1
|
Toyofuku M, Kikuchi Y, Taoka A. A Single Shot of Vesicles. Microbes Environ 2022; 37. [PMID: 36504177 PMCID: PMC10037094 DOI: 10.1264/jsme2.me22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria communicate through signaling molecules that coordinate group behavior. Hydrophobic signals that do not diffuse in aqueous environments are used as signaling molecules by several bacteria. However, limited information is currently available on the mechanisms by which these molecules are transported between cells. Membrane vesicles (MVs) with diverse functions play important roles in the release and delivery of hydrophobic signaling molecules, leading to differences in the dynamics of signal transportation from those of free diffusion. Studies on Paracoccus denitrificans, which produces a hydrophobic long-chain N-acyl homoserine lactone (AHL), showed that signals were loaded into MVs at a concentration with the potential to trigger the quorum sensing (QS) response with a "single shot" to the cell. Furthermore, stimulating the formation of MVs increased the release of signals from the cell; therefore, a basic understanding of MV formation is important. Novel findings revealed the formation of MVs through different routes, resulting in the production of different types of MVs. Methods such as high-speed atomic force microscopy (AFM) phase imaging allow the physical properties of MVs to be analyzed at a nanometer resolution, revealing their heterogeneity. In this special minireview, we introduce the role of MVs in bacterial communication and highlight recent findings on MV formation and their physical heterogeneity by referring to our research. We hope that this minireview will provide basic information for understanding the functionality of MVs in ecological systems.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yousuke Kikuchi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Azuma Taoka
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
- Institute of Science and Engineering, Kanazawa University
| |
Collapse
|
2
|
Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM, Turner M, Hamon C, Dufour A, Barbey C, Latour X. Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. Int J Mol Sci 2021; 22:ijms22158241. [PMID: 34361010 PMCID: PMC8347015 DOI: 10.3390/ijms22158241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Alexandre Crépin
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, F-86073 Poitiers, France;
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Mathilde Bouteiller
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Amine M. Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Marie Turner
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
- Biocontrol Consortium, F-75007 Paris, France
| | - Céline Hamon
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Biocontrol Consortium, F-75007 Paris, France
- Correspondence: ; +33-235-146-000
| |
Collapse
|
3
|
Viswanath G, Sekar J, Ramalingam PV. Detection of Diverse N-Acyl Homoserine Lactone Signalling Molecules Among Bacteria Associated with Rice Rhizosphere. Curr Microbiol 2020; 77:3480-3491. [PMID: 32918570 DOI: 10.1007/s00284-020-02183-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 11/27/2022]
Abstract
Bacterial communities communicate, regulate and coordinate their cooperative activities and physiological process by releasing, sensing and responding to small diffusible signal molecules such as acyl homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer-2, a process referred to as Quorum sensing (QS). The QS mediated communication in rhizosphere associated bacterial communities significantly influence traits governing plant-microbe interactions. This study aimed to identify AHL-mediated QS signals in bacterial communities associated with rice rhizosphere using two AHL biosensors reporter strains Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 (pZLR4). Approximately 375 bacterial isolates isolated from rice rhizosphere and screened using both the biosensors, detected 49 (13%) AHL positive isolates. The BOX-Polymerase Chain reaction (BOX-PCR) fingerprinting profiles of the 49 AHL positive isolates represented 11 distinct cluster groups. Subsequent 16S rRNA gene sequence analysis identified 11 different species affiliated to two different phyla; predominantly γ-proteobacteria, representing 5 genera and 1 genus in α-proteobacteria. Thin-layer chromatography (TLC) analysis detected diverse AHL profiles among the 11 AHL positive isolates with both substituted and unsubstituted acyl side chains of C4, C6 and C8 carbon. Further, AHL production in Acinetobacter lactucae, Aeromonas popoffii, Serratia oryzae, and Rhizobium wuzhouense is being reported for the first time. Detection of diverse AHLs from different groups of rhizobacteria associated with rice indicates that these signalling molecules may be involved in the regulation of rhizobacterial behaviour and symbiotic plant-microbe interactions. Future research on the role of AHLs in trans-kingdom communication particularly plant-microbe interaction using synthetic microbial community will enable in evaluating and developing potential plant specific bioproducts.
Collapse
Affiliation(s)
- Ganga Viswanath
- Microbiology Lab, M.S. Swaminathan Research Foundation, 3rd Cross Institutional Area, Taramani, Chennai, 600 113, India
| | - Jegan Sekar
- Microbiology Lab, M.S. Swaminathan Research Foundation, 3rd Cross Institutional Area, Taramani, Chennai, 600 113, India
| | | |
Collapse
|
4
|
Toyofuku M, Nomura N. What will membrane vesicles (MVs) bring to bacterial communication? Microbes Environ 2019; 32:185-187. [PMID: 28954979 PMCID: PMC5606687 DOI: 10.1264/jsme2.me3203rh] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba
| | - Nobuhiko Nomura
- Department of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
5
|
Kher HL, Krishnan T, Letchumanan V, Hong KW, How KY, Lee LH, Tee KK, Yin WF, Chan KG. Characterization of quorum sensing genes and N-acyl homoserine lactones in Citrobacter amalonaticus strain YG6. Gene 2018; 684:58-69. [PMID: 30321658 DOI: 10.1016/j.gene.2018.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022]
Abstract
In the phylum of Proteobacteria, quorum sensing (QS) system is widely driven by synthesis and response of N-acyl homoserine lactone (AHL) signalling molecules. AHL is synthesized by LuxI homologue and sensed by LuxR homologue. Once the AHL concentration achieves a threshold level, it triggers the regulation of target genes. In this study, QS activity of Citrobacter amalonaticus strain YG6 which was isolated from clams was investigated. In order to characterise luxI/R homologues, the genome of C. amalonaticus strain YG6 (4.95 Mbp in size) was sequenced using Illumina MiSeq sequencer. Through in silico analysis, a pair of canonical luxI/R homologues and an orphan luxR homologue were identified and designated as camI, camR, and camR2, respectively. A putative lux box was identified at the upstream of camI. The camI gene was cloned and overexpressed in E. coli BL21 (DE3)pLysS. High-resolution triple quadrupole liquid chromatography mass spectrometry (LC-MS/MS) analysis verified that the CamI is a functional AHL synthase which produced multiple AHL species, namely N‑butyryl‑l‑homoserine lactone (C4-HSL), N‑hexanoyl‑l‑homoserine lactone (C6-HSL), N‑octanoyl‑l‑homoserine lactone (C8-HSL), N‑tetradecanoyl‑l‑homoserine lactone (C14-HSL) and N‑hexadecanoyl‑l‑homoserine lactone (C16-HSL) in C. amalonaticus strain YG6 and camI gene in recombinant E. coli BL21(DE3)pLysS. To our best knowledge, this is the first functional study report of camI as well as the first report describing the production of C14-HSL by C. amalonaticus.
Collapse
Affiliation(s)
- Heng-Leong Kher
- Institute of Graduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Kar-Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Kok-Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Schaefer AL, Harwood CS, Greenberg EP. "Hot Stuff": The Many Uses of a Radiolabel Assay in Detecting Acyl-Homoserine Lactone Quorum-Sensing Signals. Methods Mol Biol 2018; 1673:35-47. [PMID: 29130162 DOI: 10.1007/978-1-4939-7309-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many Proteobacteria synthesize acyl-homoserine lactone (AHL) molecules for use as signals in cell density-dependent gene regulation known as quorum sensing (QS) and response. AHL detection protocols are essential to QS researchers and several techniques are available, including a 14C-AHL radiolabel assay. This assay is based on the uptake of radiolabeled methionine by living cells and conversion of the radiolabel into S-adenosylmethionine (SAM). The radiolabeled SAM is then incorporated into AHL signal by an AHL synthase enzyme. Here we describe a methodology to perform the AHL radiolabel assay, which is unbiased, relatively fast, and very sensitive compared to other AHL detection protocols.
Collapse
Affiliation(s)
- Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Membrane vesicle-mediated bacterial communication. ISME JOURNAL 2017; 11:1504-1509. [PMID: 28282039 PMCID: PMC5437348 DOI: 10.1038/ismej.2017.13] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/11/2017] [Accepted: 01/20/2017] [Indexed: 01/12/2023]
Abstract
The classical quorum-sensing (QS) model is based on the assumption that diffusible signaling molecules accumulate in the culture medium until they reach a critical concentration upon which expression of target genes is triggered. Here we demonstrate that the hydrophobic signal N-hexadecanoyl-L-homoserine lactone, which is produced by Paracoccus sp., is released from cells by the aid of membrane vesicles (MVs). Packed into MVs, the signal is not only solubilized in an aqueous environment but is also delivered with varying propensities to different bacteria. We propose a novel MV-based mechanism for binary trafficking of hydrophobic signal molecules, which may be particularly relevant for bacteria that live in open aqueous environments.
Collapse
|
8
|
Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries. Sci Rep 2016; 6:39142. [PMID: 27966657 PMCID: PMC5155435 DOI: 10.1038/srep39142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/18/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.
Collapse
|
9
|
Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B, Gross H. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones. PLoS One 2016; 11:e0167002. [PMID: 27861617 PMCID: PMC5115851 DOI: 10.1371/journal.pone.0167002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022] Open
Abstract
The shoot endophytic biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 produces a wide range of exoproducts, including enzymes and antibiotics. The production of exoproducts is commonly tightly regulated. In order to get a deeper insight into the regulatory network of PB-St2, the strain was systematically investigated regarding its quorum sensing systems, both on the genetic and metabolic level. The genome analysis of PB-St2 revealed the presence of four putative acyl homoserine lactone (AHL) biosynthesis genes: phzI, csaI, aurI, and hdtS. LC-MS/MS analyses of the crude supernatant extracts demonstrated that PB-St2 produces eight AHLs. In addition, the concentration of all AHL derivatives was quantified time-resolved in parallel over a period of 42 h during the growth of P. aurantiaca PB-St2, resulting in production curves, which showed differences regarding the maximum levels of the AHLs (14.6 nM– 1.75 μM) and the production period. Cloning and heterologous overexpression of all identified AHL synthase genes in Escherichia coli proved the functionality of the resulting synthases PhzI, CsaI, and AurI. A clear AHL production pattern was assigned to each of these three AHL synthases, while the HdtS synthase did not lead to any AHL production. Furthermore, the heterologous expression study demonstrated unequivocally and for the first time that AurI directs the synthesis of two 3-oxo-AHLs.
Collapse
Affiliation(s)
- Judith S. Bauer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Nils Hauck
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Lisa Christof
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
10
|
Saurav K, Burgsdorf I, Teta R, Esposito G, Bar-Shalom R, Costantino V, Steindler L. Isolation of MarineParacoccussp. Ss63 from the SpongeSarcotragussp. and Characterization of its Quorum-Sensing Chemical-Signaling Molecules by LC-MS/MS Analysis. Isr J Chem 2016. [DOI: 10.1002/ijch.201600003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
12
|
Götz-Rösch C, Sieper T, Fekete A, Schmitt-Kopplin P, Hartmann A, Schröder P. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. FRONTIERS IN PLANT SCIENCE 2015; 6:205. [PMID: 25914699 PMCID: PMC4392610 DOI: 10.3389/fpls.2015.00205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/15/2015] [Indexed: 05/22/2023]
Abstract
Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound.
Collapse
Affiliation(s)
- Christine Götz-Rösch
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Tina Sieper
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Agnes Fekete
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Philippe Schmitt-Kopplin
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Anton Hartmann
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
| | - Peter Schröder
- Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, NeuherbergGermany
- *Correspondence: Peter Schröder, Research Unit Environmental Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| |
Collapse
|
13
|
Synthesis of Microbial Signaling Molecules and Their Stereochemistry-Activity Relationships. Biosci Biotechnol Biochem 2014; 75:1418-29. [DOI: 10.1271/bbb.110283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Cataldi TRI, Bianco G, Abate S, Losito I. Identification of unsaturated N-acylhomoserine lactones in bacterial isolates of Rhodobacter sphaeroides by liquid chromatography coupled to electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1817-1826. [PMID: 21638357 DOI: 10.1002/rcm.5054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The identification of two unsaturated N-acylhomoserine lactones (AHLs) produced by Rhodobacter sphaeroides bacteria, based on liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer upon electrospray ionization (ESI), is presented. Besides the confirmation of the signaling molecule already described in the literature, i.e. (Z)-N-tetradec-7-enoyl-homoserine lactone (C(14:1)-HSL), we have discovered the occurrence, at low, yet significant levels, of another monounsaturated compound, C(12:1) -HSL, which may extend the number of small diffusible chemical signals known for R. sphaeroides. Both unsaturated AHLs were identified by high-resolution FTICR mass spectrometry in extracts of bacterial culture media and the occurrence of a C=C bond was assessed upon their conversion into bromohydrins. Collision-induced dissociation (CID) spectra were then collected on the LTQ mass analyzer. A careful comparison of tandem MS spectra of monounsaturated (i.e., C(12:1)-HSL and C(14:1)-HSL) and saturated AHLs (i.e. C(12)-HSL and C(14)-HSL) led to the emphasis of two series of product ions, exhibiting 14 Da spaced m/z ratios. Both series were referred to progressive fragmentations at the aliphatic end of the AHL acyl chains, followed by neutral losses of terminal alkenes (i.e. CH(2)=CH(CH(2))(n)H). In particular, the series located at the higher end of the explored m/z range (>200 Da), observed only for monounsaturated species, enabled the location of the C=C bond between carbons 7 and 8 of the acyl chain.
Collapse
Affiliation(s)
- Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari 'Aldo Moro', Campus Universitario, Via E. Orabona 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
15
|
Dessaux Y, Chapelle E, Faure D. Quorum Sensing and Quorum Quenching in Soil Ecosystems. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-14512-4_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kumaraswamy G, Jayaprakash N. Enantioselective synthesis of (2S,3′R,7′Z)-N-(3′-hydroxy-7′-tetradecenoyl)-homoserine lactone. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.09.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
18
|
Abstract
This review describes the chemistry of the bacterial biofilms including the chemistry of their constituents and signalling compounds that mediate or inhibit the formation of biofilms. Systems are described with special emphasis, in which quorum sensing molecules (autoinducers) trigger the formation of biofilms. In the first instance, N-acyl-L-homoserine lactones (AHLs) are the focus of this review, whereas the inter-species signal known as furanosyl borate diester and peptide autoinducers used by Gram-positive bacteria are not discussed in detail. Since the first discovery of an AHL autoinducer from Vibrio fischeri a large and further increasing number of different AHL structures from Gram-negative bacteria have been identified. This review gives a summary of all known AHL autoinducers and producing bacterial species. A few systems are discussed, where biofilm formation is suppressed by enzymatic degradation of AHL molecules or interference of secondary metabolites from other species with the quorum sensing systems of communicating bacteria. Finally, the multi-channel quorum sensing system, the intracellular downstream processing of the signal, and the resulting response of whole populations including biofilm formation are discussed for the Vibrio genus that has been extensively investigated.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, Braunschweig, Germany.
| |
Collapse
|
19
|
Alberghini S, Polone E, Corich V, Carlot M, Seno F, Trovato A, Squartini A. Consequences of relative cellular positioning on quorum sensing and bacterial cell-to-cell communication. FEMS Microbiol Lett 2009; 292:149-61. [DOI: 10.1111/j.1574-6968.2008.01478.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Yajima A, van Brussel AAN, Schripsema J, Nukada T, Yabuta G. Synthesis and stereochemistry-activity relationship of small bacteriocin, an autoinducer of the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum. Org Lett 2008; 10:2047-50. [PMID: 18402461 DOI: 10.1021/ol8005198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four stereoisomers of small bacteriocin, an autoinducer of the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum, were synthesized via a versatile methodology for 3'-hydroxyacyl homoserine lactones based on the Nagao asymmetric aldol reaction. The synthetic isomers were much less effective at inhibiting the growth of R. leguminosarum RBL5523 than the natural isomer, showing the importance of stereochemistry for activity.
Collapse
Affiliation(s)
- Arata Yajima
- Department of Fermentation Science, Faculty of Applied Biological Science, Tokyo University of Agriculture NODAI, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | |
Collapse
|
21
|
Cataldi TRI, Bianco G, Abate S. Profiling of N-acyl-homoserine lactones by liquid chromatography coupled with electrospray ionization and a hybrid quadrupole linear ion-trap and Fourier-transform ion-cyclotron-resonance mass spectrometry (LC-ESI-LTQ-FTICR-MS). JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:82-96. [PMID: 17708516 DOI: 10.1002/jms.1275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A method for the comprehensive profiling of the N-acyl-homoserine lactone (AHL) family of bacterial quorum-sensing molecules is presented using liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier-transform ion-cyclotron-resonance mass spectrometer (FTICR). We demonstrate an increase in signal intensity in MS with electrospray ionization (ESI) of the protonated molecules, [M + H](+), by using acetonitrile (ACN) instead of methanol (MeOH) as the organic solvent under the conditions in which the samples were supplied to the probe by direct infusion at constant flow rates. The presence of ACN prevents the formation of methanol adducts such as [M + MeOH + H](+) and [M + MeOH + Na](+), while also lowering the signal intensity of sodiated [M + Na](+) ions. Sensitivity of these signaling molecules in terms of signal-to-noise ratio (S/N) using low-resolution LTQ-MS and high-resolution FTICR-MS were compared under reversed-phase (RP) LC separations with ESI interface. Special emphasis was paid to the choice of the separation column, its elution conditions and detection of the major AHL compounds produced by the Serratia liquefaciens strain ATCC 27592. The most promising results were obtained using a RP C16-amide column eluted with a linear mobile phase gradient ACN/H(2)O containing 0.1% formic acid. The whole set of AHL homologs in bacterial extracts was detected in the extracted-ion chromatographic (XIC) mode, and the calculations of molecular formulae were performed by including the isotopic pattern. This mode of displaying data, with a very narrow mass-to-charge ratio window (i.e. +/- 0.0010 as m/z unit) around each selected ion, has allowed the identification of all the eight known homoserine lactones, viz. C(4)-HSL, 3-oxo-C(6)-HSL, C(6)-HSL, 3-oxo-C(8)-HSL, C(8)-HSL, C(10)-HSL, C(12)-HSL and C(14)-HSL. In addition, at least four uncommon signaling mediators previously unreported, namely, 3-oxo-C(10:1)-HSL, 3-oxo-C(11:2)-HSL, 3-oxo-C(13:2)-HSL and 3-OH-C(16)-HSL, were identified and characterized; their roles in cell-to-cell communication has to be elucidated.
Collapse
Affiliation(s)
- Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi della Basilicata, Via N. Sauro, 85-85100 Potenza, Italy.
| | | | | |
Collapse
|
22
|
Horswill AR, Stoodley P, Stewart PS, Parsek MR. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 2006; 387:371-80. [PMID: 17047948 PMCID: PMC1797063 DOI: 10.1007/s00216-006-0720-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/25/2006] [Accepted: 07/28/2006] [Indexed: 11/04/2022]
Abstract
As researchers attempt to study quorum sensing in relevant clinical or environmental settings, it is apparent that many factors have the potential to affect signaling. These factors span a range of physical, chemical, and biological variables that can impact signal production, stability and distribution. Optimizing experimental systems to natural or clinical environments may be crucial for defining when and where quorum sensing occurs. These points are illustrated in our case study of S. aureus signaling in biofilms, where signal stability may be affected by the host environment. The basic signaling schemes have been worked out at the molecular level for a few of the major quorum-sensing systems. As these studies continue to refine our understanding of these mechanisms, an emerging challenge is to identify if and when the local environment can affect signaling.
Collapse
Affiliation(s)
| | - Paul Stoodley
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA 15212 USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 USA
| | - Matthew R. Parsek
- Department of Microbiology, School of Medicine, University of Washington, 1959 NE Pacific Street, Box 357242, Seattle, WA 98195-7242 USA
| |
Collapse
|
23
|
Lazdunski AM, Ventre I, Sturgis JN. Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2004; 2:581-92. [PMID: 15197393 DOI: 10.1038/nrmicro924] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Andrée M Lazdunski
- Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | |
Collapse
|
24
|
Ravn Flodgaard L, Christensen AB, Molin S, Givskov M, Gram L. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae. Int J Food Microbiol 2003; 84:145-56. [PMID: 12781938 DOI: 10.1016/s0168-1605(02)00405-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quorum-dependent regulation is mediated by N-acyl-L-homoserine lactones (AHLs) in several Gram-negative bacteria. The production of AHLs has typically been studied using pure bacteria cultures grown in nutrient-rich media at optimal temperature. AHLs are produced in several chill-stored foods by Gram-negative bacteria participating in spoilage. As part of our investigation of the role of AHLs in food quality, we studied the AHL production in two Enterobacteriaceae isolated from cold-smoked salmon under growth conditions typical of those found in cold-smoked salmon. We tested the influence of carbon source (glucose, sucrose, xylose, arabinose, mannose, mannitol and sorbitol), temperature (5 and 25 degrees C), salt concentration (0-7%), pH (6, 7 and 8) and co-existing lactic acid bacteria microflora on the AHL profile and production rate from Serratia proteamaculans strain B5a and Enterobacter agglomerans strain B6a. The two strains produced the same types of AHLs under all conditions tested. The specific AHL concentrations (moles/liter/OD(450)) changed slightly for both strains at the various conditions. S. proteamaculans strain B5a produced approximately 150 nM/OD(450) N-3-oxo-hexanoyl homoserine lactone (OHHL) and E. agglomerans strain B6a produced two major signals, OHHL and N-3-oxo-octanoyl homoserine lactone (OOHL) in a 1:9 ratio with a total concentration of approximately 3000 nM/OD(450). The AHL signal molecules became unstable with increasing pH (>7.5). In cold-smoked salmon, pH is approximately 6 and therefore only a low degree of pH-induced turnover is expected to occur in this product. Overall, our study demonstrates that food-derived Enterobacteriaceae produce AHLs of the same type and in the same magnitude when grown under food-relevant conditions as when grown in laboratory media at high temperature. Also, the AHLs produced in foods will be relatively stable and their regulatory impact lasting during storage.
Collapse
Affiliation(s)
- Lars Ravn Flodgaard
- Department of Seafood Research, Danish Institute for Fisheries Research, Søltofts Plads, c/o Technical University of Denmark, Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A. Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 2003; 48:199-210. [PMID: 12657055 DOI: 10.1046/j.1365-2958.2003.03423.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa controls the production of many exoproteins and secondary metabolites via a hierarchical quorum sensing (QS) regulatory cascade involving the LuxR-like proteins LasR, RhlR and their cognate signal molecules N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL) and N-(butanoyl)-l-homoserine lactone (C4-HSL). The finding of a third LuxR-type protein in P. aeruginosa, QscR, adds further complexity to this regulatory network. It has been shown previously that QscR represses transcription of three QS-controlled gene clusters, phz (phenazine), hcn (hydrogen cyanide) and qsc105 (Chugani, Whiteley, Lee, D'Argenio, Manoil, and Greenberg, 2001, Proc Natl Acad Sci USA 98: 2752-2757). In this study, we identify two novel QscR targets these are lasB, encoding the extracellular elastase, and the second phenazine gene cluster, both of which are downregulated by QscR. In addition, we show that QscR synthesis is regulated by the two-component response regulator GacA. Taking advantage of the in vivo fluorescence anisotropy technology that we have developed, we show that QscR can be found in several different types of association. Indeed, we identify QscR multimers in the absence of any acyl-HSL, lower order QscR oligomers associated either with C4-HSL or 3O-C12-HSL and QscR-containing heterodimers with LasR or RhlR. The formation of heterodimers between QscR and LasR or RhlR, in the absence of acyl-HSLs, is a very exciting, new result that should improve our understanding of the QscR network and its relationship to the production of P. aeruginosa virulence factors.
Collapse
Affiliation(s)
- Fouzia Ledgham
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, UPR9027, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
26
|
Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI. MOLECULAR SIGNALS AND RECEPTORS: CONTROLLING RHIZOSPHERE INTERACTIONS BETWEEN PLANTS AND OTHER ORGANISMS. Ecology 2003. [DOI: 10.1890/0012-9658(2003)084[0858:msarcr]2.0.co;2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Schaefer AL, Taylor TA, Beatty JT, Greenberg EP. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 2002; 184:6515-21. [PMID: 12426339 PMCID: PMC135431 DOI: 10.1128/jb.184.23.6515-6521.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many proteobacteria use acyl-homoserine lactones as quorum-sensing signals. Traditionally, biological detection systems have been used to identify bacteria that produce acyl-homoserine lactones, although the specificities of these detection systems can limit discovery. We used a sensitive approach that did not require a bioassay to detect production of long-acyl-chain homoserine lactone production by Rhodobacter capsulatus and Paracoccus denitrificans. These long-chain acyl-homoserine lactones are not readily detected by standard bioassays. The most abundant acyl-homoserine lactone was N-hexadecanoyl-homoserine lactone. The long-chain acyl-homoserine lactones were concentrated in cells but were also found in the culture fluid. An R. capsulatus gene responsible for long-chain acyl-homoserine lactone synthesis was identified. A mutation in this gene, which we named gtaI, resulted in decreased production of the R. capsulatus gene transfer agent, and gene transfer agent production was restored by exogenous addition of N-hexadecanoyl-homoserine lactone. Thus, long-chain acyl-homoserine lactones serve as quorum-sensing signals to enhance genetic exchange in R. capsulatus.
Collapse
Affiliation(s)
- Amy L Schaefer
- Department of Microbiology and W. M. Keck Foundation Microbial Communities & Cell Signaling Laboratory, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
28
|
Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70:5635-46. [PMID: 12228292 PMCID: PMC128322 DOI: 10.1128/iai.70.10.5635-5646.2002] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacterial pathogens, such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis, cell-to-cell communication via the N-acylhomoserine lactone (AHL) signal molecules is involved in the cell population density-dependent control of genes associated with virulence. This phenomenon, termed quorum sensing, relies upon the accumulation of AHLs to a threshold concentration at which target structural genes are activated. By using biosensors capable of detecting a range of AHLs we observed that, in cultures of Y. pseudotuberculosis and P. aeruginosa, AHLs accumulate during the exponential phase but largely disappear during the stationary phase. When added to late-stationary-phase, cell-free culture supernatants of the respective pathogen, the major P. aeruginosa [N-butanoylhomoserine lactone (C4-HSL) and N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL)] and Y. pseudotuberculosis [N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL)] AHLs were inactivated. Short-acyl-chain compounds (e.g., C4-HSL) were turned over more extensively than long-chain molecules (e.g., 3-oxo-C12-HSL). Little AHL inactivation occurred with cell extracts, and no evidence for inactivation by specific enzymes was apparent. This AHL turnover was discovered to be due to pH-dependent lactonolysis. By acidifying the growth media to pH 2.0, lactonolysis could be reversed. By using carbon-13 nuclear magnetic resonance spectroscopy, we found that the ring opening of homoserine lactone (HSL), N-propionyl HSL (C3-HSL), and C4-HSL increased as pH increased but diminished as the N-acyl chain was lengthened. At low pH levels, the lactone rings closed but not via a simple reversal of the ring opening reaction mechanism. Ring opening of C4-HSL, C6-HSL, 3-oxo-C6-HSL, and N-octanoylhomoserine lactone (C8-HSL), as determined by the reduction of pH in aqueous solutions with time, was also less rapid for AHLs with more electron-donating longer side chains. Raising the temperature from 22 to 37 degrees C increased the rate of ring opening. Taken together, these data show that (i) to be functional under physiological conditions in mammalian tissue fluids, AHLs require an N-acyl side chain of at least four carbons in length and (ii) that the longer the acyl side chain the more stable the AHL signal molecule.
Collapse
Affiliation(s)
- Edwin A Yates
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Stevenson B, Babb K. LuxS-mediated quorum sensing in Borrelia burgdorferi, the lyme disease spirochete. Infect Immun 2002; 70:4099-105. [PMID: 12117917 PMCID: PMC128172 DOI: 10.1128/iai.70.8.4099-4105.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The establishment of Borrelia burgdorferi infection involves numerous interactions between the bacteria and a variety of vertebrate host and arthropod vector tissues. This complex process requires regulated synthesis of many bacterial proteins. We now demonstrate that these spirochetes utilize a LuxS/autoinducer-2 (AI-2)-based quorum-sensing mechanism to regulate protein expression, the first system of cell-cell communication to be described in a spirochete. The luxS gene of B. burgdorferi was identified and demonstrated to encode a functional enzyme by complementation of an Escherichia coli luxS mutant. Cultured B. burgdorferi responded to AI-2 by altering the expression levels of a large number of proteins, including the complement regulator factor H-binding Erp proteins. Through this mechanism, a population of Lyme disease spirochetes may synchronize production of specific proteins needed for infection processes.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington 40536-0298, USA.
| | | |
Collapse
|
30
|
Affiliation(s)
- James P Pearson
- Microbia, Inc., One Kendall Square, Cambridge, MA 02139, USA.
| |
Collapse
|