1
|
Hsiang CC, Ng IS. Deciphering Transcription-Translation-Folding (TX-TL-FD) for Enhancing Cutinase Production in T7 System and Genetic Chaperone-Equipped Escherichia coli Strains. ACS Synth Biol 2025; 14:1843-1852. [PMID: 40329912 DOI: 10.1021/acssynbio.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
T7 RNA polymerase (T7RNAP), orthogonal to the T7 promoter, is a powerful tool in engineered Escherichia coli that enables the production of many different harsh enzymes. Still, it requires precise control, particularly when expressing toxic proteins. The optimized strategy for the interconnected processes of transcription (TX), translation (TL), and protein folding (FD) in the T7 system is still not well understood. Therefore, we developed a quantitative adjustment index (AI) to evaluate all regulatory factors within the "tri-synergistic TX-TL-FD" pathway to obtain high-level production of leaf-branch compost cutinase mutant (ICCM), an enzyme challenging to express in soluble form. Among six E. coli chassis (BD, B7G, BKJ, C43, C7G, and CKJ), and considering the effect of replication origin, ribosome binding site (RBS), and chaperones, we identified T7RNAP level and translation initiation region (TIR) as the primary determinants of expression efficiency. Coordinated regulation of TX-TL proved the most effective performance, thus enhancing ICCM expression by 90%. In contrast, FD optimization through temperature modulation yielded only 10% enhancement. Notably, molecular chaperones of GroELS and DnaK/J showed benefits only after achieving optimal TX-TL balance. This hierarchical framework of trisynergistic regulation in the T7 system provides a universal strategy to express complex proteins in engineered E. coli.
Collapse
Affiliation(s)
- Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Philipp LA, Kneuer L, Mayer-Windhorst C, Jautelat S, Le NQ, Gescher J. Identification of factors limiting the efficiency of transplanting extracellular electron transfer chains in Escherichia coli. Appl Environ Microbiol 2025:e0068525. [PMID: 40358241 DOI: 10.1128/aem.00685-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Research in electro-microbiology provides unique opportunities to study and exploit microbial physiology. Several efforts have been made to transplant the extracellular electron transport chain from the native exoelectrogenic model organism Shewanella oneidensis into Escherichia coli. However, systematic comparisons between donor and recipient strain configurations are largely missing. Hence, the proposed minimal protein set, consisting of the c-type cytochromes cytoplasmic membrane protein A (CymA), small tetraheme cytochrome (STC), MtrA, and MtrC, as well as the β-barrel protein MtrB, was heterologously expressed in E. coli in different expansion stages. These stages were compared to corresponding S. oneidensis strains in terms of anthraquinone-2,6-disulfonate (AQDS) and ferric citrate reduction rates. This revealed that transplantation of heterologous extracellular electron transfer (EET) chains is associated with a tremendous decrease in electron transfer rates. As the acquired electron transfer rates were not competitive to S. oneidensis, it was hypothesized that protein localization and maturation might be affected by heterologous expression. Hence, the type II secretion system from S. oneidensis was also transplanted into an E. coli strain. The latter allowed the secretion of the terminal reductase MtrC onto the cell surface of E. coli for the first time. This was correlated with significantly increased but still insufficient extracellular electron transfer rates. Further experiments suggest that the correct folding of MtrB might be a further bottleneck.IMPORTANCEResearch on transplanting extracellular electron transfer (EET) chains into non-native exoelectrogens is vital for advancing bioenergy and bioremediation technologies. Enabling these organisms to transfer electrons to external surfaces like anodes can enhance microbial fuel cell efficiency and electricity generation from organic waste. This approach can broaden the range of substrates and products for biotechnological applications, offering innovative solutions for sustainable production. Our work shows that transplanting the EET chain of Shewanella oneidensis into Escherichia coli is more complex than previously suggested. The heterologous expression of only c-type cytochromes and the β-barrel protein MtrB is insufficient for competitive reduction rates. Predominantly, MtrC and MtrB require specific proteins for transport and folding, necessitating co-expression and maturation. We could identify the type II secretion system of S. oneidensis as crucial for MtrC secretion in E. coli. Thereby, this work highlights the substrate specificity of bacterial type II secretion systems, suggesting methods to optimize protein production and secretion in bioelectrochemical applications.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Lukas Kneuer
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | | | - Simon Jautelat
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Nhat Quang Le
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
3
|
Wendler Miranda B, Junges LH, Souza EMD, Santana Lunardi P, Müller-Santos M. Harnessing flavonoids to control probiotic function: in situ application of a naringenin-responsive genetic circuit. Microbiol Spectr 2025:e0289024. [PMID: 40277392 DOI: 10.1128/spectrum.02890-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/22/2025] [Indexed: 04/26/2025] Open
Abstract
Efforts to improve probiotics' capabilities through synthetic biology have recently increased. Using naturally occurring plant-based compounds, such as flavonoids, as inputs of genetic circuits introduced in probiotics is a promising strategy to enhance or introduce a beneficial phenotype to the host. However, flavonoid-responsive genetic circuits have not yet been applied in host-microbe conditions. In this work, we have characterized the FdeR-based naringenin-responsive genetic circuit in the probiotic (Escherichia coli Nissle 1917) (EcN), both in vitro and in situ, applying the FdeR system in EcN colonizing mice guts. In culture, the circuit demonstrated a 131-fold activation upon naringenin exposure. In mice, circuit activity was monitored via luminescence produced by Nanoluc in fecal samples following oral gavage of naringenin (100 mg/kg), resulting in a 34-fold luminescence increase. This activation decreased over 24 hours but was reinduced after a second gavage with naringenin. These findings demonstrate the potential of naringenin-responsive genetic circuits to program probiotic phenotypes in vivo through external compound administration. Future studies should evaluate lower naringenin dosages and naringenin-rich foods as alternative inputs. IMPORTANCE Engineering probiotics is a rapidly advancing field in synthetic biology. Genetic circuits, which enable precise and predictable control of microbial phenotypes, are central to this effort. Leveraging natural, plant-based compounds like flavonoids to control gene expression offers a promising strategy for developing next-generation probiotics with enhanced capabilities. This study demonstrates the activity of a flavonoid-responsive genetic circuit during host-microbe interactions. The findings provide a foundation for using beneficial compounds like naringenin as inputs to drive desired phenotypes in vivo. In addition, this work expands the range of genetic circuit inputs, facilitating the design of more sophisticated, multi-input systems for probiotic engineering.
Collapse
Affiliation(s)
- Brenno Wendler Miranda
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Lucas Henrique Junges
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Paula Santana Lunardi
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Biological Oxidations Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| | - Marcelo Müller-Santos
- Postgraduate Program in Science (Biochemistry), Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), , Curitiba, Brazil
| |
Collapse
|
4
|
Navarro PP, Vettiger A, Hajdu R, Ananda VY, López-Tavares A, Schmid EW, Walter JC, Loose M, Chao LH, Bernhardt TG. The aPBP-type cell wall synthase PBP1b plays a specialized role in fortifying the Escherichia coli division site against osmotic rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646830. [PMID: 40236067 PMCID: PMC11996507 DOI: 10.1101/2025.04.02.646830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A multi-protein system called the divisome promotes bacterial division. This apparatus synthesizes the peptidoglycan (PG) cell wall layer that forms the daughter cell poles and protects them from osmotic lysis. In the model Gram-negative bacterium Escherichia coli , PG synthases called class A penicillin-binding proteins (aPBPs) have been proposed to play crucial roles in division. However, there is limited experimental support for aPBPs playing a specialized role in division that is distinct from their general function in the expansion and fortification of the PG matrix. Here, we present in situ cryogenic electron tomography data indicating that the aPBP-type enzyme PBP1b is required to produce a wedge-like density of PG at the division site. Furthermore, atomic force and live cell microscopy showed that loss of this structure weakens the division site and renders it susceptible to lysis. Surprisingly, we found that the lipoprotein activator LpoB needed to promote the general function of PBP1b was not required for normal division site architecture or its integrity. Additionally, we show that of the two PBP1b isoforms produced in cells, it is the one with an extended cytoplasmic N-terminus that functions in division, likely via recruitment by the FtsA component of the divisome. Altogether, our results demonstrate that PBP1b plays a specialized, LpoB-independent role in E. coli cell division involving the biogenesis of a PG structure that prevents osmotic rupture. The conservation of aPBPs with extended cytoplasmic N-termini suggests that other Gram-negative bacteria may use similar mechanisms to reinforce their division site.
Collapse
|
5
|
Bergmiller T. Programming CRISPRi to control the lifecycle of bacteriophage T7. Front Microbiol 2025; 16:1497650. [PMID: 40012778 PMCID: PMC11863960 DOI: 10.3389/fmicb.2025.1497650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi), based on catalytically dead Cas9 nuclease of Streptococcus pyogenes, is a programmable and highly flexible tool to investigate gene function and essentiality in bacteria due to its ability to block transcription elongation at nearly any desired DNA target. In this study, I assess how CRISPRi can be programmed to control the life cycle and infectivity of Escherichia coli bacteriophage T7, a highly virulent and obligatory lytic phage. This is achieved by blocking the expression of critical host-dependent promoters and genes that are required for T7 genome translocation and lifecycle progression. Specifically, I focus on the promoters within the non-coding internalisation signal region and the E. coli-recognised promoter C controlling T7 RNA polymerase (T7 RNAP) expression. Fluorescent reporter assays reveal that CRISPRi targeting of promoters in the internalisation signal is only moderately effective, whereas the downregulation of the phage's own T7 RNAP occurs very efficiently. Effects on the time to lysis were strongest when the left-most promoter on the leading end of the T7 genome or T7 RNAP was targeted. The stringency of the CRISPRi approach further improved when using multiplex sgRNAs to target multiple phage regions simultaneously, resulting in a 25% increase in the time to lysis and up to an 8-fold reduction in plaque size. Overall, this study expands dCas9-dependent CRISPRi as a flexible tool to non-invasively manipulate and probe the lifecycle and infectivity of otherwise native T7 phage.
Collapse
Affiliation(s)
- Tobias Bergmiller
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Mentrup A, Scheitz LV, Wallenfang T, Rother M. Production of the Sesquiterpene Bisabolene From One- and Two-Carbon Compounds in Engineered Methanosarcina acetivorans. Microb Biotechnol 2025; 18:e70105. [PMID: 39937062 PMCID: PMC11816158 DOI: 10.1111/1751-7915.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
The isoprenoid bisabolene, one of the simplest monocyclic sesquiterpenes, is a natural plant product that, in addition to its biological function, serves as a precursor for many industrial products. Due to the low concentration of bisabolene and the long harvest cycle, industrial production of this isoprenoid in plants is economically challenging. Chemical synthesis of bisabolene also suffers from significant disadvantages, such as low yields, toxic side products and high costs. Archaea appear suitable producers of isoprenoids, as their membrane lipids consist of isoprenoid ethers, which are synthesised via a variant of the mevalonate (MVA) pathway. Archaeal model species have versatile metabolic capacities, which makes them potential candidates for biotechnological applications. Here, we engineered Methanosarcina acetivorans for production of α-bisabolene from one-carbon substrates by introducing a bisabolene synthase from Abies grandis. Expression of a codon-optimised bisabolene synthase gene in M. acetivorans resulted in 10.6 mg bisabolene/L of culture. Overexpressing genes of the MVA pathway only slightly increased bisabolene yields, which, however, were reached much earlier during incubations than in the corresponding parent strain. The data presented argue for the suitability of M. acetivorans for the biotechnical production of certain isoprenoids.
Collapse
Affiliation(s)
- Andrea Mentrup
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
| | - Luca V. Scheitz
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
| | - Theo Wallenfang
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Michael Rother
- Fakultät BiologieTechnische Universität DresdenDresdenGermany
| |
Collapse
|
7
|
Zhen Z, Xiang L, Li S, Li H, Lei Y, Chen W, Jin JM, Liang C, Tang SY. Designing a whole-cell biosensor applicable for S-adenosyl-l-methionine-dependent methyltransferases. Biosens Bioelectron 2025; 268:116904. [PMID: 39504884 DOI: 10.1016/j.bios.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
This study was undertaken to develop a high-throughput screening strategy using a whole-cell biosensor to enhance methyl-group transfer, a rate-limiting step influenced by intracellular methyl donor availability and methyltransferase efficiency. An l-homocysteine biosensor was designed based on regulatory protein MetR from Escherichia coli, which rapidly reported intracellular l-homocysteine accumulation resulted from S-adenosyl-l-homocysteine (SAH) formation after methyl-group transfer. Using S-adenosyl-l-methionine (SAM) as a methyl donor, this biosensor was applied to caffeic acid 3-O-methyltransferase derived from Arabidopsis thaliana (AtComT). After several rounds of directed evolution, the modified enzyme achieved a 13.8-fold improvement when converting caffeic acid to ferulic acid. The best mutant exhibited a 5.4-fold improvement in catalytic efficiency. Characterization of beneficial mutants showed that improved O-methyltransferase dimerization greatly contributed to enzyme activity. This finding was verified when we switched and compared the N-termini involved in dimerization across different sources. Finally, with tyrosine as a substrate, the evolved AtComT mutant greatly improved ferulic acid biosynthesis, yielding 3448 mg L-1 with a conversion rate of 88.8%. These results have important implications for high-efficiency O-methyltransferase design, which will greatly benefit the biosynthesis of a wide range of natural products. In addition, the l-homocysteine biosensor has the potential for widespread applications in evaluating the efficiency of SAM-based methyl transfer.
Collapse
Affiliation(s)
- Zhen Zhen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - La Xiang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shizhong Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongji Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanyan Lei
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Chen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, 100048, Beijing, China.
| | - Chaoning Liang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Shuang-Yan Tang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
8
|
Shlosman I, Vettiger A, Bernhardt TG, Kruse AC, Loparo JJ. The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628440. [PMID: 39713382 PMCID: PMC11661203 DOI: 10.1101/2024.12.13.628440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins. However, the molecular mechanism by which lipoproteins coordinate the spatial recruitment and enzymatic activation of aPBPs remains unclear. Here we use single-molecule FRET and single-particle tracking in E. coli to show that a prototypical lipoprotein activator LpoB triggers site-specific PG synthesis by PBP1b through conformational rearrangements. Once synthesis is initiated, LpoB affinity for PBP1b dramatically decreases and it dissociates from the synthesizing enzyme. Our results suggest that transient allosteric coupling between PBP1b and LpoB directs PG synthesis to areas of low peptidoglycan density, while simultaneously facilitating efficient lipoprotein redistribution to other sites in need of fortification.
Collapse
|
9
|
Vázquez-Ciros OJ, Alvarez AF, Georgellis D. Identification of an ArgR-controlled promoter within the outermost region of the IS 10R mobile element. J Bacteriol 2024; 206:e0026424. [PMID: 39480091 PMCID: PMC11580472 DOI: 10.1128/jb.00264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The transposon Tn10 is a prevalent composite element often detected in enteric bacteria, including those obtained from clinical samples. The Tn10 is flanked by two IS10 elements that work together in mediating transposition. IS10-right (IS10R) promotes transposition, while IS10-left lacks a functional transposase and cannot transpose independently. IS10R contains a weak promoter crucial for transposase transcription (pIN), along with two outward-oriented promoters, pOUT and OUTIIp, which may influence the expression of adjacent genes flanking the transposition site. Here, we report the identification of a novel outward-facing promoter, pOUT70, and a functional translation initiation region (TIR) within the last 70 nucleotides of IS10R. Furthermore, we show that pOUT70 is negatively regulated by ArgR and positively controlled by IHF, and we demonstrate that pOUT70 enables growth phase-dependent expression of a truncated yet constitutively active version of the histidine kinase BarA. These findings underscore the significance of IS elements in enhancing downstream gene expression, and highlights the role of outward-facing promoters in derepressing virulence factors or acquiring antibiotic resistance. IMPORTANCE Mobile genetic elements are small DNA fragments that can relocate within the genome, causing either gene inactivation or enhanced gene expression. Our research identified a new functional promoter and mRNA translation region within the IS10R element, which is part of the widely distributed Tn10 transposon. We found that the global regulators ArgR and IHF control the activity of this promoter. Additionally, insertion of this mini-Tn10 derivative into the barA gene resulted in the expression of a truncated but constitutive active form of the BarA sensor kinase. Overall, our work sheds light on how mobile genetic elements could impact the physiology and virulence of opportunistic pathogenic bacteria.
Collapse
Affiliation(s)
- Oscar J. Vázquez-Ciros
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Adrián F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
10
|
Prakash A, Kalita A, Bhardwaj K, Mishra RK, Ghose D, Kaur G, Verma N, Pani B, Nudler E, Dutta D. Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities. J Biol Chem 2024; 300:107967. [PMID: 39510182 DOI: 10.1016/j.jbc.2024.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
The trace metal ion manganese (Mn) in excess is toxic. Therefore, a small subset of factors tightly maintains its cellular level, among which an efflux protein MntP is the champion. Multiple transcriptional regulators and a manganese-dependent translational riboswitch regulate the MntP expression in Escherichia coli. As riboswitches are untranslated RNAs, they are often associated with the Rho-dependent transcription termination in bacteria. Here, performing in vitro transcription and in vivo reporter assays, we demonstrate that Rho efficiently terminates transcription at the mntP riboswitch region. Excess manganese activates the riboswitch, restoring the coupling between transcription and translation to evade Rho-dependent transcription termination partially. RT-PCR and Western blot experiments revealed that the deletion of the riboswitch abolishes Rho-dependent termination and thereby overexpresses MntP. Interestingly, deletion of the riboswitch also renders bacteria sensitive to manganese. This manganese sensitivity is linked with the overexpression of MntP. Further spot assays, confocal microscopy, and flow cytometry experiments revealed that the high level of MntP expression was responsible for slow growth, cell filamentation, and reactive oxygen species (ROS) production. We posit that manganese-dependent transcriptional activation of mntP in the absence of Rho-dependent termination leads to excessive MntP expression, a membrane protein, causing membrane protein toxicity. Thus, we show a regulatory role of Rho-dependent termination, which prevents membrane protein toxicity by limiting MntP expression.
Collapse
Affiliation(s)
- Anand Prakash
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Arunima Kalita
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bhardwaj
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajesh Kumar Mishra
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Debarghya Ghose
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Gursharan Kaur
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, New York, USA
| | - Dipak Dutta
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
11
|
Rivard N, Humbert M, Huguet KT, Fauconnier A, Bucio CP, Quirion E, Burrus V. Surface exclusion of IncC conjugative plasmids and their relatives. PLoS Genet 2024; 20:e1011442. [PMID: 39383195 PMCID: PMC11493245 DOI: 10.1371/journal.pgen.1011442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The phenomenon of exclusion allows conjugative plasmids to selectively impede the entry of identical or related elements into their host cell to prevent the resulting instability. Entry exclusion blocks DNA translocation into the recipient cell, whereas surface exclusion destabilizes the mating pair. IncC conjugative plasmids largely contribute to the dissemination of antibiotic-resistance genes in Gammaproteobacteria. IncC plasmids are known to exert exclusion against their relatives, including IncC and IncA plasmids, yet the entry exclusion factor eexC alone does not account for the totality of the exclusion phenotype. In this study, a transposon-directed insertion sequencing approach identified sfx as necessary and sufficient for the remaining exclusion phenotype. Sfx is an exclusion factor unrelated to the ones described to date. A cell fractionation assay localized Sfx in the outer membrane. Reverse transcription PCR and beta-galactosidase experiments showed that sfx is expressed constitutively at a higher level than eexC. A search in Gammaproteobacteria genomes identified Sfx homologs encoded by IncC, IncA and related, untyped conjugative plasmids and an uncharacterized family of integrative and mobilizable elements that likely rely on IncC plasmids for their mobility. Mating assays demonstrated that sfx is not required in the donor for exclusion, ruling out Sfx as the exclusion target. Instead, complementation assays revealed that the putative adhesin TraN in the donor mediates the specificity of surface exclusion. Mating assays with TraN homologs from related untyped plasmids from Aeromonas spp. and Photobacterium damselae identified two surface exclusion groups, with each Sfx being specific of TraN homologs from the same group. Together, these results allow us to better understand the apparent incompatibility between IncA and IncC plasmids and to propose a mechanistic model for surface exclusion mediated by Sfx in IncC plasmids and related elements, with implications for the rampant dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Rivard
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Malika Humbert
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kévin T Huguet
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Aurélien Fauconnier
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - César Pérez Bucio
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, Mexico
| | - Eve Quirion
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
Igonina O, Samsonov V, Stoynova N. One-step cloning and targeted duplication of Pantoea ananatis chromosomal fragments. J Microbiol Methods 2024; 224:106999. [PMID: 39033856 DOI: 10.1016/j.mimet.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
In this study, we describe a novel method for one-step cloning and targeted duplication of P. ananatis chromosomal fragments. According to this method, the chromosomal region of interest is subcloned in vivo via λ Red recombination into the short synthetic non-replicable DNA fragment containing the excisable antibiotic-resistance marker gene and φ80 att-P site. The resulting circular non-replicating DNA molecule was immediately inserted into an alternative chromosomal locus due to φ80-integrase activity. To this end, the specially designed helper plasmid pONI, which can provide both the λ Red recombineering and φ80-integrase-mediated insertion, was constructed. In the described method, PCR amplification of the cloning fragment is unnecessary, making it convenient for manipulation of long-length DNA. Additionally, the possibility of spontaneous mutations occurring is completely precluded. This method was effectively used for the targeted chromosomal integration of additional copies of individual genes and operons up to 16 kb in size.
Collapse
Affiliation(s)
- O Igonina
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - V Samsonov
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - N Stoynova
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation.
| |
Collapse
|
13
|
Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, McGuffie MJ, Mishler DM, Barrick JE. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat Commun 2024; 15:6242. [PMID: 39048554 PMCID: PMC11269670 DOI: 10.1038/s41467-024-50639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized. We measured how 301 BioBrick plasmids affected Escherichia coli growth and found that 59 (19.6%) were burdensome, primarily because they depleted the limited gene expression resources of host cells. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be unclonable. We made this model available online for education ( https://barricklab.org/burden-model ) and added our burden measurements to the iGEM Registry. Our results establish a fundamental limit on what DNA constructs and genetic modifications can be successfully engineered into cells.
Collapse
Affiliation(s)
- Noor Radde
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Genevieve A Mortensen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Diya Bhat
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Shireen Shah
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joseph J Clements
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dennis M Mishler
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
- The Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Li W, Miller D, Liu X, Tosi L, Chkaiban L, Mei H, Hung PH, Parekkadan B, Sherlock G, Levy S. Arrayed in vivo barcoding for multiplexed sequence verification of plasmid DNA and demultiplexing of pooled libraries. Nucleic Acids Res 2024; 52:e47. [PMID: 38709890 PMCID: PMC11162764 DOI: 10.1093/nar/gkae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Sequence verification of plasmid DNA is critical for many cloning and molecular biology workflows. To leverage high-throughput sequencing, several methods have been developed that add a unique DNA barcode to individual samples prior to pooling and sequencing. However, these methods require an individual plasmid extraction and/or in vitro barcoding reaction for each sample processed, limiting throughput and adding cost. Here, we develop an arrayed in vivo plasmid barcoding platform that enables pooled plasmid extraction and library preparation for Oxford Nanopore sequencing. This method has a high accuracy and recovery rate, and greatly increases throughput and reduces cost relative to other plasmid barcoding methods or Sanger sequencing. We use in vivo barcoding to sequence verify >45 000 plasmids and show that the method can be used to transform error-containing dispersed plasmid pools into sequence-perfect arrays or well-balanced pools. In vivo barcoding does not require any specialized equipment beyond a low-overhead Oxford Nanopore sequencer, enabling most labs to flexibly process hundreds to thousands of plasmids in parallel.
Collapse
Affiliation(s)
- Weiyi Li
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Xianan Liu
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Lorenzo Tosi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Lamia Chkaiban
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Han Mei
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Po-Hsiang Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sasha F Levy
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Saunders SH, Ahmed AM. ORBIT for E. coli: kilobase-scale oligonucleotide recombineering at high throughput and high efficiency. Nucleic Acids Res 2024; 52:e43. [PMID: 38587185 PMCID: PMC11077079 DOI: 10.1093/nar/gkae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Microbiology and synthetic biology depend on reverse genetic approaches to manipulate bacterial genomes; however, existing methods require molecular biology to generate genomic homology, suffer from low efficiency, and are not easily scaled to high throughput. To overcome these limitations, we developed a system for creating kilobase-scale genomic modifications that uses DNA oligonucleotides to direct the integration of a non-replicating plasmid. This method, Oligonucleotide Recombineering followed by Bxb-1 Integrase Targeting (ORBIT) was pioneered in Mycobacteria, and here we adapt and expand it for Escherichia coli. Our redesigned plasmid toolkit for oligonucleotide recombineering achieved significantly higher efficiency than λ Red double-stranded DNA recombineering and enabled precise, stable knockouts (≤134 kb) and integrations (≤11 kb) of various sizes. Additionally, we constructed multi-mutants in a single transformation, using orthogonal attachment sites. At high throughput, we used pools of targeting oligonucleotides to knock out nearly all known transcription factor and small RNA genes, yielding accurate, genome-wide, single mutant libraries. By counting genomic barcodes, we also show ORBIT libraries can scale to thousands of unique members (>30k). This work demonstrates that ORBIT for E. coli is a flexible reverse genetic system that facilitates rapid construction of complex strains and readily scales to create sophisticated mutant libraries.
Collapse
Affiliation(s)
- Scott H Saunders
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75320, USA
| | - Ayesha M Ahmed
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75320, USA
| |
Collapse
|
16
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, McGuffie MJ, Mishler DM, Barrick JE. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588465. [PMID: 38645188 PMCID: PMC11030366 DOI: 10.1101/2024.04.08.588465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Populations of engineered cells can rapidly become dominated by "escape mutants" that evolve to alleviate this burden by inactivating the intended function. Synthetic biologists working with bacteria rely on genetic parts and devices encoded on plasmids, but the burden of different engineered DNA sequences is rarely characterized. We measured how 301 BioBricks on high-copy plasmids affected the growth rate of Escherichia coli. Of these, 59 (19.6%) negatively impacted growth. The burden imposed by engineered DNA is commonly associated with diverting ribosomes or other gene expression factors away from producing endogenous genes that are essential for cellular replication. In line with this expectation, BioBricks exhibiting burden were more likely to contain highly active constitutive promoters and strong ribosome binding sites. By monitoring how much each BioBrick reduced expression of a chromosomal GFP reporter, we found that the burden of most, but not all, BioBricks could be wholly explained by diversion of gene expression resources. Overall, no BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic model that predicts such plasmids should be "unclonable" because escape mutants will take over during growth of a bacterial colony or small laboratory culture from a transformed cell. We made this model available as an interactive web tool for synthetic biology education and added our burden measurements to the iGEM Registry descriptions of each BioBrick.
Collapse
Affiliation(s)
- Noor Radde
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Genevieve A. Mortensen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Diya Bhat
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shireen Shah
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph J. Clements
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P. Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew J. McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dennis M. Mishler
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
- The Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Lin TH, Cheng SY, Lin YF, Chen PT. Development of the Low-Temperature Inducible System for Recombinant Protein Production in Escherichia coli Nissle 1917. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7318-7325. [PMID: 38506339 DOI: 10.1021/acs.jafc.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The pET system is commonly used for producing foreign proteins in Escherichia coli, but its reliance on the costly and metabolically demanding inducer IPTG limits its industrial use. This study engineered a low-temperature inducible system (LTIS) in E. coli Nissle 1917 (EcN) by combining the T7 expression system with the thermal inducible mechanism CI857-λPRPL to generate the new LTIS strain, ENL7P. The strain ENL7P-sfGFP-Km underwent overnight culture at 37 °C for 14-16 h, followed by subculturing at 30 °C for 24 h. This resulted in a notable 5.53-fold increase in the sfGFP induction rate when the strain was cultivated under 37-30 °C conditions. Moreover, gene expression was induced using a two-stage strategy. Initially, the strain was cultured overnight at 39 °C for 14-16 h, followed by a subculture at 30 °C for 6 h, and finally, another subculture at 30 °C for 24 h. This cultivation strategy led to an impressive 158.37-fold induction rate for sfGFP. Similar effects could be achieved through utilization of the LTIS system for inducing the production of thermophilic trehalose synthase from Thermus antranikianii (TaTS). The results of this study proved that the LTIS system has the potential for industrial applications.
Collapse
Affiliation(s)
- Tzu-Han Lin
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Shu-Yun Cheng
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Yi-Fen Lin
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| |
Collapse
|
19
|
Zhu X, Wu J, Li S, Xiang L, Jin JM, Liang C, Tang SY. Artificial Biosynthetic Pathway for Efficient Synthesis of Vanillin, a Feruloyl-CoA-Derived Natural Product from Eugenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6463-6470. [PMID: 38501643 DOI: 10.1021/acs.jafc.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.
Collapse
Affiliation(s)
- Xiaochong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhong Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - La Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Yan D, Xue J, Xiao J, Lyu Z, Yang X. Protocol for single-molecule labeling and tracking of bacterial cell division proteins. STAR Protoc 2024; 5:102766. [PMID: 38085639 PMCID: PMC10733747 DOI: 10.1016/j.xpro.2023.102766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we present a protocol for labeling and tracking individual molecules, particularly cell division proteins in live bacterial cells. The protocol encompasses strain construction, single-molecule imaging, trajectory segmentation, and motion property analysis. The protocol enables the identification of distinctive motion states associated with different cell division proteins. Subsequent assessments of the dynamic behaviors of these proteins provide insights into their activities and interactions at the septum during cell division. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021),1 Lyu et al. (2022),2 and Mahone et al. (2024).3.
Collapse
Affiliation(s)
- Di Yan
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinchan Xue
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Xinxing Yang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
De Anda-Mora KL, Tavares-Carreón F, Alvarez C, Barahona S, Becerril-García MA, Treviño-Rangel RJ, García-Contreras R, Andrade A. Increased Proteolytic Activity of Serratia marcescens Clinical Isolate HU1848 Is Associated with Higher eepR Expression. Pol J Microbiol 2024; 73:11-20. [PMID: 38437469 PMCID: PMC10911700 DOI: 10.33073/pjm-2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/14/2023] [Indexed: 03/06/2024] Open
Abstract
Serratia marcescens is a global opportunistic pathogen. In vitro cytotoxicity of this bacterium is mainly related to metalloprotease serralysin (PrtS) activity. Proteolytic capability varies among the different isolates. Here, we characterized protease production and transcriptional regulators at 37°C of two S. marcescens isolates from bronchial expectorations, HU1848 and SmUNAM836. As a reference strain the insect pathogen S. marcescens Db10 was included. Zymography of supernatant cultures revealed a single (SmUNAM836) or double proteolytic zones (HU1848 and Db10). Mass spectrometry confirmed the identity of PrtS and the serralysin-like protease SlpB from supernatant samples. Elevated proteolytic activity and prtS expression were evidenced in the HU1848 strain through azocasein degradation and qRT-PCR, respectively. Evaluation of transcriptional regulators revealed higher eepR expression in HU1848, whereas cpxR and hexS transcriptional levels were similar between studied strains. Higher eepR expression in HU1848 was further confirmed through an in vivo transcriptional assay. Moreover, two putative CpxR binding motifs were identified within the eepR regulatory region. EMSA validated the interaction of CpxR with both motifs. The evaluation of eepR transcription in a cpxR deletion strain indicated that CpxR negatively regulates eepR. Sequence conservation suggests that regulation of eepR by CpxR is common along S. marcescens species. Overall, our data incorporates CpxR to the complex regulatory mechanisms governing eepR expression and associates the increased proteolytic activity of the HU1848 strain with higher eepR transcription. Based on the global impact of EepR in secondary metabolites production, our work contributes to understanding virulence factors variances across S. marcescens isolates.
Collapse
Affiliation(s)
- Karla L. De Anda-Mora
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Faviola Tavares-Carreón
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Carlos Alvarez
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Samantha Barahona
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Miguel A. Becerril-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Rogelio J. Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
22
|
Bhardwaj K, Kalita A, Verma N, Prakash A, Thakur R, Dutta D. Rho-dependent termination enables cellular pH homeostasis. J Bacteriol 2024; 206:e0035623. [PMID: 38169297 PMCID: PMC10810219 DOI: 10.1128/jb.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand Prakash
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Ruchika Thakur
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
23
|
Gudeta DD, Foley SL. Versatile allelic replacement and self-excising integrative vectors for plasmid genome mutation and complementation. Microbiol Spectr 2024; 12:e0338723. [PMID: 37991378 PMCID: PMC10782977 DOI: 10.1128/spectrum.03387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE In spite of the dissemination of multidrug-resistant plasmids among Gram-negative pathogens, including those carrying virulence genes, vector tools for studying plasmid-born genes are lacking. The allelic replacement vectors can be used to generate plasmid or chromosomal mutations including markless point mutations. This is the first report describing a self-excising integrative vector that can be used as a stable single-copy complementing tool to study medically important pathogens including in vivo studies without the need for antibiotic selection. Overall, our newly developed vectors can be applied for the assessment of the function of plasmid-encoded genes by specifically creating mutations, moving large operons between plasmids and to/from the chromosome, and complementing phenotypes associated with gene mutation. Furthermore, the vectors express chromophores for the detection of target gene modification or colony isolation, avoiding time-consuming screening procedures.
Collapse
Affiliation(s)
- Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
24
|
Gurbatri C, Danino T. Engineering Probiotic E. coli Nissle 1917 for Release of Therapeutic Nanobodies. Methods Mol Biol 2024; 2748:289-305. [PMID: 38070121 DOI: 10.1007/978-1-0716-3593-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Bioengineered probiotics enable new opportunities to improve cancer treatment strategies due to their tumor-colonizing capabilities. Here, we will describe the development of a probiotic E. coli Nissle 1917 platform encoding a synchronized lysis mechanism for the localized and sustained release of blocking nanobodies against immune checkpoint molecules like programmed cell death protein-ligand 1 and cytotoxic T lymphocyte-associated protein-4. Specifically, we will detail the experimental protocols needed to (1) encode and validate binding of recombinantly produced checkpoint blockade nanobodies, (2) evaluate the therapeutic efficacy and safety of the probiotic platform in syngeneic tumor-bearing mice, and (3) analyze the immunophenotype of the tumor microenvironment.
Collapse
Affiliation(s)
- Candice Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Pourciau C, Yakhnin H, Pannuri A, Gorelik MG, Lai YJ, Romeo T, Babitzke P. CsrA coordinates the expression of ribosome hibernation and anti-σ factor proteins. mBio 2023; 14:e0258523. [PMID: 37943032 PMCID: PMC10746276 DOI: 10.1128/mbio.02585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archanna Pannuri
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mark G. Gorelik
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ying-Jung Lai
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
26
|
Liu L, Lou N, Liang Q, Xiao W, Teng G, Ma J, Zhang H, Huang M, Feng Y. Chasing the landscape for intrahospital transmission and evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Sci Bull (Beijing) 2023; 68:3027-3047. [PMID: 37949739 DOI: 10.1016/j.scib.2023.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
The spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) is a global health concern. Here, we report the intrahospital colonization and spread of Hv-CRKP isolates in a tertiary hospital from 2017 to 2022. Analyses of 90 nonredundant CRKP isolates from 72 patients indicated that Hv-CRKP transferability relies on the dominant ST11-K64 clone. Whole-genome sequencing of 11 representative isolates gave 31 complete plasmid sequences, including 12 KPC-2 resistance carriers and 10 RmpA virulence vehicles. Apart from the binary vehicles, we detected two types of fusion plasmids, favoring the cotransfer of RmpA virulence and KPC-2 resistance. The detection of ancestry/relic plasmids enabled us to establish genetic mechanisms by which rare fusion plasmids form. Unexpectedly, we found a total of five rmpA promoter variants (P9T-P13T) exhibiting distinct activities and varying markedly in their geographic distributions. CRISPR/Cas9 manipulation confirmed that an active PT11-rmpA regulator is a biomarker for the "high-risk" ST11-K64/CRKP clone. These findings suggest clonal spread and clinical evolution of the prevalent ST11-K64/Hv-CRKP clones. Apart from improved public awareness of Hv-CRKP convergence, our findings might benefit the development of surveillance (and/or intervention) strategies for the dominant ST11-K64 lineage of the Hv-CRKP population in healthcare sectors.
Collapse
Affiliation(s)
- Lizhang Liu
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ningjie Lou
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiqiang Liang
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Xiao
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Gaoqin Teng
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiangang Ma
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Man Huang
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Youjun Feng
- Key Laboratory of Multiple Organ Failure, Ministry of Education; Department of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
27
|
Törk L, Moffatt CB, Bernhardt TG, Garner EC, Kahne D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 2023; 623:814-819. [PMID: 37938784 PMCID: PMC10842706 DOI: 10.1038/s41586-023-06709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.
Collapse
Affiliation(s)
- Lisa Törk
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Caitlin B Moffatt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
Li W, Miller D, Liu X, Tosi L, Chkaiban L, Mei H, Hung PH, Parekkadan B, Sherlock G, Levy SF. Arrayed in vivo barcoding for multiplexed sequence verification of plasmid DNA and demultiplexing of pooled libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562064. [PMID: 37873145 PMCID: PMC10592806 DOI: 10.1101/2023.10.13.562064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence verification of plasmid DNA is critical for many cloning and molecular biology workflows. To leverage high-throughput sequencing, several methods have been developed that add a unique DNA barcode to individual samples prior to pooling and sequencing. However, these methods require an individual plasmid extraction and/or in vitro barcoding reaction for each sample processed, limiting throughput and adding cost. Here, we develop an arrayed in vivo plasmid barcoding platform that enables pooled plasmid extraction and library preparation for Oxford Nanopore sequencing. This method has a high accuracy and recovery rate, and greatly increases throughput and reduces cost relative to other plasmid barcoding methods or Sanger sequencing. We use in vivo barcoding to sequence verify >45,000 plasmids and show that the method can be used to transform error-containing dispersed plasmid pools into sequence-perfect arrays or well-balanced pools. In vivo barcoding does not require any specialized equipment beyond a low-overhead Oxford Nanopore sequencer, enabling most labs to flexibly process hundreds to thousands of plasmids in parallel.
Collapse
Affiliation(s)
- Weiyi Li
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Xianan Liu
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Lorenzo Tosi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Lamia Chkaiban
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Han Mei
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Po-Hsiang Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sasha F Levy
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
- Present Address: BacStitch DNA, Los Altos, CA, USA
| |
Collapse
|
29
|
Effendi SSW, Ng IS. Prospective and challenges of live bacterial therapeutics from a superhero Escherichia coli Nissle 1917. Crit Rev Microbiol 2023; 49:611-627. [PMID: 35947523 DOI: 10.1080/1040841x.2022.2109405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Escherichia coli Nissle 1917 (EcN), the active component of Mutaflor(R), is a notable probiotic from Gram-negative to treat Crohn's disease and irritable bowel syndrome. Therefore, a comprehensive genomic database maximizes the systemic probiotic assessment to discover EcN's role in human health. Recently, advanced synthetic and genetic tools have opened up a rich area to execute EcN as "living medicines" with controllable functions. Incorporating unique biomarkers allows the engineered EcN to switch genes on and off in response to environmental cues. Since EcN holds promise as a safe nature vehicle, more studies are desired to fully realize a wide range of probiotic potential for disease treatment. This review aims to deliver a historical origin of EcN, discuss the recent promising genetic toolbox in the rational design of probiotics, and pinpoint the clinical translation and evaluation of engineered EcN in vitro and in vivo. The summary of safety concerns, strategies of biotherapeutics development, and the challenges and prospects of engineered EcN is also concluded.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Yang G, Yang L, Zhou X. Inhibition of bacterial swimming by heparin binding of flagellin FliC from Escherichia coli strain Nissle 1917. Arch Microbiol 2023; 205:286. [PMID: 37452842 DOI: 10.1007/s00203-023-03622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Escherichia coli Nissle1917 (EcN) is a non-pathogenic probiotic strain widely used to maintain gut health, treat gastrointestinal disorders, and modulate the gut microbiome due to its anti-inflammatory and competitive exclusion effects against pathogenic bacteria. Heparin, abundant on intestinal mucosal surfaces, is a highly sulfated glycosaminoglycan primarily produced by mast cells. Currently, the interaction between EcN surface protein and heparin has remained elusive. In this study, the flagellin FliC responsible for EcN's movement was separated and characterized as a heparin binding protein by mass spectrometry (MS) analysis. The recombinant FliC protein, expressed by plasmid pET28a( +)-fliC, was further prepared to confirm the interaction between FliC and heparin. The results showed that heparin-Sepharose's ability to bind FliC was 48-fold higher than its ability to bind the negative control, bovine serum albumin (BSA). Neither the knockout of gene fliC nor the addition of heparin affects the growth of EcN, but both significantly inhibit the swimming of EcN. Adding 10 mg/ml heparin reduced the swimming diameter of the wild type and the complemented strain to 29-41% of the original, but that did not affect the swimming ability of the knockout strains. These results demonstrate that heparin interacts with EcN flagellin FliC and inhibits bacteria swimming. Exploring this interaction could improve our understanding of the relationship between hosts and microorganisms and provide a potential basis for disease treatment.
Collapse
Affiliation(s)
- Guixia Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lingkang Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
31
|
Cao L, Li J, Yang Z, Hu X, Wang P. A review of synthetic biology tools in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:129. [PMID: 36944859 DOI: 10.1007/s11274-023-03557-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Yarrowia lipolytica is a non-conventional oleaginous yeast with great potential for industrial production. Y. lipolytica has a high propensity for flux through tricarboxylic acid cycle intermediates. Therefore, this host is currently being developed as a workhorse, and is rapidly emerging in biotechnology fields, especially for industrial chemical production, whole-cell bioconversion, and the treatment and recycling of industrial waste. In recent studies, Y. lipolytica has been rewritten and introduced with non-native metabolites of certain compounds of interest owing to the advancement in synthetic biology tools. In this review, we collate recent progress to present a detailed and insightful summary of the major developments in synthetic biology tools and techniques for Y. lipolytica, including promoters, terminators, selection markers, autonomously replicating sequences, DNA assembly techniques, genome editing techniques, and subcellular organelle engineering. This comprehensive overview would be a useful resource for future genetic engineering studies to improve the yield of desired metabolic products in Y. lipolytica.
Collapse
Affiliation(s)
- Linshan Cao
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jiajie Li
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Zihan Yang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xiao Hu
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Pengchao Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China.
- Northeast Forestry University, No. 26 Hexing Road, Harbin, 150000, People's Republic of China.
| |
Collapse
|
32
|
Simple and Rapid Site-Specific Integration of Multiple Heterologous DNAs into the Escherichia coli Chromosome. J Bacteriol 2023; 205:e0033822. [PMID: 36655997 PMCID: PMC9945576 DOI: 10.1128/jb.00338-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Escherichia coli is the most studied and well understood microorganism, but research in this system can still be limited by available genetic tools, including the ability to rapidly integrate multiple DNA constructs efficiently into the chromosome. Site-specific, large serine-recombinases can be useful tools, catalyzing a single, unidirectional recombination event between 2 specific DNA sequences, attB and attP, without requiring host proteins for functionality. Using these recombinases, we have developed a system to integrate up to 12 genetic constructs sequentially and stably into in the E. coli chromosome. A cassette of attB sites was inserted into the chromosome and the corresponding recombinases were cloned onto temperature sensitive plasmids to mediate recombination between a non-replicating, attP-containing "cargo" plasmid and the corresponding attB site on the chromosome. The efficiency of DNA insertion into the E. coli chromosome was approximately 107 CFU/μg DNA for six of the recombinases when the competent cells already contained the recombinase-expressing plasmid and approximately 105 CFU/μg DNA or higher when the recombinase-expressing plasmid and "cargo" plasmid were co-transformed. The "cargo" plasmid contains ΦC31 recombination sites flanking the antibiotic gene, allowing for resistance markers to be removed and reused following transient expression of the ΦC31 recombinase. As an example of the utility of this system, eight DNA methyltransferases from Clostridium clariflavum 4-2a were inserted into the E. coli chromosome to methylate plasmid DNA for evasion of the C. clariflavum restriction systems, enabling the first demonstration of transformation of this cellulose-degrading species. IMPORTANCE More rapid genetic tools can help accelerate strain engineering, even in advanced hosts like Escherichia coli. Here, we adapt a suite of site-specific recombinases to enable simple, rapid, and highly efficient site-specific integration of heterologous DNA into the chromosome. This utility of this system was demonstrated by sequential insertion of eight DNA methyltransferases into the E. coli chromosome, allowing plasmid DNA to be protected from restriction in Clostridium clariflavum and enabling genetic transformation of this organism. This integration system should also be highly portable into non-model organisms.
Collapse
|
33
|
Yamaji K, Taniguchi R, Urano H, Ogasawara H. Roles of methionine and cysteine residues of the Escherichia coli sensor kinase HprS in reactive chlorine species sensing. FEBS Lett 2023; 597:573-584. [PMID: 36647922 DOI: 10.1002/1873-3468.14574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
Sensor histidine kinase HprS, an oxidative stress sensor of Escherichia coli, senses reactive oxygen species (ROS) and reactive chlorine species (RCS), and is involved in the induction of oxidatively damaged protein repair periplasmic enzymes. We reinvestigated the roles of six methionine and four cysteine residues of HprS in the response to HClO, an RCS. The results of site-directed mutagenesis revealed that methionine residues in periplasmic and cytoplasmic regions (Met225) are involved in HprS activation. Interestingly, the Cys165Ser substitution reduced HprS activity, which was recovered by an additional Glu22Cys substitution. Our results demonstrate that the position of the inner membrane cysteine residues influences the extent of HprS activation in HClO sensing.
Collapse
Affiliation(s)
- Kotaro Yamaji
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Rumine Taniguchi
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroyuki Urano
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroshi Ogasawara
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan.,Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto, Japan.,Renaissance Center for Applied Microbiology, Nagano, Japan.,Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano, Japan
| |
Collapse
|
34
|
H +-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation. Microorganisms 2023; 11:microorganisms11020294. [PMID: 36838259 PMCID: PMC9959109 DOI: 10.3390/microorganisms11020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In Rhodospirillum rubrum, part of this energy can be conserved by proton-pumping pyrophosphatase (H+-PPaseRru) in the form of a proton electrochemical gradient for further ATP synthesis. Here, the codon-harmonized gene hppaRru encoding H+-PPaseRru was expressed in the Escherichia coli chromosome. We demonstrate, for the first time, that H+-PPaseRru complements the essential native S-PPase in E. coli cells. 13C-MFA confirmed that replacing native PPase to H+-PPaseRru leads to the re-distribution of carbon fluxes; a statistically significant 36% decrease in tricarboxylic acid (TCA) cycle fluxes was found compared with wild-type E. coli MG1655. Such a flux re-distribution can indicate the presence of an additional method for energy generation (e.g., ATP), which can be useful for the microbiological production of a number of compounds, the biosynthesis of which requires the consumption of ATP.
Collapse
|
35
|
Eismann L, Fijalkowski I, Galmozzi CV, Koubek J, Tippmann F, Van Damme P, Kramer G. Selective ribosome profiling reveals a role for SecB in the co-translational inner membrane protein biogenesis. Cell Rep 2022; 41:111776. [PMID: 36476862 DOI: 10.1016/j.celrep.2022.111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The chaperone SecB has been implicated in de novo protein folding and translocation across the membrane, but it remains unclear which nascent polypeptides SecB binds, when during translation SecB acts, how SecB function is coordinated with other chaperones and targeting factors, and how polypeptide engagement contributes to protein biogenesis. Using selective ribosome profiling, we show that SecB binds many nascent cytoplasmic and translocated proteins generally late during translation and controlled by the chaperone trigger factor. Revealing an uncharted role in co-translational translocation, inner membrane proteins (IMPs) are the most prominent nascent SecB interactors. Unlike other substrates, IMPs are bound early during translation, following the membrane targeting by the signal recognition particle. SecB remains bound until translation is terminated, and contributes to membrane insertion. Our study establishes a role of SecB in the co-translational maturation of proteins from all cellular compartments and functionally implicates cytosolic chaperones in membrane protein biogenesis.
Collapse
Affiliation(s)
- Lena Eismann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Carla Verónica Galmozzi
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013 Seville, Spain
| | - Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Zhang T, Tamman H, Coppieters 't Wallant K, Kurata T, LeRoux M, Srikant S, Brodiazhenko T, Cepauskas A, Talavera A, Martens C, Atkinson GC, Hauryliuk V, Garcia-Pino A, Laub MT. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 2022; 612:132-140. [PMID: 36385533 PMCID: PMC9712102 DOI: 10.1038/s41586-022-05444-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria have evolved diverse immunity mechanisms to protect themselves against the constant onslaught of bacteriophages1-3. Similar to how eukaryotic innate immune systems sense foreign invaders through pathogen-associated molecular patterns4 (PAMPs), many bacterial immune systems that respond to bacteriophage infection require phage-specific triggers to be activated. However, the identities of such triggers and the sensing mechanisms remain largely unknown. Here we identify and investigate the anti-phage function of CapRelSJ46, a fused toxin-antitoxin system that protects Escherichia coli against diverse phages. Using genetic, biochemical and structural analyses, we demonstrate that the C-terminal domain of CapRelSJ46 regulates the toxic N-terminal region, serving as both antitoxin and phage infection sensor. Following infection by certain phages, newly synthesized major capsid protein binds directly to the C-terminal domain of CapRelSJ46 to relieve autoinhibition, enabling the toxin domain to pyrophosphorylate tRNAs, which blocks translation to restrict viral infection. Collectively, our results reveal the molecular mechanism by which a bacterial immune system directly senses a conserved, essential component of phages, suggesting a PAMP-like sensing model for toxin-antitoxin-mediated innate immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers are engaged in a 'Red Queen conflict'5, revealing a new front in the intense coevolutionary battle between phages and bacteria. Given that capsid proteins of some eukaryotic viruses are known to stimulate innate immune signalling in mammalian hosts6-10, our results reveal a deeply conserved facet of immunity.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium
| | - Kyo Coppieters 't Wallant
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, (ULB), Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Gao R, Brokaw SE, Li Z, Helfant LJ, Wu T, Malik M, Stock AM. Exploring the mono-/bistability range of positively autoregulated signaling systems in the presence of competing transcription factor binding sites. PLoS Comput Biol 2022; 18:e1010738. [PMID: 36413575 PMCID: PMC9725139 DOI: 10.1371/journal.pcbi.1010738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Binding of transcription factor (TF) proteins to regulatory DNA sites is key to accurate control of gene expression in response to environmental stimuli. Theoretical modeling of transcription regulation is often focused on a limited set of genes of interest, while binding of the TF to other genomic sites is seldom considered. The total number of TF binding sites (TFBSs) affects the availability of TF protein molecules and sequestration of a TF by TFBSs can promote bistability. For many signaling systems where a graded response is desirable for continuous control over the input range, biochemical parameters of the regulatory proteins need be tuned to avoid bistability. Here we analyze the mono-/bistable parameter range for positively autoregulated two-component systems (TCSs) in the presence of different numbers of competing TFBSs. TCS signaling, one of the major bacterial signaling strategies, couples signal perception with output responses via protein phosphorylation. For bistability, competition for TF proteins by TFBSs lowers the requirement for high fold change of the autoregulated transcription but demands high phosphorylation activities of TCS proteins. We show that bistability can be avoided with a low phosphorylation capacity of TCSs, a high TF affinity for the autoregulated promoter or a low fold change in signaling protein levels upon induction. These may represent general design rules for TCSs to ensure uniform graded responses. Examining the mono-/bistability parameter range allows qualitative prediction of steady-state responses, which are experimentally validated in the E. coli CusRS system.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Samantha E. Brokaw
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Zeyue Li
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Libby J. Helfant
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Muhammad Malik
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
38
|
Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Microbiol Spectr 2022; 10:e0162122. [PMID: 36036643 PMCID: PMC9604234 DOI: 10.1128/spectrum.01621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
The twin arginine translocation system (Tat) is a protein export system that is conserved in bacteria, archaea, and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. In Salmonella, there are 30 proteins that are predicted substrates of Tat, and among these are enzymes required for anaerobic respiration and peptidoglycan remodeling. We have demonstrated that some conditions that induce bacterial envelope stress activate expression of a ΔtatABC-lacZ fusion in Salmonella enterica serovar Typhimurium. Particularly, the addition of bile salts to the growth medium causes a 3-fold induction of a ΔtatABC-lacZ reporter fusion. Our data demonstrate that this induction is mediated via the phage shock protein (Psp) stress response system protein PspA. Further, we show that deletion of tatABC increases the induction of tatABC expression in bile salts. Indeed, the data suggest significant interaction between PspA and the Tat system in the regulatory response to bile salts. Although we have not identified the precise mechanism of Psp regulation of tatABC, our work shows that PspA is involved in the activation of tatABC expression by bile salts and adds another layer of complexity to the Salmonella response to envelope stress. IMPORTANCE Salmonella species cause an array of diseases in a variety of hosts. This research is significant in showing induction of the Tat system as a defense against periplasmic stress. Understanding the underlying mechanism of this regulation broadens our understanding of the Salmonella stress response, which is critical to the ability of the organism to cause infection.
Collapse
Affiliation(s)
- Alexandra R. Rogers
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Ezekeial E. Turner
- College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Deauna T. Johnson
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Jeremy R. Ellermeier
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
39
|
Kalita A, Mishra RK, Kumar V, Arora A, Dutta D. An Intrinsic Alkalization Circuit Turns on mntP Riboswitch under Manganese Stress in Escherichia coli. Microbiol Spectr 2022; 10:e0336822. [PMID: 36190429 PMCID: PMC9603457 DOI: 10.1128/spectrum.03368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of mntP and alx in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the alx riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the mntP riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the mntP riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. IMPORTANCE Riboswitch RNAs are cis-acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal mntP riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the yybP-ykoY family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
Collapse
Affiliation(s)
- Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | | | - Vineet Kumar
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Amit Arora
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
40
|
Lyu Z, Yahashiri A, Yang X, McCausland JW, Kaus GM, McQuillen R, Weiss DS, Xiao J. FtsN maintains active septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthases in E. coli. Nat Commun 2022; 13:5751. [PMID: 36180460 PMCID: PMC9525312 DOI: 10.1038/s41467-022-33404-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
FtsN plays an essential role in promoting the inward synthesis of septal peptidoglycan (sPG) by the FtsWI complex during bacterial cell division. How it achieves this role is unclear. Here we use single-molecule tracking to investigate FtsN's dynamics during sPG synthesis in E. coli. We show that septal FtsN molecules move processively at ~9 nm s-1, the same as FtsWI molecules engaged in sPG synthesis (termed sPG-track), but much slower than the ~30 nm s-1 speed of inactive FtsWI molecules coupled to FtsZ's treadmilling dynamics (termed FtsZ-track). Importantly, processive movement of FtsN is exclusively coupled to sPG synthesis and is required to maintain active sPG synthesis by FtsWI. Our findings indicate that FtsN is part of the FtsWI sPG synthesis complex, and that while FtsN is often described as a "trigger" for the initiation for cell wall constriction, it must remain part of the processive FtsWI complex to maintain sPG synthesis activity.
Collapse
Affiliation(s)
- Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gabriela M Kaus
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - David S Weiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Yahashiri A, Kaus GM, Popham DL, Houtman JCD, Weiss DS. Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity. J Bacteriol 2022; 204:e0025222. [PMID: 36005810 PMCID: PMC9487507 DOI: 10.1128/jb.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 μM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 μM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
42
|
Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms 2022; 10:microorganisms10091835. [PMID: 36144436 PMCID: PMC9504249 DOI: 10.3390/microorganisms10091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K-12 is one of the most well-studied species of bacteria. This species, however, is much more difficult to modify by homologous recombination (HR) than other model microorganisms. Research on HR in E. coli has led to a better understanding of the molecular mechanisms of HR, resulting in technical improvements and rapid progress in genome research, and allowing whole-genome mutagenesis and large-scale genome modifications. Developments using λ Red (exo, bet, and gam) and CRISPR-Cas have made E. coli as amenable to genome modification as other model microorganisms, such as Saccharomyces cerevisiae and Bacillus subtilis. This review describes the history of recombination research in E. coli, as well as improvements in techniques for genome modification by HR. This review also describes the results of large-scale genome modification of E. coli using these technologies, including DNA synthesis and assembly. In addition, this article reviews recent advances in genome modification, considers future directions, and describes problems associated with the creation of cells by design.
Collapse
|
43
|
Cheng SY, Lin TH, Chen PT. Integration of Multiple Phage Attachment Sites System to Create the Chromosomal T7 System for Protein Production in Escherichia coli Nissle 1917. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10239-10247. [PMID: 35960546 DOI: 10.1021/acs.jafc.2c04614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Escherichia coli Nissle 1917 (EcN) is a probiotic used to treat gastrointestinal diseases. The probiotic and endotoxin-free characteristics of EcN support its potential to be developed into a microbial expression system. With this aim, in this study, the powerful T7 expression system was constructed in the cryptic plasmid-free EcN (EcNP) to generate the T7 expression host ENL6P. The concept of multiple copies of gene expression cassettes regulated by the chromosomal T7 promoter was promoted due to plasmid instability issues with protein production in ENL6P. The integration of multiple phage attachment sites (IMPACT) system, which combined Cre-lox72, CRIM, and lambda red recombinase systems, was designed to simplify the manipulation and achieve the multiple φ80 bacterial attachment sites (attB) in ENL6P to generate the new strain ENL6PP4 with four φ80 attB sites. The strain can simultaneously integrate four copies of gene expression cassettes in the chromosome to produce recombinant proteins. The IMPACT systems incorporated several tools in gene editing to rapidly achieve more robust and stable microbial strains for research and various industrial applications.
Collapse
Affiliation(s)
- Shu-Yun Cheng
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Tzu-Han Lin
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| |
Collapse
|
44
|
Srikant S, Guegler CK, Laub MT. The evolution of a counter-defense mechanism in a virus constrains its host range. eLife 2022; 11:e79549. [PMID: 35924892 PMCID: PMC9391042 DOI: 10.7554/elife.79549] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria use diverse immunity mechanisms to defend themselves against their viral predators, bacteriophages. In turn, phages can acquire counter-defense systems, but it remains unclear how such mechanisms arise and what factors constrain viral evolution. Here, we experimentally evolved T4 phage to overcome a phage-defensive toxin-antitoxin system, toxIN, in Escherichia coli. Through recombination, T4 rapidly acquires segmental amplifications of a previously uncharacterized gene, now named tifA, encoding an inhibitor of the toxin, ToxN. These amplifications subsequently drive large deletions elsewhere in T4's genome to maintain a genome size compatible with capsid packaging. The deleted regions include accessory genes that help T4 overcome defense systems in alternative hosts. Thus, our results reveal a trade-off in viral evolution; the emergence of one counter-defense mechanism can lead to loss of other such mechanisms, thereby constraining host range. We propose that the accessory genomes of viruses reflect the integrated evolutionary history of the hosts they infected.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Chantal K Guegler
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
45
|
Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy. METHODS IN MICROBIOLOGY 2022; 200:106555. [DOI: 10.1016/j.mimet.2022.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
46
|
Tomasek K, Leithner A, Glatzova I, Lukesch MS, Guet CC, Sixt M. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife 2022; 11:e78995. [PMID: 35881547 PMCID: PMC9359703 DOI: 10.7554/elife.78995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.
Collapse
Affiliation(s)
- Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Ivana Glatzova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michael Sixt
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
47
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
48
|
LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, Badiee M, Leung AKL, Sorek R, Laub MT. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7:1028-1040. [PMID: 35725776 PMCID: PMC9250638 DOI: 10.1038/s41564-022-01153-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 01/03/2023]
Abstract
Toxin-antitoxin (TA) systems are broadly distributed, yet poorly conserved, genetic elements whose biological functions are unclear and controversial. Some TA systems may provide bacteria with immunity to infection by their ubiquitous viral predators, bacteriophages. To identify such TA systems, we searched bioinformatically for those frequently encoded near known phage defence genes in bacterial genomes. This search identified homologues of DarTG, a recently discovered family of TA systems whose biological functions and natural activating conditions were unclear. Representatives from two different subfamilies, DarTG1 and DarTG2, strongly protected E. coli MG1655 against different phages. We demonstrate that for each system, infection with either RB69 or T5 phage, respectively, triggers release of the DarT toxin, a DNA ADP-ribosyltransferase, that then modifies viral DNA and prevents replication, thereby blocking the production of mature virions. Further, we isolated phages that have evolved to overcome DarTG defence either through mutations to their DNA polymerase or to an anti-DarT factor, gp61.2, encoded by many T-even phages. Collectively, our results indicate that phage defence may be a common function for TA systems and reveal the mechanism by which DarTG systems inhibit phage infection.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Genetic Medicine, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
49
|
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell. One such regulatory mechanism involves lysine acetylation, a covalent modification involving the transfer of an acetyl group from central metabolite acetyl-coenzyme A or acetyl phosphate to a lysine residue in a protein.
Collapse
|
50
|
Abstract
CyuA of Escherichia coli is an inducible desulfidase that degrades cysteine to pyruvate, ammonium, and hydrogen sulfide. Workers have conjectured that its role may be to defend bacteria against the toxic effects of cysteine. However, cyuA sits in an operon alongside cyuP, which encodes a cysteine importer that seems ill suited to protecting the cell from environmental cysteine. In this study, transport measurements established that CyuP is a cysteine-specific, high-flux importer. The concerted action of CyuP and CyuA allowed anaerobic E. coli to employ cysteine as either the sole nitrogen or the sole carbon/energy source. CyuA was essential for this function, and although other transporters can slowly bring cysteine into the cell, CyuP-proficient cells outcompeted cyuP mutants. Cells immediately consumed the ammonia and pyruvate that CyuA generated, with little or none escaping from the cell. The expression of the cyuPA operon depended upon both CyuR, a cysteine-activated transcriptional activator, and Crp. This control is consistent with its catabolic function. In fact, the cyuPA operon sits immediately downstream of the thrABCDEFG operon, which allows the analogous fermentation of serine and threonine; this arrangement suggests that this gene cluster may have moved jointly through the anaerobic biota, providing E. coli with the ability to ferment a limited set of amino acids. Interestingly, both the cyu- and thr-encoded pathways depend upon oxygen-sensitive enzymes and cannot contribute to amino acid catabolism in oxic environments.
Collapse
|