantly lower DNA damage in terms of tail DNA and Olive tail moment. In addition, oxidative stress assays, performed using fluorescent probes 2',7'-dichlorodihydrofluorescein diacetate, C11-BODIPY and dihydrorhodamine 123, revealed significant mitigation of oxidative stress potential in bioremediated LWW. Our findings suggest that the enrichment MM34X may prime the development of inexpensive and efficient large-scale bioremediation of LWW co-contaminated with PAHs and DMF.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
36
|
Mortazavi Mehrizi M, Yousefinejad S, Jafari S, Baghapour MA, Karimi A, Mahvi AH, Jahangiri M. Bioremediation and microbial degradation of benzo[a]pyrene in aquatic environments: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022; 102:3508-3523. [DOI: 10.1080/03067319.2020.1770743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Morteza Mortazavi Mehrizi
- Occupational Health Engineering, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jafari
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Karimi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Jahangiri
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Binding and removal of polycyclic aromatic hydrocarbons in cold smoked sausage and beef using probiotic strains. Food Res Int 2022; 161:111793. [DOI: 10.1016/j.foodres.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/09/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
|
38
|
Muñoz-García A, Arbeli Z, Boyacá-Vásquez V, Vanegas J. Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. MARINE POLLUTION BULLETIN 2022; 184:114204. [PMID: 36219973 DOI: 10.1016/j.marpolbul.2022.114204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Mangroves are often exposed to heavy metals that accumulate in the food chain, generate toxicity to mangrove plants and affect microbial diversity. This study determined the abundance of genes associated with resistance and tolerance to heavy metals in the rhizosphere microbiome of Avicennia germinans from a semi-arid mangrove of La Guajira-Colombia by metagenomics and genomics approach. Twenty-eight genes associated with tolerance and 49 genes related to resistance to heavy metals were detected. Genes associated with tolerance and resistance to Cu, especially cusA and copA, were the most abundant. The highest number of genes for tolerance and resistance were for Zn and Co, respectively. The isolate Vibrio fluvialis showed the ability to tolerate Cu, Ni, Zn, and Cd. This work used a complementary approach of metagenomics and genomics to characterize the potential of mangrove microorganisms to tolerate and resist heavy metals and the influence of salinity on their abundance.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Pontificia Universidad Javeriana, Bogotá, Colombia; Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia
| | - Ziv Arbeli
- Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia.
| |
Collapse
|
39
|
Mackiewicz-Walec E, Krzebietke SJ, Sienkiewicz S. The Influence of Crops on the Content of Polycyclic Aromatic Hydrocarbons in Soil Fertilized with Manure and Mineral Fertilizers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013627. [PMID: 36294205 PMCID: PMC9602616 DOI: 10.3390/ijerph192013627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 05/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are mainly accumulated in soil. Plants secrete enzymes that transform or biodegrade PAHs in soil. Some plant species are more effective in stimulating the biodegradation of these pollutants than other species. This study was undertaken to evaluate the influence of crop rotation on PAH concentrations in soil. Four crops were grown in rotation: sugar beets, spring barley, maize, and spring wheat. Soil samples for the study were obtained from a long-term field experiment established in 1986 in Bałcyny, Poland. The concentrations of PAHs were analyzed in soil samples gathered over a period of 12 years (1998-2009). An attempt was made to evaluate the effect of crop rotation (sugar beets, spring barley, maize, and spring wheat) on PAH concentrations in soil. The content of PAHs in soil samples was measured by gas chromatography with flame ionization detection. Data were processed statistically by repeated measures ANOVA. The concentrations of ∑16 PAHs were lowest in soil after sugar beet cultivation, and highest in soil after maize cultivation. It can be concluded that maize was the plant with the greatest adverse effect on the content of heavy PAH in the soil, a completely different effect can be attributed to spring wheat, which has always been shown to reduce the content of heavy PAH in the soil. Weather conditions affected PAHs levels in soil, and PAH content was highest in soil samples collected in a year with the driest growing season. This arrangement suggests a greater influence of weather conditions than of the cultivated plant.
Collapse
Affiliation(s)
- Ewa Mackiewicz-Walec
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (E.M.-W.); (S.J.K.)
| | - Sławomir Józef Krzebietke
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (E.M.-W.); (S.J.K.)
| | - Stanisław Sienkiewicz
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
40
|
Zhang G, Lan T, Yang G, Li J, Zhang K. Contamination, spatial distribution, and source contribution of persistent organic pollutants in the soil of Guiyang city, China: a case study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3265-3278. [PMID: 34515896 DOI: 10.1007/s10653-021-01089-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The contamination of persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and polycyclic aromatic hydrocarbon (PAH), is the most studied environmental issue. In 2020, a total of sixty soil samples collected from ten locations in Guiyang were analyzed to assess the presence of four DDTs and HCHs and sixteen PAHs. The concentrations of total DDTs, total HCHs and Σ16PAHs in the soil were between 0.26 and 12.76, 0.23 and 51.80 μg/kg, and 10.02 and 1708.86 μg/kg, respectively. The mean and median concentrations of total DDTs, total HCHs and Σ16PAHs in the soil were 1.04 and 0.26 μg/kg, 4.32 and 0.23 μg/kg, 139.14 and 98.98 μg/kg, respectively. p,p'-DDT, p,p'-DDD and γ-HCH the dominant organochloride pollutants in the soil, while 4-ring PAHs were the dominant PAHs, occupying 41.1-53.6% of the total PAHs in the soil. The highest levels of PAHs in the soil were observed in areas of Guiyang with relatively larger population densities and more developed heave industries. Various diagnostic tools were used to identify the potential sources of the POPs in the soil. The data indicated that DDTs and HCHs were from past and recent common inputs and that mixtures of several combustion activities (biomass, coal and petroleum combustion, diesel, gasoline, and vehicular emissions) were the major sources of PAHs in the Guiyang soil. The results provide information for the assessment of the extent of POP pollution in the Guiyang soil and can help authorities establish environmental protection regulations and soil remediation techniques.
Collapse
Affiliation(s)
- Guanglong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Tingting Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Guangqian Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Jianmin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China
| | - Kankan Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
41
|
Rejiniemon TS, R L, Alodaini HA, Hatamleh AA, Sathya R, Kuppusamy P, Al-Dosary MA, Kalaiyarasi M. Biodegradation of naphthalene by biocatalysts isolated from the contaminated environment under optimal conditions. CHEMOSPHERE 2022; 305:135274. [PMID: 35690172 DOI: 10.1016/j.chemosphere.2022.135274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pollution occurs in freshwater and marine environment by anthropogenic activities. Moreover, analysis of the PAHs-degradation by the indigenous bacterial strains is limited, compared with other degraders. In this study, naphthalene (NAP) biodegrading bacteria were screened by enrichment culture method. Three bacterial strains were obtained for NAP degradation and identified as Bacillus cereus CK1, Pseudomonas aeruginosa KD4 and Enterobacter aerogenes SR6. The amount of hydrogen, carbon, sulphur and nitrogen of wastewater were analyzed. Total bacterial count increased at increasing incubation time (6-60 days) and moderately decreased at higher NAP concentrations. The bacterial population increased after 48 days at 250 ppm NAP (519 ± 15.3 MPM/mL) concentration and this level increased at 500 ppm NAP concentration (541 ± 12.5 MPM/mL). NAP was degraded by bacterial consortium within 36 h-99% at 30 °C. PAHs degrading bacteria were grown optimally at 4% inoculum concentrations. Bacterial consortium was able to degrade 98% NAP at pH 7.0 after 36 h incubation and degradation potential was improved (100%) after 34 h (pH 8.0). Also at pH 9.0, 100% biodegradation was registered after 36 h incubation. When the agitation speed enhanced from 50 ppm to 150 ppm, increased bacteria growth and increased NAP degradation within 42 h incubation. Among the nutrient sources, beef extract, peptone and glucose supplemented medium supported complete degradation of PAHs within 30 h, whereas peptone supported 94.3% degradation at this time. Glucose supplemented medium showed only 2.8% NAP degradation after 6 h incubation and reached maximum (100%) within 42 h incubation. Bacterial consortium can be used to reduce NAP under optimal process conditions and this method can be used for the removal of various hydrocarbon-compounds.
Collapse
Affiliation(s)
- T S Rejiniemon
- Department of Botany and Biotechnology, AJ College of Science and Technology, Thonnakal, Trivandrum, India
| | - Lekshmi R
- Department of Botany and Biotechnology, Milad-E-Sherif Memorial (MSM) College, Kayamkulam, Kerala, India
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Kalaiyarasi
- Vyasa Arts and Science College for Women, Tirunelveli, Tamilnadu, India.
| |
Collapse
|
42
|
Guergouri I, Guergouri M, Khouni S, Benhizia Y. Identification of cultivable bacterial strains producing biosurfactants/bioemulsifiers isolated from an Algerian oil refinery. Arch Microbiol 2022; 204:649. [PMID: 36171503 DOI: 10.1007/s00203-022-03265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
Algerian petrochemical industrial areas are usually running spills and leakages of hydrocarbons, which constitutes a major source of toxic compounds in soil such as aromatic hydrocarbons. In this paper, samples of crude oil-polluted soil were collected from Skikda's oil refinery and were subjected to mono and polyaromatic hydrocarbons threshold assessment. Soil physicochemical parameters were determined for each sample to examine their response to pollution. Amid 34 isolated bacteria, eleven strains were selected as best Biosurfactants (Bs)/Bioemulsifiers (Be) producers and were assigned to Firmicutes and Proteobacteria phyla based on molecular identification. Phylogenetic analysis of partial 16S rDNA gene sequences allowed the construction of evolutionary trees by means of the maximum likelihood method. Accordingly, strains were similar to Bacillus spp., Priesta spp., Pseudomonas spp., Enterobacter spp. and Kosakonia spp. with more than 95% similarity. These strains could be qualified candidates for an efficient bioremediation process of severally polluted soils.
Collapse
Affiliation(s)
- Ibtissem Guergouri
- Laboratory of Molecular and Cellular Biology, Department of Microbiology, Faculty of Nature and Life Sciences, Mentouri Brothers Constantine 1 University, Constantine, Algeria.
| | - Mounia Guergouri
- Laboratory of Materials Chemistry, Faculty of Exact Sciences, Department of Chemistry, Mentouri Brothers Constantine 1 University, Constantine, Algeria
| | - Sabra Khouni
- Laboratory of Molecular and Cellular Biology, Department of Microbiology, Faculty of Nature and Life Sciences, Mentouri Brothers Constantine 1 University, Constantine, Algeria
| | - Yacine Benhizia
- Laboratory of Molecular and Cellular Biology, Department of Microbiology, Faculty of Nature and Life Sciences, Mentouri Brothers Constantine 1 University, Constantine, Algeria
| |
Collapse
|
43
|
The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α
3
β
3
-Type Oxygenase Component of Rieske Non-Heme Iron Oxygenases Is the Rieske-Type Ferredoxin-Binding Site. Appl Environ Microbiol 2022; 88:e0083522. [PMID: 35862661 PMCID: PMC9361823 DOI: 10.1128/aem.00835-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3β3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the β-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3β3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3β3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3β3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3β3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3β3 quaternary structures.
Collapse
|
44
|
Chai G, Wang D, Shan J, Jiang C, Yang Z, Liu E, Meng H, Wang H, Wang Z, Qin L, Xi J, Ma Y, Li H, Qian Y, Li J, Lin Y. Accumulation of high-molecular-weight polycyclic aromatic hydrocarbon impacted the performance and microbial ecology of bioretention systems. CHEMOSPHERE 2022; 298:134314. [PMID: 35292274 DOI: 10.1016/j.chemosphere.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Bioretention has been considered as an effective management practice for urban stormwater in the removal of pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the accumulation of high-molecular-weight (HMW) PAHs in bioretention systems and their potential impact on the pollutants removal performance and microbial ecology are still not fully understood. In this study, comparisons of treatment effectiveness, enzyme activity and microbial community in bioretention systems with different types of media amendments were carried out at different spiking levels of pyrene (PYR). The results showed that the removal efficiencies of chemical oxygen demand (COD) and total nitrogen in the bioretention systems were negatively impacted by the PYR levels. The relative activities of soil dehydrogenase and urease were increasingly inhibited by the elevated PYR level, indicating the declining microbial activity regarding organic matter decomposition. The spiking of PYR negatively affected microbial diversity, and distinct time- and influent-dependent changes in microbial communities were observed. The relative abundance of PAH-degrading microorganisms increased in PYR-spiked systems, while the abundance of nitrifiers decreased. The addition of media amendments was beneficial for the enrichment of microorganisms that are more resistant to PYR-related stress, therefore elevating the COD concentration removal rate by ∼50%. This study gives new insight into the multifaceted impacts of HMW PAH accumulation on microbial fingerprinting and enzyme activities, which may provide guidance on better stormwater management practices via bioretention in terms of improved system longevity and performance.
Collapse
Affiliation(s)
- Guodong Chai
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Dongqi Wang
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Jiaqi Shan
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhangjie Yang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Enyu Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayao Xi
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuenan Ma
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Huaien Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yishi Qian
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Jiake Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
45
|
Emulating Deep-Sea Bioremediation: Oil Plume Degradation by Undisturbed Deep-Sea Microbial Communities Using a High-Pressure Sampling and Experimentation System. ENERGIES 2022. [DOI: 10.3390/en15134525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydrocarbon biodegradation rates in the deep-sea have been largely determined under atmospheric pressure, which may lead to non-representative results. In this work, we aim to study the response of deep-sea microbial communities of the Eastern Mediterranean Sea (EMS) to oil contamination at in situ environmental conditions and provide representative biodegradation rates. Seawater from a 600 to 1000 m depth was collected using a high-pressure (HP) sampling device equipped with a unidirectional check-valve, without depressurization upon retrieval. The sample was then passed into a HP-reactor via a piston pump without pressure disruption and used for a time-series oil biodegradation experiment at plume concentrations, with and without dispersant application, at 10 MPa and 14 °C. The experimental results demonstrated a high capacity of indigenous microbial communities in the deep EMS for alkane degradation regardless of dispersant application (>70%), while PAHs were highly degraded when oil was dispersed (>90%) and presented very low half-lives (19.4 to 2.2 days), compared to published data. To our knowledge, this is the first emulation study of deep-sea bioremediation using undisturbed deep-sea microbial communities.
Collapse
|
46
|
Luo C, Hu X, Bao M, Sun X, Li F, Li Y, Liu W, Yang Y. Efficient biodegradation of phenanthrene using Pseudomonas stutzeri LSH-PAH1 with the addition of sophorolipids: Alleviation of biotoxicity and cometabolism studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119011. [PMID: 35182655 DOI: 10.1016/j.envpol.2022.119011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) is widely distributed, and it can cause genotoxicity in humans by interacting with enzymes in the body. A current challenge for PHE bioremediation is the inhibitory effect of biotoxic intermediates on bacterial growth. Notably, the aerobic biotransformation processes for PHE in the presence of sophorolipids have been poorly studied. Here, a PHE-degrading strain was isolated from sediments and identified as Pseudomonas stutzeri and named LSH-PAH1. It was observed that 1-naphthol (a biotoxic substance that can inhibit strain growth) was produced during the PHE metabolism process of LSH-PAH1. The biodegradation ratio increased from 21.4% to 91.7% within 48 h after the addition of sophorolipids. Unexpectedly, this addition accelerated the metabolic process for 1-naphthol rather than causing its accumulation. The cometabolism of 1-naphthol and sophorolipids alleviated the biotoxic effects for the strain, which was verified by gene expression analysis. We identified a new PHE-degrading strain and provided a mechanism for PHE biodegradation using LSH-PAH1 with the addition of sophorolipids, which provides a reference for practical applications of the bioremediation of PHE and study of the cometabolism of biotoxic intermediates.
Collapse
Affiliation(s)
- Chengyi Luo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China.
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Wenxiu Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, PR China
| | - Yan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
47
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Jiang Q, Lu W, Zhang L, Jin Y, Wang Y, Chen J, Ye Z, Xiao M. Promotion mechanism of self-transmissible degradative plasmid transfer in maize rhizosphere and its application in naphthalene degradation in soil. J Environ Sci (China) 2022; 115:240-252. [PMID: 34969451 DOI: 10.1016/j.jes.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Rhizospheres can promote self-transmissible plasmid transfer, however, the corresponding mechanism has not received much attention. Plant-microbe remediation is an effective way to promote pollutant biodegradation; however, some pollutants, such as naphthalene, are harmful to plants and result in inefficient plant-microbe remediation. In this study, transfer of a TOL-like plasmid, a self-transmissible plasmid loaded with genetic determinants for pollutant degradation, among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate (ARE). The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities, such as xylE mRNA expression levels and catechol 2,3-dioxygenase (C23O) activities of bacteria, remained high in rhizosphere soils, when compared with bulk soils. The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations, whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations. All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer, and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activity stimulated by root exudates and ARE. Furthermore, ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil. Thus, the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation. These findings suggest that ARE could be an effectively alternative for plant-microbe remediation of pollutants in environments where plants cannot survive.
Collapse
Affiliation(s)
- Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Lei Zhang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yeqing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Chen
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ziyi Ye
- Shanghai Landscape Architecture Construction Co., Ltd., Shanghai 200235, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China.
| |
Collapse
|
49
|
Alfaify AM, Mir MA, Alrumman SA. Klebsiella oxytoca: an efficient pyrene-degrading bacterial strain isolated from petroleum-contaminated soil. Arch Microbiol 2022; 204:248. [PMID: 35397012 DOI: 10.1007/s00203-022-02850-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the hazardous xenobiotic agents of oil production. One of the methods to eliminate hazardous compounds is bioremediation, which is the most efficient and cost-effective method to eliminate the harmful byproducts of crude petroleum processing. In this study, five pure bacterial isolates were isolated from petroleum-contaminated soil, four of which showed a robust growth on the PAH pyrene, as a sole carbon source. Various methods viz mass spectroscopy, biochemical assays, and 16S RNA sequencing employed to identify the isolates ascertained the consistent identification of Klebsiella oxytoca by all three methods. Scanning electron microscopy and Gram staining further demonstrated the characterization of the K. oxytoca. High-performance liquid chromatography of the culture supernatant of K. oxytoca grown in pyrene containing media showed that the cells started utilizing pyrene from the 6th day onwards and by the 12th day of growth, 70% of the pyrene was completely degraded. A genome search for the genes predicted to be involved in pyrene degradation using Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their presence in the genome of K. oxytoca. These results suggest that K. oxytoca would be a suitable candidate for removing soil aromatic hydrocarbons.
Collapse
Affiliation(s)
- Abdulkhaleg M Alfaify
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mushtaq Ahmad Mir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P. O. Box 3665, Abha, 61421, Saudi Arabia.
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
50
|
Isolation and Characterization of Three New Crude Oil Degrading Yeast Strains, Candida parapsilosis SK1, Rhodotorula mucilaginosa SK2 and SK3. SUSTAINABILITY 2022. [DOI: 10.3390/su14063465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioremediation using yeasts is an alternative way to minimize the effects of oil spillage on soil. This paper aims to establish a bioremediation protocol involving the optimization of physicochemical parameters. In this regard, three new yeast strains, SK1, SK2 and SK3, were isolated from hydrocarbon-contaminated samples from the Fez-Meknes region, Morocco. These isolates were identified as new species of Candida parapsilosis (SK1) and Rhodotorula mucilaginosa (SK2 and SK3), respectively, based on the similarity of their ITS region. The kinetic analysis of the process of degradation of petroleum oils are highlighted. These analyses were based on the degradation kinetics, and biomass formation using gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. The strains were able to degrade 68% of the total petroleum hydrocarbon in 21 days, as the sole carbon source. The addition of glucose increased the rate at which crude oil was consumed by the isolates. Our results suggest that inoculants based on Candida parapsilosis (SK1) and Rhodotorula mucilaginosa (SK2 and SK3) cells have potential application in the biodegradation of crude oil and possibly in the degradation of other related aromatic compounds.
Collapse
|