1
|
McGregor AK, Wolthers KR. HutZ from Aliivibrio fischeri Inhibits HutW-Mediated Anaerobilin Formation by Sequestering Heme. Biochemistry 2024; 63:3357-3368. [PMID: 39642050 DOI: 10.1021/acs.biochem.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Anaerobilin synthase catalyzes the decyclization of the heme protoporphyrin ring, an O2-independent reaction that liberates iron and produces the linear tetrapyrrole, anaerobilin. The marine bacterium Aliivibrio fischeri, the enteric pathogen Escherichia coli O157:H7, and the opportunistic oral pathogen Fusobacterium nucleatum encode anaerobilin synthase as part of their heme uptake/utilization operons, designated chu (E. coli O157:H7), hmu (F. nucleatum), and hut (A. fischeri). F. nucleatum and E. coli O157:H7 contain accessory proteins (ChuS, ChuY, and HmuF) encoded in their respective operons that mitigate against the cytotoxicity of labile heme and anaerobilin by functioning in heme trafficking and anaerobilin reduction. However, the hut operon of A. fischeri and other members of the Vibrionaceae family including the enteric pathogen Vibrio cholerae do not contain homologues to these accessory proteins, raising questions as to how members of this family mitigate against anaerobilin and heme toxicity. Herein, we show that HutW (anaerobilin synthase) from A. fischeri produces anaerobilin, but that HutX and HutZ, encoded downstream of HutW, do not catalyze anaerobilin reduction in the presence of excess NAD(P)H, FAD, and FMN. However, we show that HutZ prevents labile heme and anaerobilin cytotoxicity by binding tightly to heme, sequestering it from HutW, and preventing anaerobilin formation. Thus, A. fischeri is seemingly unable to extract iron from heme using the hutWXZ gene products. Our results further suggest that the structurally distinct chu, hmu, and hut operons have functionally converged to protect the cell from anaerobilin accumulation and heme cytotoxicity.
Collapse
Affiliation(s)
- Alexandra K McGregor
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
2
|
Abstract
The ability to acquire iron from the environment is often an important virulence factor for pathogenic bacteria and Vibrios are no exception to this. Vibrios are reported mainly from marine habitats and most of the species are pathogenic. Among those, the pathogenic vibrios eg. V cholerae, V. parahaemolyticus, V. vulnificus causes foodborne illnesses. Vibrios are capable of producing all different classes of siderophores like hydroxamate (aerobactin), catecholate (vibriobactin, fluvibactin), carboxylate (vibrioferrin), and amphiphilic (amphibactin). Every different species of vibrios are capable of utilizing some endogenous or xenosiderophores. Being Gram-negative bacteria, Vibrios import iron siderophore via TonB dependent transport system and unlike other Gamma proteobacteria these usually possess two or even three partially redundant TonB systems for iron siderophore transport. Other than selected few iron siderophores, most pathogenic Vibrios are known to be able to utilize heme as the sole iron source, while some species are capable of importing free iron from the environment. As per the present knowledge, the spectrum of iron compound transport and utilization in Vibrios is better understood than the siderophore biosynthetic capability of individual species.
Collapse
|
3
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
4
|
Byun H, Jung IJ, Chen J, Larios Valencia J, Zhu J. Siderophore piracy enhances Vibrio cholerae environmental survival and pathogenesis. MICROBIOLOGY-SGM 2020; 166:1038-1046. [PMID: 33074088 DOI: 10.1099/mic.0.000975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vibrio cholerae, the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit V. cholerae in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of V. cholerae with a number of individual siderophore-producing microbes significantly promoted V. cholerae growth in vitro. We further show that in the host environment with low iron, V. cholerae colonizes better in adult mice in the presence of the siderophore-producing commensal Escherichia coli. Taken together, our results suggest that in aquatic reservoirs or during infection, V. cholerae may overcome environmental and host iron restriction by hijacking siderophores from other microbes.
Collapse
Affiliation(s)
- Hyuntae Byun
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - I-Ji Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessie Larios Valencia
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Dippel AB, Anderson WA, Park JH, Yildiz FH, Hammond MC. Development of Ratiometric Bioluminescent Sensors for in Vivo Detection of Bacterial Signaling. ACS Chem Biol 2020; 15:904-914. [PMID: 32186367 DOI: 10.1021/acschembio.9b00800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Second messenger signaling networks allow cells to sense and adapt to changing environmental conditions. In bacteria, the nearly ubiquitous second messenger molecule cyclic di-GMP coordinates diverse processes such as motility, biofilm formation, and virulence. In bacterial pathogens, these signaling networks allow the bacteria to survive changing environmental conditions that are experienced during infection of a mammalian host. While studies have examined the effects of cyclic di-GMP levels on virulence in these pathogens, it has not been possible to visualize cyclic di-GMP levels in real time during the stages of host infection. Toward this goal, we generate the first ratiometric, chemiluminescent biosensor scaffold that selectively responds to c-di-GMP. By engineering the biosensor scaffold, a suite of Venus-YcgR-NLuc (VYN) biosensors is generated that provide extremely high sensitivity (KD < 300 pM) and large changes in the bioluminescence resonance energy transfer (BRET) signal (up to 109%). As a proof-of-concept that VYN biosensors can image cyclic di-GMP in tissues, we show that the VYN biosensors function in the context of a tissue phantom model, with only ∼103-104 biosensor-expressing E. coli cells required for the measurement. Furthermore, we utilize the biosensor in vitro to assess changes in cyclic di-GMP in V. cholerae grown with different inputs found in the host environment. The VYN sensors developed here can serve as robust in vitro diagnostic tools for high throughput screening, as well as genetically encodable tools for monitoring the dynamics of c-di-GMP in live cells, and lay the groundwork for live cell imaging of c-di-GMP dynamics in bacteria within tissues and other complex environments.
Collapse
Affiliation(s)
- Andrew B. Dippel
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Wyatt A. Anderson
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Ming C. Hammond
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Pawar S, Yao X, Lu CD. Spermine and oxacillin stress response on the cell wall synthesis and the global gene expression analysis in Methicillin-resistance Staphylococcus aureus. Genes Genomics 2018; 41:43-59. [PMID: 30229508 DOI: 10.1007/s13258-018-0735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly emerging bacteria causing infection, which has developed resistance to most of the beta-lactam antibiotics because of newly acquired low-affinity penicillin-binding protein (PBP2a), which can continue to build the cell wall when beta-lactams block other PBPs. Exogenous spermine exerts a dose-dependent inhibition effect on the growth of Escherichia coli, Salmonella enterica serovar, and S. aureus. Selection of an MRSA Mu50 derivative which harbors mutation on PBP2 gene (named as MuM) showing spermine resistance and which confers a complete abolishment of spermine-beta-lactam synergy was identified. To further investigate the gene expression changes, a transcriptome profiling of MuM against Mu50 (wild-type) without any treatment, MuM and Mu50 in response to high dose spermine and Mu50 in response to spermine-beta-lactam synergy at 15, 30 and 60 min time points was performed. Functional annotation was further performed to delineate the metabolic pathways associated with the significant genes. A significant down-regulation in the iron regulatory system, potassium channel uptake and polyamine transport system with an up-regulation in general stress response sigB dependent operon in MuM strain at 15, 30 and 60 min time points with spermine treatment compared to Mu50 strain was observed. Analysis of spermine-dependent synergy with beta-lactams on cell wall synthesis revealed that it significantly reduces the degree of cross-linkage on cell wall with no change in trypsin digestion pattern of purified PBPs and without affecting PBPs expression or PBPs acylation by Bocillin. A strong relation between PBP2 protein and general stress sigB response, iron, potassium and polyamine transport systems was observed. SigB regulon should be activated on stress, which was not seen in some of our previous studies where it was down-regulated in wild-type Mu50 strain with spermine stress. Here, an intriguing finding is made where there seems to be a correction of this abnormal response of no SigB induction to a significant induction by PBP2 mutation. In MuM strain, a significant down-regulation of KdpABC operon genes at 15, 30 and 60 min time points on spermine stress is seen, which seems to be absent without spermine treatment. Since KCL has been found to protect the cell against spermine stress in wild-type strain by induction of KdpABC operon, it fails to do so in MuM strain underlying the importance of PBP2 protein in spermine stress. Analysis of spermine-dependent synergy with beta-lactams on cell wall synthesis revealed that it significantly reduces the degree of cross-linkage on cell wall with no change in trypsin digestion patterns of purified PBPs and without affecting PBPs expression or PBPs acylation by Bocillin. Furthermore, spermine does not help in enhancing the binding of beta-lactams to PBPs and binding of spermine to PBPs does not cause conformational changes to PBPs, as tested with trypsin digestion patterns. Future studies on the molecular mechanism of spermine interactions with these systems hold great potential for the development of new therapeutics for MRSA infections.
Collapse
Affiliation(s)
- Shrikant Pawar
- Department of Computer Science, Georgia State University, 33 Gilmer Street SE, Atlanta, GA, 30303, USA.,Department of Biology, Georgia State University, 33 Gilmer Street SE, Atlanta, GA, 30303, USA
| | - Xiangyu Yao
- National Institutes of Health, 9000 Center Dr, Bethesda, MD, 20892, USA
| | - Chung-Dar Lu
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts, Weed Hall 320, Lowell, MA, 01854-5125, USA.
| |
Collapse
|
7
|
Arunima A, Yelamanchi SD, Padhi C, Jaiswal S, Ryan D, Gupta B, Sathe G, Advani J, Gowda H, Prasad TSK, Suar M. "Omics" of Food-Borne Gastroenteritis: Global Proteomic and Mutagenic Analysis of Salmonella enterica Serovar Enteritidis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:571-583. [PMID: 29049011 DOI: 10.1089/omi.2017.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.
Collapse
Affiliation(s)
| | - Soujanya D Yelamanchi
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | | | - Daniel Ryan
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Bhawna Gupta
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gajanan Sathe
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - T S Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Mrutyunjay Suar
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| |
Collapse
|
8
|
Kim HY, Go J, Lee KM, Oh YT, Yoon SS. Guanosine tetra- and pentaphosphate increase antibiotic tolerance by reducing reactive oxygen species production in Vibrio cholerae. J Biol Chem 2018; 293:5679-5694. [PMID: 29475943 PMCID: PMC5900777 DOI: 10.1074/jbc.ra117.000383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.
Collapse
Affiliation(s)
- Hwa Young Kim
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Junhyeok Go
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Kang-Mu Lee
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Young Taek Oh
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu 37242, Korea, To whom correspondence may be addressed:
Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu-si 37242, Korea. Tel.:
82-54-530-0932; Fax:
82-54-530-0949; E-mail:
| | - Sang Sun Yoon
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and , To whom correspondence may be addressed:
Dept. of Microbiology and Immunology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu Seoul 120-752, Korea. Tel.:
82-2-2228-1824; Fax:
82-2-392-7088; E-mail:
| |
Collapse
|
9
|
Thode SK, Rojek E, Kozlowski M, Ahmad R, Haugen P. Distribution of siderophore gene systems on a Vibrionaceae phylogeny: Database searches, phylogenetic analyses and evolutionary perspectives. PLoS One 2018; 13:e0191860. [PMID: 29444108 PMCID: PMC5812596 DOI: 10.1371/journal.pone.0191860] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/13/2018] [Indexed: 11/19/2022] Open
Abstract
Siderophores are small molecules synthesized and secreted by bacteria and fungi to scavenge iron. Extracellular ferri-siderohores are recognized by cognate receptors on the cell surface for transport over membranes. Several siderophore systems from Vibrionaceae representatives are known and well understood, e.g., the molecular structure of the siderophore, the biosynthesis gene cluster and pathway, and the gene expression pattern. Less is known about how these systems are distributed among the ~140 Vibrionaceae species, and which evolutionary processes contributed to the present-day distribution. In this work, we compiled existing knowledge on siderophore biosynthesis systems and siderophore receptors from Vibrionaceae and used phylogenetic analyses to investigate their organization, distribution, origin and evolution. Through literature searches, we identified nine different siderophore biosynthesis systems and thirteen siderophore receptors in Vibrionaceae. Homologs were identified by BLAST searches, and the results were mapped onto a Vibrionaceae phylogeny. We identified 81 biosynthetic systems distributed in 45 Vibrionaceae species and 16 unclassified Vibrionaceae strains, and 409 receptors in 89 Vibrionaceae species and 49 unclassified Vibrionaceae strains. The majority of taxa are associated with at least one type of siderophore biosynthesis system, some (e.g., aerobactin and vibrioferrin) of which are widely distributed in the family, whereas others (i.e., bisucaberin and vibriobactin) are found in one lineage. Cognate receptors are found more widespread. Phylogenetic analysis of three siderophore systems (piscibactin, vibrioferrin and aerobactin) show that their present-day distribution can be explained by an old insertion into Vibrionaceae, followed mainly by stable vertical evolution and extensive loss, and some cases of horizontal gene transfers. The present work provides an up to date overview of the distribution of siderophore-based iron acquisition systems in Vibrionaceae, and presents phylogenetic analysis of these systems. Our results suggest that the present-day distribution is a result of several evolutionary processes, such as old and new gene acquisitions, gene loss, and both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Sunniva Katharina Thode
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT − The Arctic University of Norway, Tromsø, Norway
| | - Ewelina Rojek
- Department of Natural Sciences and Technology, Faculty of Education and Natural Sciences, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Mikolaj Kozlowski
- Department of Natural Sciences and Technology, Faculty of Education and Natural Sciences, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Natural Sciences and Technology, Faculty of Education and Natural Sciences, Inland Norway University of Applied Sciences, Hamar, Norway
- * E-mail: (PH); (RA)
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT − The Arctic University of Norway, Tromsø, Norway
- * E-mail: (PH); (RA)
| |
Collapse
|
10
|
Li Y, Ma Q. Iron Acquisition Strategies of Vibrio anguillarum. Front Cell Infect Microbiol 2017; 7:342. [PMID: 28791260 PMCID: PMC5524678 DOI: 10.3389/fcimb.2017.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
The hemorrhagic septicemic disease vibriosis caused by Vibrio anguillarum shows noticeable similarities to invasive septicemia in humans, and in this case, the V. anguillarum–host system has the potential to serve as a model for understanding native eukaryotic host–pathogen interactions. Iron acquisition, as a fierce battle occurring between pathogenic V. anguillarum and the fish host, is a pivotal step for virulence. In this article, advances in defining the roles of iron uptake pathways in growth and virulence of V. anguillarum have been summarized, divided into five aspects, including siderophore biosynthesis and secretion, iron uptake, iron release, and regulation of iron uptake. Understanding the molecular mechanisms of iron acquisition will have important implications for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
11
|
Vibrio cholerae VciB Mediates Iron Reduction. J Bacteriol 2017; 199:JB.00874-16. [PMID: 28348025 DOI: 10.1128/jb.00874-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/19/2017] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain.IMPORTANCEVibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria.
Collapse
|
12
|
Draft Genome Sequence of Vibrio (Listonella) anguillarum ATCC 14181. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01185-16. [PMID: 27795288 PMCID: PMC5073275 DOI: 10.1128/genomea.01185-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Vibrio anguillarum ATCC 14181, a Gram-negative, hemolytic, O2 serotype marine bacterium that causes mortality in mariculture species. The availability of this genome sequence will add to our knowledge of diversity and virulence mechanisms of Vibrio anguillarum as well as other pathogenic Vibrio spp.
Collapse
|
13
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
14
|
Vibrio cholerae FeoA, FeoB, and FeoC Interact To Form a Complex. J Bacteriol 2016; 198:1160-70. [PMID: 26833408 DOI: 10.1128/jb.00930-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Feo is the major ferrous iron transport system in prokaryotes. Despite having been discovered over 25 years ago and found to be widely distributed among bacteria, Feo is poorly understood, as its structure and mechanism of iron transport have not been determined. The feo operon in Vibrio cholerae is made up of three genes, encoding the FeoA, FeoB, and FeoC proteins, which are all required for Feo system function. FeoA and FeoC are both small cytoplasmic proteins, and their function remains unclear. FeoB, which is thought to function as a ferrous iron permease, is a large integral membrane protein made up of an N-terminal GTPase domain and a C-terminal membrane-spanning region. To date, structural studies of FeoB have been carried out using a truncated form of the protein encompassing only the N-terminal GTPase region. In this report, we show that full-length FeoB forms higher-order complexes when cross-linked in vivo in V. cholerae. Our analysis of these complexes revealed that FeoB can simultaneously associate with both FeoA and FeoC to form a large complex, an observation that has not been reported previously. We demonstrate that interactions between FeoB and FeoA, but not between FeoB and FeoC, are required for complex formation. Additionally, we identify amino acid residues in the GTPase region of FeoB that are required for function of the Feo system and for complex formation. These observations suggest that this large Feo complex may be the active form of Feo that is used for ferrous iron transport. IMPORTANCE The Feo system is the major route for ferrous iron transport in bacteria. In this work, the Vibrio cholerae Feo proteins, FeoA, FeoB, and FeoC, are shown to interact to form a large inner membrane complex in vivo. This is the first report showing an interaction among all three Feo proteins. It is also determined that FeoA, but not FeoC, is required for Feo complex assembly.
Collapse
|
15
|
Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae. Infect Immun 2015; 84:511-23. [PMID: 26644383 DOI: 10.1128/iai.01301-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine.
Collapse
|
16
|
Chu T, Guan L, Shang P, Wang Q, Xiao J, Liu Q, Zhang Y. A controllable bacterial lysis system to enhance biological safety of live attenuated Vibrio anguillarum vaccine. FISH & SHELLFISH IMMUNOLOGY 2015; 45:742-749. [PMID: 26052008 DOI: 10.1016/j.fsi.2015.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Bacterial strains used as backbone for the generation of vaccine prototypes should exhibit an adequate and stable safety profile. Given the fact that live attenuated vaccines often contain some potential risks in virulence recovery and spread infections, new approaches are greatly needed to improve their biological safety. Here, a critically iron-regulated promoter PviuA was screened from Vibrio anguillarum, which was demonstrated to respond to iron-limitation signal both in vitro and in vivo. By using PviuA as a regulatory switch to control the expression of phage P22 lysis cassette 13-19-15, a novel in vivo inducible bacterial lysis system was established in V. anguillarum. This system was proved to be activated by iron-limitation signals and then effectively lyse V. anguillarum both in vitro and in vivo. Further, this controllable bacterial lysis system, after being transformed into a live attenuated V. anguillarum vaccine strain MVAV6203, was confirmed to significantly improve biological safety of the live attenuated vaccine without impairing its immune protection efficacy.
Collapse
Affiliation(s)
- Teng Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingyu Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Shang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
| |
Collapse
|
17
|
León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol 2015; 6:702. [PMID: 26217331 PMCID: PMC4496571 DOI: 10.3389/fmicb.2015.00702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.
Collapse
Affiliation(s)
- Nidia León-Sicairos
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de SinaloaCuliacán, Mexico
- Departamento de Investigación, Hospital Pediátrico de Sinaloa “Dr. Rigoberto Aguilar Pico”Culiacán, Mexico
| | - Uriel A. Angulo-Zamudio
- Maestría en Ciencias de la Salud, Facultad de Medicina, Universidad Autónoma de SinaloaCuliacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Jorge Velázquez-Román
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de SinaloaCuliacán, Mexico
| | | | - Adrian Canizalez-Román
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de SinaloaCuliacán, Mexico
| |
Collapse
|
18
|
Pulgar R, Hödar C, Travisany D, Zuñiga A, Domínguez C, Maass A, González M, Cambiazo V. Transcriptional response of Atlantic salmon families to Piscirickettsia salmonis infection highlights the relevance of the iron-deprivation defence system. BMC Genomics 2015; 16:495. [PMID: 26141111 PMCID: PMC4490697 DOI: 10.1186/s12864-015-1716-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 06/23/2015] [Indexed: 01/24/2023] Open
Abstract
Background Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. Results We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. Conclusions This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1716-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Christian Hödar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile. .,Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile.
| | - Dante Travisany
- Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile. .,Center for Mathematical Modeling and Department of Mathematical Engineering, Av. Beauchef 851, Santiago, Chile.
| | - Alejandro Zuñiga
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Calixto Domínguez
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Alejandro Maass
- Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile. .,Center for Mathematical Modeling and Department of Mathematical Engineering, Av. Beauchef 851, Santiago, Chile.
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile. .,Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile.
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile. .,Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile.
| |
Collapse
|
19
|
Catechol Siderophore Transport by Vibrio cholerae. J Bacteriol 2015; 197:2840-9. [PMID: 26100039 DOI: 10.1128/jb.00417-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/14/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. IMPORTANCE Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and acquire essential nutrients, including iron, in the environment is epidemiologically important but not well understood. In this work, we characterize the ability of V. cholerae to acquire iron by using siderophores produced by other organisms. We resolve confusion in the literature regarding its ability to use the Escherichia coli siderophore enterobactin and identify the receptor and TonB system used for the transport of several siderophores. The use of some siderophores did not require the ferric reductase ViuB, suggesting that an uncharacterized ferric reductase is present in V. cholerae.
Collapse
|
20
|
Moon YH, Tanabe T, Funahashi T, Shiuchi KI, Nakao H, Yamamoto S. Identification and Characterization of Two Contiguous Operons Required for Aerobactin Transport and Biosynthesis inVibrio mimicus. Microbiol Immunol 2013; 48:389-98. [PMID: 15215626 DOI: 10.1111/j.1348-0421.2004.tb03528.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In response to iron deprivation, Vibrio mimicus produces aerobactin as a major siderophore. Application of the Fur titration assay to a V. mimicus genomic DNA library followed by further cloning of the surrounding regions led to the identification of two adjacent, iron-regulated operons. One contains three genes encoding homologs of the Escherichia coli FhuCDB and the other, five genes encoding homologs of the E. coli IucABCD IutA. Construction of the V. mimicus polar disruptants in the respective operons allowed us to confirm their functions. The genetic arrangement of the aerobactin-mediated iron acquisition system in V. mimicus is unique in that the aerobactin operon (iucABCD iutA ) is contiguous to the operon (matCDB ) encoding components of an ATP-binding cassette transport system for ferric aerobactin. This is the first report demonstrating that aerobactin transport and biosynthesis genes are present in a species outside the family Enterobacteriaceae.
Collapse
Affiliation(s)
- Yong-Hwa Moon
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Kim HY, Ayrapetyan M, Oliver JD. Survival of Vibrio vulnificus genotypes in male and female serum, and production of siderophores in human serum and seawater. Foodborne Pathog Dis 2013; 11:119-25. [PMID: 24161025 DOI: 10.1089/fpd.2013.1581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio vulnificus is an estuarine bacterium responsible for 95% of all seafood-related deaths in the United States. Several studies have demonstrated that V. vulnificus infections are enhanced when host iron availability is increased, such as occurs with chronic liver disease. Because of the gender difference seen in these infections, we examined whether there was a difference in the survival in both male and female serum by both the C (clinical) and E (environmental) genotypes of V. vulnificus. We further determined the significance of the catecholate and hydroxamate siderophores produced by this pathogen during both human infections and while in its natural estuarine environment. We found that only C-genotype strains were capable of growth in human serum, regardless of inoculum size, with growth in male and female serum being equal. We found the catecholate outer membrane receptor gene (vuuA) to be expressed significantly more than that for the hydroxamate siderophore (fhuA) when the cells were exposed to human serum, regardless of the genotype. When cells were exposed to natural seawater, fhuA showed increased expression over time, while vuuA showed decreased expression. Our data suggest that the catecholate siderophore is important during human infections, whereas the hydroxamate siderophore may be more important in the estuarine environment this pathogen inhabits.
Collapse
Affiliation(s)
- Hye-young Kim
- Department of Biology, University of North Carolina at Charlotte , Charlotte, North Carolina
| | | | | |
Collapse
|
22
|
FeoA and FeoC are essential components of the Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 2013; 195:4826-35. [PMID: 23955009 DOI: 10.1128/jb.00738-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ferrous iron transport system Feo is widely distributed among bacterial species, yet its physical structure and mechanism of iron transport are poorly understood. In Vibrio cholerae, the feo operon consists of three genes, feoABC. feoB encodes an 83-kDa protein with an amino-terminal GTPase domain and a carboxy-terminal domain predicted to be embedded in the inner membrane. While FeoB is believed to form the pore for iron transport, the roles of FeoA and FeoC are unknown. In this work, we show that FeoA and FeoC, as well as the more highly conserved FeoB, are all required for iron acquisition by V. cholerae Feo. An in-frame deletion of feoA, feoB, or feoC eliminated iron acquisition. The loss of transport activity in the feoA and feoC mutants was not due to reduced transcription of the feo operon, suggesting that these two small proteins are required for activity of the transporter. feoC was found to encode a protein that interacts with the cytoplasmic domain of FeoB, as determined using the BACTH bacterial two-hybrid system. Two conserved amino acids in FeoC were found to be necessary for the interaction with FeoB in the two-hybrid assay, and when either of these amino acids was mutated in the context of the entire feo operon, iron acquisition via Feo was reduced. No interaction of FeoA with FeoB or FeoC was detected in the BACTH two-hybrid assay.
Collapse
|
23
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
24
|
Guan L, Liu Q, Li C, Zhang Y. Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol 2013; 13:25. [PMID: 23510048 PMCID: PMC3621691 DOI: 10.1186/1472-6750-13-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 03/08/2013] [Indexed: 01/26/2023] Open
Abstract
Background There is a continuous demanding for tightly regulated prokaryotic expression systems, which allow functional synthesis of toxic proteins in Escherichia coli for bioscience or biotechnology application. However, most of the current promoter options either are tightly repressed only with low protein production levels, or produce substantial protein but lacking of the necessary repression to avoid mutations initiated by leaky expression in the absence of inducer. The aim of this study was to develop a tightly regulated, relatively high-efficient expression vector in E. coli based on the principle of iron uptake system. Results By using GFP as reporter, PfhuA with the highest relative fluorescence units, but leaky expression, was screened from 23 iron-regulated promoter candidates. PfhuA was repressed by ferric uptake regulator (Fur)-Fe2+ complex binding to Fur box locating at the promoter sequence. Otherwise, PfhuA was activated without Fur-Fe2+ binding in the absence of iron. In order to improve the tightness of PfhuA regulation for toxic gene expression, Fur box in promoter sequence and fur expression were refined through five different approaches. Eventually, through substituting E. coli consensus Fur box for original one of PfhuA, the induction ratio of modified PfhuA (named PfhuA1) was improved from 3 to 101. Under the control of PfhuA1, strong toxic gene E was successfully expressed in high, middle, low copy-number vectors, and other two toxic proteins, Gef and MazF were functionally synthesized without E. coli death before induction. Conclusions The features of easy control, tight regulation and relatively high efficiency were combined in the newly engineered PfhuA1. Under this promoter, the toxic genes E, gef and mazF were functionally expressed in E. coli induced by iron chelator in a tightly controllable way. This study provides a tightly regulated expression system that might enable the stable cloning, and functional synthesis of toxic proteins for their function study, bacterial programmed cell death in biological containment system and bacterial vector vaccine development.
Collapse
Affiliation(s)
- Lingyu Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | | | | | | |
Collapse
|
25
|
Liu X, Gong J, Wei T, Wang Z, Du Q, Zhu D, Huang Y, Xu S, Gu L. Crystal structure of HutZ, a heme storage protein from Vibrio cholerae: A structural mismatch observed in the region of high sequence conservation. BMC STRUCTURAL BIOLOGY 2012; 12:23. [PMID: 23013214 PMCID: PMC3472187 DOI: 10.1186/1472-6807-12-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/24/2012] [Indexed: 01/03/2023]
Abstract
Background HutZ is the sole heme storage protein identified in the pathogenic bacterium Vibrio cholerae and is required for optimal heme utilization. However, no heme oxygenase activity has been observed with this protein. Thus far, HutZ’s structure and heme-binding mechanism are unknown. Results We report the first crystal structure of HutZ in a homodimer determined at 2.0 Å resolution. The HutZ structure adopted a typical split-barrel fold. Through a docking study and site-directed mutagenesis, a heme-binding model for the HutZ dimer is proposed. Very interestingly, structural superimposition of HutZ and its homologous protein HugZ, a heme oxygenase from Helicobacter pylori, exhibited a structural mismatch of one amino acid residue in β6 of HutZ, although residues involved in this region are highly conserved in both proteins. Derived homologous models of different single point variants with model evaluations suggested that Pro140 of HutZ, corresponding to Phe215 of HugZ, might have been the main contributor to the structural mismatch. This mismatch initiates more divergent structural characteristics towards their C-terminal regions, which are essential features for the heme-binding of HugZ as a heme oxygenase. Conclusions HutZ’s deficiency in heme oxygenase activity might derive from its residue shift relative to the heme oxygenase HugZ. This residue shift also emphasized a limitation of the traditional template selection criterion for homology modeling.
Collapse
Affiliation(s)
- Xiuhua Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 2012; 78:6035-50. [PMID: 22706064 DOI: 10.1128/aem.01457-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cronobacter spp. are emerging pathogens that cause severe infantile meningitis, septicemia, or necrotizing enterocolitis. Contaminated powdered infant formula has been implicated as the source of Cronobacter spp. in most cases, but questions still remain regarding the natural habitat and virulence potential for each strain. The iron acquisition systems in 231 Cronobacter strains isolated from different sources were identified and characterized. All Cronobacter spp. have both the Feo and Efe systems for acquisition of ferrous iron, and all plasmid-harboring strains (98%) have the aerobactin-like siderophore, cronobactin, for transport of ferric iron. All Cronobacter spp. have the genes encoding an enterobactin-like siderophore, although it was not functional under the conditions tested. Furthermore, all Cronobacter spp. have genes encoding five receptors for heterologous siderophores. A ferric dicitrate transport system (fec system) is encoded specifically by a subset of Cronobacter sakazakii and C. malonaticus strains, of which a high percentage were isolated from clinical samples. Phylogenetic analysis confirmed that the fec system is most closely related to orthologous genes present in human-pathogenic bacterial strains. Moreover, all strains of C. dublinensis and C. muytjensii encode two receptors, FcuA and Fct, for heterologous siderophores produced by plant pathogens. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed which genes and operons are components of the Fur regulon. Taken together, these results support the proposition that C. sakazakii and C. malonaticus may be more associated with the human host and C. dublinensis and C. muytjensii with plants.
Collapse
|
27
|
Wyckoff EE, Payne SM. The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol 2011; 81:1446-58. [PMID: 21790806 DOI: 10.1111/j.1365-2958.2011.07775.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae.
Collapse
Affiliation(s)
- Elizabeth E Wyckoff
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
28
|
Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 2011; 79:2889-900. [PMID: 21576332 DOI: 10.1128/iai.05138-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We dissected the complete genome sequence of the O1 serotype strain Vibrio anguillarum 775(pJM1) and determined the draft genomic sequences of plasmidless strains of serotype O1 (strain 96F) and O2β (strain RV22) and V. ordalii. All strains harbor two chromosomes, but 775 also harbors the virulence plasmid pJM1, which carries the anguibactin-producing and cognate transport genes, one of the main virulence factors of V. anguillarum. Genomic analysis identified eight genomic islands in chromosome 1 of V. anguillarum 775(pJM1) and two in chromosome 2. Some of them carried potential virulence genes for the biosynthesis of O antigens, hemolysins, and exonucleases as well as others for sugar transport and metabolism. The majority of genes for essential cell functions and pathogenicity are located on chromosome 1. In contrast, chromosome 2 contains a larger fraction (59%) of hypothetical genes than does chromosome 1 (42%). Chromosome 2 also harbors a superintegron, as well as host "addiction" genes that are typically found on plasmids. Unique distinctive properties include homologues of type III secretion system genes in 96F, homologues of V. cholerae zot and ace toxin genes in RV22, and the biofilm formation syp genes in V. ordalii. Mobile genetic elements, some of them possibly originated in the pJM1 plasmid, were very abundant in 775, resulting in the silencing of specific genes, with only few insertions in the 96F and RV22 chromosomes.
Collapse
|
29
|
Iron-regulated lysis of recombinant Escherichia coli in host releases protective antigen and confers biological containment. Infect Immun 2011; 79:2608-18. [PMID: 21536797 DOI: 10.1128/iai.01219-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The use of a recombinant bacterial vector vaccine is an attractive vaccination strategy to induce an immune response to a carried protective antigen. The superiorities of live bacterial vectors include mimicry of a natural infection, intrinsic adjuvant properties, and the potential for administration by mucosal routes. Escherichia coli is a simple and efficient vector system for production of exogenous proteins. In addition, many strains are nonpathogenic and avirulent, making it a good candidate for use in recombinant vaccine design. In this study, we screened 23 different iron-regulated promoters in an E. coli BL21(DE3) vector and found one, P(viuB), with characteristics suitable for our use. We fused P(viuB) with lysis gene E, establishing an in vivo inducible lysis circuit. The resulting in vivo lysis circuit was introduced into a strain also carrying an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible P(T7)-controlled protein synthesis circuit, forming a novel E. coli-based protein delivery system. The recombinant E. coli produced a large amount of antigen in vitro and could deliver the antigen into zebrafish after vaccination via injection. The strain subsequently lysed in response to the iron-limiting signal in vivo, implementing antigen release and biological containment. The gapA gene, encoding the protective antigen GAPDH (glyceraldehyde-3-phosphate dehydrogenase) from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the E. coli-based protein delivery system, and the resultant recombinant vector vaccine was evaluated in turbot (Scophtalmus maximus). Over 80% of the vaccinated fish survived challenge with A. hydrophila LSA34, suggesting that the E. coli-based antigen delivery system has great potential in bacterial vector vaccine applications.
Collapse
|
30
|
Morin CE, Kaper JB. Use of stabilized luciferase-expressing plasmids to examine in vivo-induced promoters in the Vibrio cholerae vaccine strain CVD 103-HgR. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 57:69-79. [PMID: 19678844 PMCID: PMC2906245 DOI: 10.1111/j.1574-695x.2009.00580.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Live, attenuated Vibrio cholerae vaccines can induce potent immune responses after only a single oral dose. The strategy of harnessing these strains to present antigens from heterologous pathogens to the mucosal immune system shows great promise. To fully realize this possibility, V. cholerae strains must be created that stably express antigens in vivo in sufficient quantity to generate an immune response. In vivo-induced promoters have been shown to increase the stability and immunogenicity of foreign antigens expressed from multicopy plasmids. We report the construction of a series of genetically stabilized plasmids expressing luciferase as a heterologous protein from the following in vivo-induced promoters: V. cholerae P(argC), P(fhuC) and P(vca1008), and Salmonella enterica serovar Typhi P(ompC). We demonstrate that several of these expression plasmids meet two critical criteria for V. cholerae live vector vaccine studies. First, the plasmids are highly stable in the V. cholerae vaccine strain CVD 103-HgR at low copy number, in the absence of selective pressure. Second, real-time bioluminescent imaging (BLI) demonstrates inducible in vivo expression of the promoters in the suckling mouse model of V. cholerae colonization. Moreover, the use of BLI allows for direct quantitative comparison of in vivo expression from four different promoters at various time points.
Collapse
Affiliation(s)
- Cara E Morin
- Department of Microbiology & Immunology, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
31
|
Gu J, Neary J, Cai H, Moshfeghian A, Rodriguez SA, Lilburn TG, Wang Y. Genomic and systems evolution in Vibrionaceae species. BMC Genomics 2009; 10 Suppl 1:S11. [PMID: 19594870 PMCID: PMC2709254 DOI: 10.1186/1471-2164-10-s1-s11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). Results Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and pathogenesis mechanisms as well as in the fundamental life cycle of Vibrionaceae species. Conclusion Our results provide evidence of genome plasticity and rapid evolution within the family Vibrionaceae. The comparisons point to sources of genomic variation and candidates for lineage-specific adaptations of each Vibrionaceae pathogen or nonpathogen strain. Such lineage specific expansions could reveal components in bacterial systems that, by their enhanced genetic variability, can be tied to responses to environmental challenges, interesting phenotypes, or adaptive pathogenic responses to host challenges.
Collapse
Affiliation(s)
- Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Funahashi T, Tanabe T, Shiuchi K, Nakao H, Yamamoto S. Identification and characterization of genes required for utilization of desferri-ferrichrome and aerobactin in Vibrio parahaemolyticus. Biol Pharm Bull 2009; 32:359-65. [PMID: 19252278 DOI: 10.1248/bpb.32.359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the course of our investigation on the iron acquisition systems in Vibrio parahaemolyticus, a causative agent of seafood-related gastroenteritis, we found that this species utilizes desferri-ferrichrome for growth as a heterologous siderophore (a siderophore produced by other bacteria and fungi) under iron-limiting conditions. N-Terminal amino acid sequence analysis of the iron-repressible outer membrane proteins followed by searches of the reported genomic sequences of this species identified four relevant genes (called fhuACDB) forming an operon. Deletion analysis of the fhuA and fhuD genes indicated that the most upstream gene fhuA and the three downstream genes fhuCDB encode the ferrichrome receptor and the ATP-binding cassette transport components, respectively. Moreover, it was found that the fhuCDB genes are also required for transport of ferric aerobactin which restores growth of this species under iron-limiting conditions.
Collapse
|
33
|
Anaerobic growth promotes synthesis of colonization factors encoded at the Vibrio pathogenicity island in Vibrio cholerae El Tor. Res Microbiol 2008; 160:48-56. [PMID: 19015025 DOI: 10.1016/j.resmic.2008.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 09/24/2008] [Accepted: 10/02/2008] [Indexed: 12/30/2022]
Abstract
Pathogenesis of the facultative anaerobe Vibrio cholerae takes place at the gut under low oxygen concentrations. To identify proteins which change their expression level in response to oxygen availability, proteomes of V. cholerae El Tor C7258 grown in aerobiosis, microaerobiosis and anaerobiosis were compared by two-dimensional electrophoresis. Twenty-six differentially expressed proteins were identified which are involved in several processes including iron acquisition, alanine metabolism, purine synthesis, energy metabolism and stress response. Moreover, two proteins implicated in exopolysaccharide synthesis and biofilm formation were produced at higher levels under microaerobiosis and anaerobiosis, which suggests a role of oxygen deprivation in biofilm development in V. cholerae. In addition, six proteins encoded at the Vibrio pathogenicity island attained the highest expression levels under anaerobiosis, and five of them are required for colonization: three correspond to toxin-coregulated pilus biogenesis components, one to soluble colonization factor TcpF and one to accessory colonization factor A. Thus, anaerobiosis promotes synthesis of colonization factors in V. cholerae El Tor, suggesting that it may be a key in vivo signal for early stages of the pathogenic process of V. cholerae.
Collapse
|
34
|
Abstract
Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.
Collapse
|
35
|
Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2007; 2:264-77. [PMID: 18005744 DOI: 10.1016/j.chom.2007.09.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/16/2007] [Accepted: 09/13/2007] [Indexed: 01/12/2023]
Abstract
The facultative pathogen Vibrio cholerae can exist in both the human small bowel and in aquatic environments. While investigation of the infection process has revealed many factors important for pathogenesis, little is known regarding transmission of this or other water-borne pathogens. Using a temporally controlled reporter of transcription, we focus on bacterial gene expression during the late stage of infection and identify a unique class of V. cholerae genes specific to this stage. Mutational analysis revealed limited roles for these genes in infection. However, using a host-to-environment transition assay, we detected roles for six of ten genes examined for the ability of V. cholerae to persist within cholera stool and/or aquatic environments. Furthermore, passage through the intestinal tract was necessary to observe this phenotype. Thus, V. cholerae genes expressed prior to exiting the host intestinal tract are advantageous for subsequent life in aquatic environments.
Collapse
|
36
|
An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A 2007; 104:18229-34. [PMID: 17986616 DOI: 10.1073/pnas.0705636104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vivo expression technology (IVET) has been widely used to study gene expression of human bacterial pathogens in animal models, but has heretofore not been used in humans to our knowledge. As part of ongoing efforts to understand Vibrio cholerae pathogenesis and develop improved V. cholerae vaccines, we have performed an IVET screen in humans for genes that are preferentially expressed by V. cholerae during infection. A library of 8,734 nontoxigenic V. cholerae strains carrying transcriptional fusions of genomic DNA to a resolvase gene was ingested by five healthy adult volunteers. Transcription of the fusion leads to resolvase-dependent excision of a sacB-containing cassette and thus the selectable phenotype of sucrose resistance (Suc(R)). A total of approximately 20,000 Suc(R) isolates, those carrying putative in vivo-induced fusions, were recovered from volunteer stool samples. Analysis of the fusion junctions from >7,000 Suc(R) isolates from multiple samples from multiple volunteers identified 217 candidate genes for preferential expression during human infection. Of genes or operons induced in three or more volunteers, the majority of those tested (65%) were induced in an infant mouse model. VC0201 (fhuC), which encodes the ATPase of a ferrichrome ABC transporter, is one of the identified in vivo-induced genes and is required for virulence in the mouse model.
Collapse
|
37
|
Wyckoff EE, Mey AR, Payne SM. Iron acquisition in Vibrio cholerae. Biometals 2007; 20:405-16. [PMID: 17216354 DOI: 10.1007/s10534-006-9073-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/28/2006] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron and must obtain this element in the human host as well as in its varied environmental niches. It has multiple systems for iron acquisition, including the TonB-dependent transport of heme, the endogenous siderophore vibriobactin and several siderophores that are produced by other microorganisms. There is also a Feo system for the transport of ferrous iron and an ABC transporter, Fbp, which transports ferric iron. There appears to be at least one additional high affinity iron transport system that has not yet been identified. In iron replete conditions, iron acquisition genes are repressed by Fur. Fur also represses the synthesis of a small, regulatory RNA, RyhB, which negatively regulates genes for iron-containing proteins involved in the tricarboxylic acid cycle and respiration as well as genes for motility and chemotaxis. The redundancy in iron transport systems has made it more difficult to determine the role of individual systems in vivo and in vitro, but it may reflect the overall importance of iron in the growth and survival of V. cholerae.
Collapse
Affiliation(s)
- Elizabeth E Wyckoff
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA.
| | | | | |
Collapse
|
38
|
Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol 2006; 188:6515-23. [PMID: 16952942 PMCID: PMC1595488 DOI: 10.1128/jb.00626-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae has multiple iron acquisition systems, including TonB-dependent transport of heme and of the catechol siderophore vibriobactin. Strains defective in both of these systems grow well in laboratory media and in the infant mouse intestine, indicating the presence of additional iron acquisition systems. Previously uncharacterized potential iron transport systems, including a homologue of the ferrous transporter Feo and a periplasmic binding protein-dependent ATP binding cassette (ABC) transport system, termed Fbp, were identified in the V. cholerae genome sequence. Clones encoding either the Feo or the Fbp system exhibited characteristics of iron transporters: both repressed the expression of lacZ cloned under the control of a Fur-regulated promoter in Escherichia coli and also conferred growth on a Shigella flexneri mutant that has a severe defect in iron transport. Two other ABC transporters were also evaluated but were negative by these assays. Transport of radioactive iron by the Feo system into the S. flexneri iron transport mutant was stimulated by the reducing agent ascorbate, consistent with Feo functioning as a ferrous transporter. Conversely, ascorbate inhibited transport by the Fbp system, suggesting that it transports ferric iron. The growth of V. cholerae strains carrying mutations in one or more of the potential iron transport genes indicated that both Feo and Fbp contribute to iron acquisition. However, a mutant defective in the vibriobactin, Fbp, and Feo systems was not attenuated in a suckling mouse model, suggesting that at least one other iron transport system can be used in vivo.
Collapse
Affiliation(s)
- Elizabeth E Wyckoff
- University of Texas, Section of Molecular Genetics and Microbiology, 1 University Station A5000, Austin, TX 78712-0162, USA.
| | | | | | | | | |
Collapse
|
39
|
Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun 2006; 73:8167-78. [PMID: 16299312 PMCID: PMC1307094 DOI: 10.1128/iai.73.12.8167-8178.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of iron uptake and utilization is critical for bacterial growth and for prevention of iron toxicity. In many bacterial species, this regulation depends on the iron-responsive master regulator Fur. In this study we report the effects of iron and Fur on gene expression in Vibrio cholerae. We show that Fur has both positive and negative regulatory functions, and we demonstrate Fur-independent regulation of gene expression by iron. Nearly all of the known iron acquisition genes were repressed by Fur under iron-replete conditions. In addition, genes for two newly identified iron transport systems, Feo and Fbp, were found to be negatively regulated by iron and Fur. Other genes identified in this study as being induced in low iron and in the fur mutant include those encoding superoxide dismutase (sodA), fumarate dehydratase (fumC), bacterioferritin (bfr), bacterioferritin-associated ferredoxin (bfd), and multiple genes of unknown function. Several genes encoding iron-containing proteins were repressed in low iron and in the fur mutant, possibly reflecting the need to reserve available iron for the most critical functions. Also repressed in the fur mutant, but independently of iron, were genes located in the V. cholerae pathogenicity island, encoding the toxin-coregulated pilus (TCP), and genes within the V. cholerae mega-integron. The fur mutant exhibited very weak autoagglutination, indicating a possible defect in expression or assembly of the TCP, a major virulence factor of V. cholerae. Consistent with this observation, the fur mutant competed poorly with its wild-type parental strain for colonization of the infant mouse gut.
Collapse
Affiliation(s)
- Alexandra R Mey
- The University of Texas, Section of Molecular Genetics and Microbiology, Austin, TX 78712-1095, USA
| | | | | | | | | |
Collapse
|
40
|
Mey AR, Craig SA, Payne SM. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 2005; 73:5706-19. [PMID: 16113288 PMCID: PMC1231101 DOI: 10.1128/iai.73.9.5706-5719.2005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae encodes a small RNA with homology to Escherichia coli RyhB. Like E. coli ryhB, V. cholerae ryhB is negatively regulated by iron and Fur and is required for repression of genes encoding the superoxide dismutase SodB and multiple tricarboxylic acid cycle enzymes. However, V. cholerae RyhB is considerably longer (>200 nucleotides) than the E. coli RNA (90 nucleotides), and it regulates the expression of a variety of genes that are not known to be regulated by RyhB in E. coli, including genes involved in motility, chemotaxis, and biofilm formation. A mutant with a deletion in ryhB had reduced chemotactic motility in low-iron medium and was unable to form wild-type biofilms. The defect in biofilm formation was suppressed by growing the mutant in the presence of excess iron or succinate. The wild-type strain showed reduced biofilm formation in iron-deficient medium, further supporting a role for iron in normal biofilm formation. The ryhB mutant was not defective for colonization in a mouse model and appeared to be at a slight advantage when competing with the wild-type parental strain. Other genes whose expression was influenced by RyhB included those encoding the outer membrane porins OmpT and OmpU, several iron transport systems, and proteins containing heme or iron-sulfur clusters. These data indicate that V. cholerae RyhB has diverse functions, ranging from iron homeostasis to the regulation of biofilm formation.
Collapse
Affiliation(s)
- Alexandra R Mey
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712-1095, USA
| | | | | |
Collapse
|
41
|
Benson HP, Boncompagni E, Guerinot ML. An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:950-9. [PMID: 16167765 DOI: 10.1094/mpmi-18-0950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rhizobia live in the soil or enter into a nitrogen-fixing symbiosis with a suitable host plant. Each environment presents different challenges with respect to iron acquisition. The soybean symbiont Bradyrhizobium japonicum 61A152 can utilize a variety of siderophores (Fe[III]-specific ligands). Purification of iron-regulated outer membrane proteins had previously allowed the cloning of a gene, fegA, from B. japonicum 61A152, whose predicted protein shares significant amino acid similarity with known TonB-dependent siderophore receptors. Here, we show that fegA is in an operon with a gene, fegB, that is predicted to encode an inner membrane protein. Characterization of fegAB and fegB mutants shows that bothfegA and fegB are required for utilization of the siderophore ferrichrome. Whereas thefegB mutant forms a normal symbiosis, the fegAB mutant has a dramatic phenotype in planta. Six weeks after inoculation with a fegAB strain, soybean nodules do not contain leghemoglobin and do not fix nitrogen. Infected cells contain few symbiosomes and are filled with vesicles. As ferrichrome is a fungal siderophore not likely to be available in nodules, the symbiotic defect suggests that the fegAB operon is serving a different function in planta, possibly one involved in signaling between the two partners.
Collapse
Affiliation(s)
- Heather P Benson
- Department of Biological Sciences, 6044 Gilman, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
42
|
Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 2005; 187:4005-14. [PMID: 15937163 PMCID: PMC1151736 DOI: 10.1128/jb.187.12.4005-4014.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous small untranslated RNAs (sRNAs) have been identified in Escherichia coli in recent years, and their roles are gradually being defined. However, few of these sRNAs appear to be conserved in Vibrio cholerae, and both identification and characterization of sRNAs in V. cholerae remain at a preliminary stage. We have characterized one of the few sRNAs conserved between E. coli and V. cholerae: RyhB. Sequence conservation is limited to the central region of the gene, and RyhB in V. cholerae is significantly larger than in E. coli. As in E. coli, V. cholerae RyhB is regulated by the iron-dependent repressor Fur, and it interacts with the RNA-binding protein Hfq. The regulons controlled by RyhB in V. cholerae and E. coli appear to differ, although some overlap is evident. Analysis of gene expression in V. cholerae in the absence of RyhB suggests that the role of this sRNA is not limited to control of iron utilization. Quantitation of RyhB expression in the suckling mouse intestine suggests that iron availability is not limiting in this environment, and RyhB is not required for colonization of this mammalian host by V. cholerae.
Collapse
Affiliation(s)
- Brigid M Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
43
|
Quatrini R, Jedlicki E, Holmes DS. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 2005; 32:606-14. [PMID: 15895264 DOI: 10.1007/s10295-005-0233-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 04/15/2005] [Indexed: 01/01/2023]
Abstract
Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.
Collapse
Affiliation(s)
- Raquel Quatrini
- Laboratory of Bioinformatics and Genome Biology, University of Andrés Bello and Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| | | | | |
Collapse
|
44
|
Wyckoff EE, Schmitt M, Wilks A, Payne SM. HutZ is required for efficient heme utilization in Vibrio cholerae. J Bacteriol 2004; 186:4142-51. [PMID: 15205415 PMCID: PMC421608 DOI: 10.1128/jb.186.13.4142-4151.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, requires iron for growth. One mechanism by which it acquires iron is the uptake of heme, and several heme utilization genes have been identified in V. cholerae. These include three distinct outer membrane receptors, two TonB systems, and an apparent ABC transporter to transfer heme across the inner membrane. However, little is known about the fate of the heme after it enters the cell. In this report we show that a novel heme utilization protein, HutZ, is required for optimal heme utilization. hutZ (open reading frame [ORF] VCA0907) is encoded with two other genes, hutW (ORF VCA0909) and hutX (ORF VCA0908), in an operon divergently transcribed from the tonB1 operon. A hutZ mutant grew poorly when heme was provided as the sole source of iron, and the poor growth was likely due to the failure to use heme efficiently as a source of iron, rather than to heme toxicity. Heme oxygenase mutants of both Corynebacterium diphtheriae and C. ulcerans fail to use heme as an iron source. When the hutWXZ genes were expressed in the heme oxygenase mutants, growth on heme was restored, and hutZ was required for this effect. Biochemical characterization indicated that HutZ binds heme with high efficiency; however, no heme oxygenase activity was detected for this protein. HutZ may act as a heme storage protein, and it may also function as a shuttle protein that increases the efficiency of heme trafficking from the membrane to heme-containing proteins.
Collapse
Affiliation(s)
- Elizabeth E Wyckoff
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712-0162, USA.
| | | | | | | |
Collapse
|
45
|
Mey AR, Payne SM. Analysis of residues determining specificity of Vibrio cholerae TonB1 for its receptors. J Bacteriol 2003; 185:1195-207. [PMID: 12562789 PMCID: PMC142855 DOI: 10.1128/jb.185.4.1195-1207.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative organisms, high-affinity transport of iron substrates requires energy transduction to specific outer membrane receptors by the TonB-ExbB-ExbD complex. Vibrio cholerae encodes two TonB proteins, one of which, TonB1, recognizes only a subset of V. cholerae TonB-dependent receptors and does not facilitate transport through Escherichia coli receptors. To investigate the receptor specificity exhibited by V. cholerae TonB1, chimeras were created between V. cholerae TonB1 and E. coli TonB. The activities of the chimeric TonB proteins in iron utilization assays demonstrated that the C-terminal one-third of either TonB confers the receptor specificities associated with the full-length TonB. Single-amino-acid substitutions near the C terminus of V. cholerae TonB1 were identified that allowed TonB1 to recognize E. coli receptors and at least one V. cholerae TonB2-dependent receptor. This indicates that the very C-terminal end of V. cholerae TonB1 determines receptor specificity. The regions of the TonB-dependent receptors involved in specificity for a particular TonB protein were investigated in experiments involving domain switching between V. cholerae and E. coli receptors exhibiting different TonB specificities. Switching the conserved TonB box heptapeptides at the N termini of these receptors did not alter their TonB specificities. However, replacing the amino acid immediately preceding the TonB box in E. coli receptors with an aromatic residue allowed these receptors to use V. cholerae TonB1. Further, site-directed mutagenesis of the TonB box -1 residue in a V. cholerae TonB2-dependent receptor demonstrated that a large hydrophobic amino acid in this position promotes recognition of V. cholerae TonB1. These data suggest that the TonB box -1 position controls productive interactions with V. cholerae TonB1.
Collapse
Affiliation(s)
- Alexandra R Mey
- Institute for Cellular and Molecular Biology. Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | |
Collapse
|
46
|
Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK, Payne SM. Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun 2002; 70:3419-26. [PMID: 12065481 PMCID: PMC128051 DOI: 10.1128/iai.70.7.3419-3426.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative enteric pathogen Vibrio cholerae requires iron for growth. V. cholerae has multiple iron acquisition systems, including utilization of heme and hemoglobin, synthesis and transport of the catechol siderophore vibriobactin, and transport of several siderophores that it does not itself make. One siderophore that V. cholerae transports, but does not make, is enterobactin. Enterobactin transport requires TonB and is independent of the vibriobactin receptor ViuA. In this study, two candidate enterobactin receptor genes, irgA (VC0475) and vctA (VCA0232), were identified by analysis of the V. cholerae genomic sequence. A single mutation in either of these genes did not significantly impair enterobactin utilization, but a strain defective in both genes did not use enterobactin. When either irgA or vctA was supplied on a plasmid, the ability of the irgA vctA double mutant to use enterobactin was restored. This indicates that both VctA and IrgA transport enterobactin. We also identify the genes vctPDGC, which are linked to vctA and encode a periplasmic binding protein-dependent ABC transport system that functions in the utilization of both enterobactin and vibriobactin (VCA0227-0230). An irgA::TnphoA mutant strain, MBG40, was shown in a previous study to be highly attenuated and to have a strong colonization defect in an infant mouse model of V. cholerae infection (M. B. Goldberg, V. J. DiRita, and S. B. Calderwood, Infect. Immun. 58:55-60, 1990). In this work, a new irgA mutation was constructed, and this mutant strain was not significantly impaired in its ability to compete with the parental strain in infant mice and was not attenuated for virulence in an assay of 50% lethal dose. These data indicate that the virulence defect in MBG40 is not due to the loss of irgA function and that irgA is unlikely to be an important virulence factor.
Collapse
Affiliation(s)
- Alexandra R Mey
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712-1095, USA
| | | | | | | | | | | |
Collapse
|
47
|
Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 2002; 66:223-49. [PMID: 12040125 PMCID: PMC120789 DOI: 10.1128/mmbr.66.2.223-249.2002] [Citation(s) in RCA: 566] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory logic of siderophore biosynthetic genes in bacteria involves the universal repressor Fur, which acts together with iron as a negative regulator. However in other bacteria, in addition to the Fur-mediated mechanism of regulation, there is a concurrent positive regulation of iron transport and siderophore biosynthetic genes that occurs under conditions of iron deprivation. Despite these regulatory differences the mechanisms of siderophore biosynthesis follow the same fundamental enzymatic logic, which involves a series of elongating acyl-S-enzyme intermediates on multimodular protein assembly lines: nonribosomal peptide synthetases (NRPS). A substantial variety of siderophore structures are produced from similar NRPS assembly lines, and variation can come in the choice of the phenolic acid selected as the N-cap, the tailoring of amino acid residues during chain elongation, the mode of chain termination, and the nature of the capturing nucleophile of the siderophore acyl chain being released. Of course the specific parts that get assembled in a given bacterium may reflect a combination of the inventory of biosynthetic and tailoring gene clusters available. This modular assembly logic can account for all known siderophores. The ability to mix and match domains within modules and to swap modules themselves is likely to be an ongoing process in combinatorial biosynthesis. NRPS evolution will try out new combinations of chain initiation, elongation and tailoring, and termination steps, possibly by genetic exchange with other microorganisms and/or within the same bacterium, to create new variants of iron-chelating siderophores that can fit a particular niche for the producer bacterium.
Collapse
Affiliation(s)
- Jorge H Crosa
- Department of Molecular Microbiology and Immunology, School of Medicine Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
48
|
Funahashi T, Moriya K, Uemura S, Miyoshi SI, Shinoda S, Narimatsu S, Yamamoto S. Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. J Bacteriol 2002; 184:936-46. [PMID: 11807053 PMCID: PMC134804 DOI: 10.1128/jb.184.4.936-946.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that Vibrio parahaemolyticus expresses two outer membrane proteins of 78 and 83 kDa concomitant with production of siderophore vibrioferrin in response to iron starvation stress and that these proteins are the ferric vibrioferrin receptor and heme receptor, respectively (S. Yamamoto, T. Akiyama, N. Okujo, S. Matsuura, and S. Shinoda, Microbiol. Immunol. 39:759-766, 1995; S. Yamamoto, Y. Hara, K. Tomochika, and S. Shinoda, FEMS Microbiol. Lett. 128:195-200, 1995). In this study, the Fur titration assay (FURTA) system was applied to isolate DNA fragments containing a potential Fur box from a genomic DNA library of V. parahaemolyticus WP1. Sequencing a 3.2-kb DNA insert in one FURTA-positive clone revealed that an amino acid sequence deduced from a partial gene, which was preceded by a full-length gene (psuA) encoding a receptor for a siderophore of unknown origin, was consistent with the N-terminal amino acid sequence of the 78-kDa ferric vibrioferrin receptor. Then, the full-length gene (pvuA) encoding the ferric vibrioferrin receptor was cloned and characterized. The deduced protein encoded by pvuA displayed the highest similarity (31% identity; 48% similarity) to RumA, a ferric rhizoferrin receptor of Morganella morganii. Primer extension and Northern blot analyses indicated that psuA and pvuA constitute an operon which is transcribed from a Fur-repressed promoter upstream of psuA. The product of the pvuA gene and its function were confirmed by generating a pvuA-disrupted mutant, coupled with genetic complementation studies. A mutant with disruption in the upstream psuA gene also displayed a phenotype impaired in the utilization of ferric vibrioferrin.
Collapse
Affiliation(s)
- Tatsuya Funahashi
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib- parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment.
Collapse
Affiliation(s)
- A R Mey
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712-1095, USA
| | | |
Collapse
|
50
|
Wyckoff EE, Smith SL, Payne SM. VibD and VibH are required for late steps in vibriobactin biosynthesis in Vibrio cholerae. J Bacteriol 2001; 183:1830-4. [PMID: 11160122 PMCID: PMC95076 DOI: 10.1128/jb.183.5.1830-1834.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae synthesizes the catechol siderophore vibriobactin. In this report, we present the complete map of a vibriobactin gene region containing two previously unreported vibriobactin biosynthetic genes. vibD encodes a phosphopantetheinyl transferase, and vibH encodes a novel nonribosomal peptide synthase. Both VibD and VibH are required for vibriobactin biosynthesis.
Collapse
Affiliation(s)
- E E Wyckoff
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| | | | | |
Collapse
|