1
|
Pastacaldi C, Gaudioso D, Tegli S. Multidrug and Toxic Compound Extrusion Transporters: Ubiquitous Multifaceted Proteins in Microbes, Plants, and Their Interactions. Microorganisms 2024; 12:2433. [PMID: 39770636 PMCID: PMC11676175 DOI: 10.3390/microorganisms12122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
In recent years, membrane transporters have attracted considerable interest regarding their involvement in the molecular dialogue occurring between microbes and their hosts. In particular, the multidrug and toxic compound extrusion (MATE) transporters form a family of integral membrane proteins, mainly involved in the efflux of toxic and xenobiotic compounds. They are present in all living organisms, both prokaryotes and eukaryotes, where they have a wide array of extremely different roles. In plants, MATE proteins are involved in many important physiological processes, such as plant development, as well as the active transport of several secondary metabolites. In microorganisms, they are mainly implicated in the efflux of toxic compounds and thus contribute to drug resistance. Conversely, information about the actual role of MATE transporters in the interaction between plants and microorganisms, including phytopathogens, is still limited, according to the number of publications available on this topic. Indeed, an understanding of their roles in the plant-pathogen interaction could be essential to increase the knowledge of their molecular conversation and to provide data for the design and development of innovative and sustainable anti-infective strategies to control and manage plant pathogens.
Collapse
Affiliation(s)
- Chiara Pastacaldi
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy;
| | | | - Stefania Tegli
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy;
| |
Collapse
|
2
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
3
|
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd-Allah EF, Al-Harrasi A. Virtual 2-D map of the fungal proteome. Sci Rep 2021; 11:6676. [PMID: 33758316 PMCID: PMC7988114 DOI: 10.1038/s41598-021-86201-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular weight and isoelectric point (pI) of the proteins plays important role in the cell. Depending upon the shape, size, and charge, protein provides its functional role in different parts of the cell. Therefore, understanding to the knowledge of their molecular weight and charges is (pI) is very important. Therefore, we conducted a proteome-wide analysis of protein sequences of 689 fungal species (7.15 million protein sequences) and construct a virtual 2-D map of the fungal proteome. The analysis of the constructed map revealed the presence of a bimodal distribution of fungal proteomes. The molecular mass of individual fungal proteins ranged from 0.202 to 2546.166 kDa and the predicted isoelectric point (pI) ranged from 1.85 to 13.759 while average molecular weight of fungal proteome was 50.98 kDa. A non-ribosomal peptide synthase (RFU80400.1) found in Trichoderma arundinaceum was identified as the largest protein in the fungal kingdom. The collective fungal proteome is dominated by the presence of acidic rather than basic pI proteins and Leu is the most abundant amino acid while Cys is the least abundant amino acid. Aspergillus ustus encodes the highest percentage (76.62%) of acidic pI proteins while Nosema ceranae was found to encode the highest percentage (66.15%) of basic pI proteins. Selenocysteine and pyrrolysine amino acids were not found in any of the analysed fungal proteomes. Although the molecular weight and pI of the protein are of enormous important to understand their functional roles, the amino acid compositions of the fungal protein will enable us to understand the synonymous codon usage in the fungal kingdom. The small peptides identified during the study can provide additional biotechnological implication.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
4
|
Biswal BK, Wang B, Chen L, Chen GH, Wu D. Rational design of sulfidogenic granular sludge reactor with clostridia as dominant bacteria for energy-efficient sulfate-laden wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 317:124017. [PMID: 32822894 DOI: 10.1016/j.biortech.2020.124017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The sludge flotation and washout are frequently observed in anaerobic sulfidogenic reactor. This challenge raised the interests of re-thinking/re-designing of a compact and low-flotation bioreactor. The present study investigated to understand the temporal dynamics of microbial community and granular sludge properties in a pneumatic-mixing reactor treating sulfate-laden wastewater. The findings revealed that the reactor performance and sludge properties were dynamically changed and correlated over long-term run. In the bioreactor, a rarer type of sulfate reducing bacteria (genus Clostridium XVIII) was remarkably enriched (~30% abundance). The Clostridium XVIII-mediated COD removal (92.7 ± 3.9%) was further confirmed via mass balance which demonstrated the growth rate of total active biomass and sulfate-reducing active biomass were 19.95 and 6.0 mg-COD/Linfluent respectively. The PICRUSt data suggested that i) high abundance of carbohydrate metabolism and S-reductase enzymes enriched, and ii) energy metabolism enzymes decreased which implies that the new SRB communities are more energy-efficient than conventional ones.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium 2020; 85:102131. [DOI: 10.1016/j.ceca.2019.102131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/28/2022]
|
6
|
Physicochemical considerations for bottom-up synthetic biology. Emerg Top Life Sci 2019; 3:445-458. [PMID: 33523159 PMCID: PMC7289010 DOI: 10.1042/etls20190017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
The bottom-up construction of synthetic cells from molecular components is arguably one of the most challenging areas of research in the life sciences. We review the impact of confining biological systems in synthetic vesicles. Complex cell-like systems require control of the internal pH, ionic strength, (macro)molecular crowding, redox state and metabolic energy conservation. These physicochemical parameters influence protein activity and need to be maintained within limits to ensure the system remains in steady-state. We present the physicochemical considerations for building synthetic cells with dimensions ranging from the smallest prokaryotes to eukaryotic cells.
Collapse
|
7
|
Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S. The multitasking abilities of MATE transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4643-4656. [PMID: 31106838 DOI: 10.1093/jxb/erz246] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
As sessile organisms, plants constantly monitor environmental cues and respond appropriately to modulate their growth and development. Membrane transporters act as gatekeepers of the cell regulating both the inflow of useful materials as well as exudation of harmful substances. Members of the multidrug and toxic compound extrusion (MATE) family of transporters are ubiquitously present in almost all forms of life including prokaryotes and eukaryotes. In bacteria, MATE proteins were originally characterized as efflux transporters conferring drug resistance. There are 58 MATE transporters in Arabidopsis thaliana, which are also known as DETOXIFICATION (DTX) proteins. In plants, these integral membrane proteins are involved in a diverse array of functions, encompassing secondary metabolite transport, xenobiotic detoxification, aluminium tolerance, and disease resistance. MATE proteins also regulate overall plant development by controlling phytohormone transport, tip growth processes, and senescence. While most of the functional characterizations of MATE proteins have been reported in Arabidopsis, recent reports suggest that their diverse roles extend to numerous other plant species. The wide array of functions exhibited by MATE proteins highlight their multitasking ability. In this review, we integrate information related to structure and functions of MATE transporters in plants. Since these transporters are central to mechanisms that allow plants to adapt to abiotic and biotic stresses, their study can potentially contribute to improving stress tolerance under changing climatic conditions.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Debojyoti Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagyashri Deepak Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Cellular Organization and Signalling, National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Sanchali Nanda
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Rini Rahiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Nimisha Panchakshari
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Genetics, Ludwig Maximilians Universität, Biocenter, Germany
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
8
|
Weissman JL, Laljani RMR, Fagan WF, Johnson PLF. Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME JOURNAL 2019; 13:2589-2602. [PMID: 31239539 PMCID: PMC6776019 DOI: 10.1038/s41396-019-0411-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Bacteria and archaea are locked in a near-constant battle with their viral pathogens. Despite previous mechanistic characterization of numerous prokaryotic defense strategies, the underlying ecological drivers of different strategies remain largely unknown and predicting which species will take which strategies remains a challenge. Here, we focus on the CRISPR immune strategy and develop a phylogenetically-corrected machine learning approach to build a predictive model of CRISPR incidence using data on over 100 traits across over 2600 species. We discover a strong but hitherto-unknown negative interaction between CRISPR and aerobicity, which we hypothesize may result from interference between CRISPR-associated proteins and non-homologous end-joining DNA repair due to oxidative stress. Our predictive model also quantitatively confirms previous observations of an association between CRISPR and temperature. Finally, we contrast the environmental associations of different CRISPR system types (I, II, III) and restriction modification systems, all of which act as intracellular immune systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Rohan M R Laljani
- Department of Biology, University of Maryland, College Park, MD, USA
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
9
|
Li Y, He H, He LF. Genome-wide analysis of the MATE gene family in potato. Mol Biol Rep 2018; 46:403-414. [PMID: 30446960 DOI: 10.1007/s11033-018-4487-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is a newly discovered family of secondary transporters that extrude metabolic waste and a variety of antibiotics out of the cell using an electrochemical gradient of H+ or Na+ across the membrane. The main function of MATE gene family is to participate in the process of plant detoxification and morphogenesis. The genome-wide analysis of the MATE genes in potato genome was conducted. At least 48 genes were initially identified and classified into six subfamilies. The chromosomal localization of MATE gene family showed that they could be distributed on 11 chromosomes except chromosome 9. The number of amino acids is 145-616, the molecular weight of proteins is 15.96-66.13 KD, the isoelectric point is 4.97-9.17, and they were located on the endoplasmic reticulum with having 4-13 transmembrane segments. They contain only two parts of the exons and UTR without introns. Some members of the first subfamily of potato MATE gene family are clustered with At2g04070 and they may be related to the transport of toxic compounds such as alkaloids and heavy metal. The function of the members of the second subfamily may be similar to that of At3g23560, which is related to tetramethylammonium transport. Some members of the third subfamily are clustered with At3g59030 and they may be involved in the transport of flavonoids. The fifth subfamily may be related to the transport of iron ions. The function of the sixth subfamily may be similar to that of At4g39030, which is related to salicylic acid transport. There are three kinds of conserved motifs in potato MATE genes, including the motif 1, motif 2, and motif 3. Each motif has 50 amino acids. The number of each motif is different in the gene sequence, of which 45 MATE genes contain at least a motif, but there is no motif in ST0015301, ST0045283, and ST0082336. These results provide a reference for further research on the function of potato MATE genes.
Collapse
Affiliation(s)
- Yinqiu Li
- College of Agronomy, Guangxi University, Nanning, 530004, People's Republic of China
| | - Huyi He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
10
|
Chen L, Liu Y, Liu H, Kang L, Geng J, Gai Y, Ding Y, Sun H, Li Y. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS One 2015; 10:e0118578. [PMID: 25781331 PMCID: PMC4363705 DOI: 10.1371/journal.pone.0118578] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.
Collapse
Affiliation(s)
- Li Chen
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yushan Liu
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongdi Liu
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Limin Kang
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinman Geng
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuzhuo Gai
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yunlong Ding
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Haiyue Sun
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Yadong Li
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
11
|
Bakshi S, Choi H, Mondal J, Weisshaar JC. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes. Mol Microbiol 2014; 94:871-87. [PMID: 25250841 DOI: 10.1111/mmi.12805] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 11/26/2022]
Abstract
Previously observed effects of rifampicin and chloramphenicol indicate that transcription and translation activity strongly affect the coarse spatial organization of the bacterial cytoplasm. Single-cell, time-resolved, quantitative imaging of chromosome and ribosome spatial distributions and ribosome diffusion in live Escherichia coli provides insight into the underlying mechanisms. Monte Carlo simulations of model DNA-ribosome mixtures support a novel nucleoid-ribosome mixing hypothesis. In normal conditions, 70S-polysomes and the chromosomal DNA segregate, while 30S and 50S ribosomal subunits are able to penetrate the nucleoids. Growth conditions and drug treatments determine the partitioning of ribosomes into 70S-polysomes versus free 30S and 50S subunits. Entropic and excluded volume effects then dictate the resulting chromosome and ribosome spatial distributions. Direct observation of radial contraction of the nucleoids 0-5 min after treatment with either transcription- or translation-halting drugs supports the hypothesis that simultaneous transcription, translation, and insertion of proteins into the membrane ('transertion') exerts an expanding force on the chromosomal DNA. Breaking of the DNA-RNA polymerase-mRNA-ribosome-membrane chain in either of two ways causes similar nucleoid contraction on a similar timescale. We suggest that chromosomal expansion due to transertion enables co-transcriptional translation throughout the nucleoids.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
12
|
Yee DC, Shlykov MA, Västermark A, Reddy VS, Arora S, Sun EI, Saier MH. The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 2013; 280:5780-800. [PMID: 23981446 DOI: 10.1111/febs.12499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/27/2023]
Abstract
Visual rhodopsins are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins are not known. In a previous paper [Shlykov MA, Zheng WH, Chen JS & Saier MH Jr (2012) Biochim Biophys Acta 1818, 703-717], we characterized the 4-toluene sulfonate uptake permease (TSUP) family of transmembrane proteins, and showed that these 7-transmembrane segment (TMS) or 8-TMS proteins arose by intragenic duplication of a gene encoding a 4-TMS protein, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and microbial rhodopsin families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the transporter/opsin/G protein-coupled receptor (TOG) superfamily. Despite their 8-TMS origins, the members of most constituent families exhibit 7-TMS topologies that are well conserved, and these arose by loss of either the N-terminal TMS (more frequent) or the C-terminal TMS (less frequent), depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The results of the statistical analyses leading to the conclusion of homology were confirmed using hidden Markov models, Pfam and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during evolution of this superfamily.
Collapse
Affiliation(s)
- Daniel C Yee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Shlykov MA, Zheng WH, Chen JS, Saier MH. Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:703-17. [PMID: 22192777 DOI: 10.1016/j.bbamem.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/26/2011] [Accepted: 12/06/2011] [Indexed: 11/29/2022]
Abstract
The ubiquitous sequence diverse 4-Toluene Sulfonate Uptake Permease (TSUP) family contains few characterized members and is believed to catalyze the transport of several sulfur-based compounds. Prokaryotic members of the TSUP family outnumber the eukaryotic members substantially, and in prokaryotes, but not eukaryotes, extensive lateral gene transfer occurred during family evolution. Despite unequal representation, homologues from the three taxonomic domains of life share well-conserved motifs. We show that the prototypical eight TMS topology arose from an intragenic duplication of a four transmembrane segment (TMS) unit. Possibly, a two TMS α-helical hairpin structure was the precursor of the 4 TMS repeat unit. Genome context analyses confirmed the proposal of a sulfur-based compound transport role for many TSUP homologues, but functional outliers appear to be prevalent as well. Preliminary results suggest that the TSUP family is a member of a large novel superfamily that includes rhodopsins, integral membrane chaperone proteins, transmembrane electron flow carriers and several transporter families. All of these proteins probably arose via the same pathway: 2→4→8 TMSs followed by loss of a TMS either at the N- or C-terminus, depending on the family, to give the more frequent 7 TMS topology.
Collapse
|
14
|
Tegos GP, Haynes M, Strouse JJ, Khan MMT, Bologa CG, Oprea TI, Sklar LA. Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des 2011; 17:1291-302. [PMID: 21470111 DOI: 10.2174/138161211795703726] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/21/2011] [Indexed: 11/22/2022]
Abstract
Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the preclinical development of lead EPIs.
Collapse
Affiliation(s)
- George P Tegos
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Silverio ALF, Saier MH. Bioinformatic characterization of the trimeric intracellular cation-specific channel protein family. J Membr Biol 2011; 241:77-101. [PMID: 21519847 DOI: 10.1007/s00232-011-9364-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/26/2011] [Indexed: 12/29/2022]
Abstract
Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation-contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.
Collapse
Affiliation(s)
- Abe L F Silverio
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
16
|
Gomolplitinant KM, Saier MH. Evolution of the oligopeptide transporter family. J Membr Biol 2011; 240:89-110. [PMID: 21347612 PMCID: PMC3061005 DOI: 10.1007/s00232-011-9347-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.
Collapse
Affiliation(s)
- Kenny M Gomolplitinant
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
17
|
Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritium-labeled humic materials. Appl Environ Microbiol 2010; 76:6223-30. [PMID: 20639375 DOI: 10.1128/aem.00905-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primary goal of this paper is to demonstrate potential strengths of the use of tritium-labeled humic substances (HS) to quantify their interaction with living cells under various conditions. A novel approach was taken to study the interaction between a model microorganism and the labeled humic material. The bacterium Escherichia coli was used as a model microorganism. Salt stress was used to study interactions of HS with living cells under nonoptimum conditions. Six tritium-labeled samples of HS originating from coal, peat, and soil were examined. To quantify their interaction with E. coli cells, bioconcentration factors (BCF) were calculated and the amount of HS that penetrated into the cell interior was determined, and the liquid scintillation counting technique was used as well. The BCF values under optimum conditions varied from 0.9 to 13.1 liters kg(-1) of cell biomass, whereas under salt stress conditions the range of corresponding values increased substantially and accounted for 0.2 to 130 liters kg(-1). The measured amounts of HS that penetrated into the cells were 23 to 167 mg and 25 to 465 mg HS per kg of cell biomass under optimum and salt stress conditions, respectively. This finding indicated increased penetration of HS into E. coli cells under salt stress.
Collapse
|
18
|
Fujisawa M, Wada Y, Tsuchiya T, Ito M. Characterization of Bacillus subtilis YfkE (ChaA): a calcium-specific Ca2+/H+ antiporter of the CaCA family. Arch Microbiol 2009; 191:649-57. [PMID: 19543710 DOI: 10.1007/s00203-009-0494-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
YfkE, a protein from Bacillus subtilis, exhibits homology to the Ca(2+):Cation Antiporter (CaCA) Family. In a fluorescence-based assay of everted membrane vesicles prepared from Na(+)(Ca(2+))/H(+) antiporter-defective mutant Escherichia coli KNabc, YfkE exhibited robust Ca(2+)/H(+) antiport activity, with a K (m) for Ca(2+) estimated at 12.5 muM at pH 8.5 and 113 muM at pH 7.5. Neither Na(+) nor K(+) served as a substrate. Mg(2+) also did not serve as a substrate, but inhibited the Ca(2+)/H(+) antiporter activity. The Ca(2+) transport capability of YfkE was also observed directly by transport assays in everted membrane vesicles using radiolabeled (45)Ca(2+). Transcriptional analysis from the putative yfkED operon using beta-garactosidase activity as a reporter revealed that both of the yfkE and yfkD genes are regulated by forespore-specific sigma factor, SigG, and the general stress response regulator, SigB. These results suggest that YfkE may be needed for Ca(2+) signaling in the sporulation or germination process in B. subtilis. ChaA is proposed as the designation for YfkE of B. subtilis.
Collapse
Affiliation(s)
- Makoto Fujisawa
- Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | | | | | | |
Collapse
|
19
|
Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc Natl Acad Sci U S A 2009; 106:6662-6. [PMID: 19366666 DOI: 10.1073/pnas.0902029106] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional processes often involve specific signals in mRNAs. Because mRNAs of integral membrane proteins across evolution are usually translated at distinct locations, we searched for universally conserved specific features in this group of mRNAs. Our analysis revealed that codons of very hydrophobic amino acids, highly represented in integral membrane proteins, are composed of 50% uracils (U). As expected from such a strong U bias, the calculated U profiles of mRNAs closely resemble the hydrophobicity profiles of their encoded proteins and may designate genes encoding integral membrane proteins, even in the absence of information on ORFs. We also show that, unexpectedly, the U-richness phenomenon is not merely a consequence of the codon composition of very hydrophobic amino acids, because counterintuitively, the relatively hydrophilic serine and tyrosine, also encoded by U-rich codons, are overrepresented in integral membrane proteins. Interestingly, although the U-richness phenomenon is conserved, there is an evolutionary trend that minimizes usage of U-rich codons. Taken together, the results suggest that U-richness is an evolutionarily ancient feature of mRNAs encoding integral membrane proteins, which might serve as a physiologically relevant distinctive signature to this group of mRNAs.
Collapse
|
20
|
Campanaro S, Treu L, Valle G. Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates. BMC Evol Biol 2008; 8:313. [PMID: 19014525 PMCID: PMC2600651 DOI: 10.1186/1471-2148-8-313] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 11/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abyssal microorganisms have evolved particular features that enable them to grow in their extreme habitat. Genes belonging to specific functional categories are known to be particularly susceptible to high-pressure; therefore, they should show some evidence of positive selection. To verify this hypothesis we computed the amino acid substitution rates between two deep-sea microorganisms, Photobacterium profundum SS9 and Shewanella benthica KT99, and their respective shallow water relatives. RESULTS A statistical analysis of all the orthologs, led to the identification of positive selected (PS) genes, which were then used to evaluate adaptation strategies. We were able to establish "Motility" and "Transport" as two classes significantly enriched with PS genes. The prevalence of transporters led us to analyze variable amino acids (PS sites) by mapping them according to their membrane topology, the results showed a higher frequency of substitutions in the extra-cellular compartment. A similar analysis was performed on soluble proteins, mapping the PS sites on the 3D structure, revealing a prevalence of substitutions on the protein surface. Finally, the presence of some flagellar proteins in the Vibrionaceae PS list confirms the importance of bacterial motility as a SS9 specific adaptation strategy. CONCLUSION The approach presented in this paper is suitable for identifying molecular adaptations to particular environmental conditions. The statistical method takes into account differences in the ratio between non-synonymous to synonymous substitutions, thus allowing the detection of the genes that underwent positive selection. We found that positive selection in deep-sea adapted bacteria targets a wide range of functions, for example solute transport, protein translocation, DNA synthesis and motility. From these data clearly emerges an involvement of the transport and metabolism processes in the deep-sea adaptation strategy of both bathytypes considered, whereas the adaptation of other biological processes seems to be specific to either one or the other. An important role is hypothesized for five PS genes belonging to the transport category that had been previously identified as differentially expressed in microarray experiments. Strikingly, structural mapping of PS sites performed independently on membrane and soluble proteins revealed that residues under positive selection tend to occur in specific protein regions.
Collapse
Affiliation(s)
- Stefano Campanaro
- CRIBI Biotechnology Centre, Department of Biology, University of Padua, Via U. Bassi 38/b, 35121, Padua, Italy.
| | | | | |
Collapse
|
21
|
|
22
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 979] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
23
|
Noll KM, Lapierre P, Gogarten JP, Nanavati DM. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales. BMC Evol Biol 2008; 8:7. [PMID: 18197971 PMCID: PMC2246101 DOI: 10.1186/1471-2148-8-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/15/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry. RESULTS We demonstrate that the two maltose ATP binding cassette (ABC) transporter operons now found in Tc. litoralis and P. furiosus (termed mal and mdx genes, respectively) are not closely related to one another. The Tc. litoralis and P. furiosus mal genes are most closely related to bacterial mal genes while their respective mdx genes are archaeal. The genes of the two mal operons in Tt. maritima are not related to genes in either of these archaeal operons. They are highly similar to one another and belong to a phylogenetic lineage that includes mal genes from the enteric bacteria. A unique domain of the enteric MalF membrane spanning proteins found also in these Thermotogales MalF homologs supports their relatively close relationship with these enteric proteins. Analyses of genome sequence data from other Thermotogales species, Fervidobacterium nodosum, Thermosipho melanesiensis, Thermotoga petrophila, Thermotoga lettingae, and Thermotoga neapolitana, revealed a third apparent mal operon, absent from the published genome sequence of Tt. maritima strain MSB8. This third operon, mal3, is more closely related to the Thermococcales' bacteria-derived mal genes than are mal1 and mal2. F. nodosum, Ts. melanesiensis, and Tt. lettingae have only one of the mal1-mal2 paralogs. The mal2 operon from an unknown species of Thermotoga appears to have been horizontally acquired by a Thermotoga species that had only mal1. CONCLUSION These data demonstrate that the Tc. litoralis and P. furiosus mdx maltodextrin transporter operons arose in the Archaea while their mal maltose transporter operons arose in a bacterial lineage, but not the same lineage as the two maltose transporter operons found in the published Tt. maritima genome sequence. These Tt. maritima maltose transporters are phylogenetically and structurally similar to those found in enteric bacteria and the mal2 operon was horizontally transferred within the Thermotoga lineage. Other Thermotogales species have a third mal operon that is more closely related to the bacterial Thermococcales mal operons, but the data do not support a recent horizontal sharing of that operon between these groups.
Collapse
Affiliation(s)
- Kenneth M Noll
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Secondary transmembrane transport carriers fall into families and superfamilies allowing prediction of structure and function. Here we describe hundreds of sequenced homologues that belong to six families within a novel superfamily, the bile/arsenite/riboflavin transporter (BART) superfamily, of transport systems and putative signalling proteins. Functional data for members of three of these families are available, and they transport bile salts and other organic anions, the bile acid:Na(+) symporter (BASS) family, inorganic anions such as arsenite and antimonite, the arsenical resistance-3 (Acr3) family, and the riboflavin transporter (RFT) family. The first two of these families, as well as one more family with no functionally characterized members, exhibit a probable 10 transmembrane spanner (TMS) topology that arose from a tandemly duplicated 5 TMS unit. Members of the RFT family have a 5 TMS topology, and are homologous to each of the repeat units in the 10 TMS proteins. The other two families [sensor histidine kinase (SHK) and kinase/phosphatase/synthetase/hydrolase (KPSH)] have a single 5 TMS unit preceded by an N-terminal TMS and followed by a hydrophilic sensor histidine kinase domain (the SHK family) or catalytic domains resembling sensor kinase, phosphatase, cyclic di-GMP synthetase and cyclic di-GMP hydrolase catalytic domains, as well as various noncatalytic domains (the KPSH family). Because functional data are not available for members of the SHK and KPSH families, it is not known if the transporter domains retain transport activity or have evolved exclusive functions in molecular reception and signal transmission. This report presents characteristics of a unique protein superfamily and provides guides for future studies concerning structural, functional and mechanistic properties of its constituent members.
Collapse
Affiliation(s)
- Nahla M Mansour
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
25
|
Aliverdieva DA, Mamaev DV, Bondarenko DI, Sholtz KF. Topography of the active site of the Saccharomyces cerevisiae plasmalemmal dicarboxylate transporter studied using lipophilic derivatives of its substrates. BIOCHEMISTRY (MOSCOW) 2007; 72:264-74. [PMID: 17447879 DOI: 10.1134/s0006297907030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
2-Alkylmalonates and O-acyl-L-malates have been found to competitively inhibit the dicarboxylate transporter of Saccharomyces cerevisiae cells, and the substrate derivatives chosen did not penetrate across the plasmalemma under the experiment conditions. Probing of the active site of this transporter has revealed a large lipophilic area stretching between the 0.72 to 2.5 nm from the substrate-binding site. Itaconate inhibited the transport fivefold more effectively than L-malate. This suggests the existence of a hydrophobic region immediately near the dicarboxylate-binding site (to 0.72 nm). The yeast plasmalemmal transporter was different from the rat liver mitochondrial dicarboxylate transporter. An area with variable lipophilicity adjoining the substrate-binding site has been revealed in the latter by a similar method. This area is mainly hydrophobic at distances up to 1.76 nm from the binding site and is separated by a hydrophilic region from 0.38 to 0.88 nm. Fumarate but not maleate competitively inhibited succinate transport into the S. cerevisiae cells. It is suggested that the plasmalemmal transporter binds the substrate in the trans-conformation. The prospects of the proposed approach for scanning lipophilic profiles of channels of different transporters are discussed.
Collapse
Affiliation(s)
- D A Aliverdieva
- Caspian Institute of Biological Resources, Dagestan Research Center, Russian Academy of Sciences, Makhachkala, Russia
| | | | | | | |
Collapse
|
26
|
Barabote RD, Tamang DG, Abeywardena SN, Fallah NS, Fu JYC, Lio JK, Mirhosseini P, Pezeshk R, Podell S, Salampessy ML, Thever MD, Saier MH. Extra domains in secondary transport carriers and channel proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1557-79. [PMID: 16905115 DOI: 10.1016/j.bbamem.2006.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 01/06/2023]
Abstract
"Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.
Collapse
Affiliation(s)
- Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Au KM, Barabote RD, Hu KY, Saier MH. Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology (Reading) 2006; 152:1243-1247. [PMID: 16622041 DOI: 10.1099/mic.0.28581-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ka M Au
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Kuang Yu Hu
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
28
|
Debut AJ, Dumay QC, Barabote RD, Saier MH. The Iron/Lead Transporter Superfamily of Fe 3+/Pb 2+ Uptake Systems. J Mol Microbiol Biotechnol 2006; 11:1-9. [PMID: 16825785 DOI: 10.1159/000092814] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oxidase-dependent ferrous iron uptake transporters of the OFeT family and lead uptake transporters of the PbrT family comprise the iron/lead transporter (ILT) superfamily (transporter classification No. 9.A.10). All sequenced homologues of the ILT superfamily were multiply aligned, and conserved motifs, including fully conserved acidic residues in putative transmembrane segments (TMSs) 1 and 4, previously implicated in heavy metal binding, were identified. Topological analyses confirmed the presence of 7 conserved TMSs in a 3 + 3 + 1 arrangement where the two 3 TMS elements are internally repeated. Phylogenetic analyses revealed the presence of several sequence divergent clusters of orthologous proteins that group roughly according to the phylogenes of the organisms of origin. The results serve to characterize and provide evolutionary insight into a novel superfamily of heavy metal uptake transporters.
Collapse
Affiliation(s)
- Aurore J Debut
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | |
Collapse
|
29
|
Abstract
We analyzed length differences of eukaryotic, bacterial and archaeal proteins in relation to function, conservation and environmental factors. Comparing Eukaryotes and Prokaryotes, we found that the greater length of eukaryotic proteins is pervasive over all functional categories and involves the vast majority of protein families. The magnitude of these differences suggests that the evolution of eukaryotic proteins was influenced by processes of fusion of single-function proteins into extended multi-functional and multi-domain proteins. Comparing Bacteria and Archaea, we determined that the small but significant length difference observed between their proteins results from a combination of three factors: (i) bacterial proteomes include a greater proportion than archaeal proteomes of longer proteins involved in metabolism or cellular processes, (ii) within most functional classes, protein families unique to Bacteria are generally longer than protein families unique to Archaea and (iii) within the same protein family, homologs from Bacteria tend to be longer than the corresponding homologs from Archaea. These differences are interpreted with respect to evolutionary trends and prevailing environmental conditions within the two prokaryotic groups.
Collapse
Affiliation(s)
| | - Samuel Karlin
- To whom correspondence should be addressed. Tel: +1 650 723 2204; Fax: +1 650 725 2040;
| |
Collapse
|
30
|
Prakash S, Cooper G, Singhi S, Saier MH. The ion transporter superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:79-92. [PMID: 14643936 DOI: 10.1016/j.bbamem.2003.10.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We define a novel superfamily of secondary carriers specific for cationic and anionic compounds, which we have termed the ion transporter (IT) superfamily. Twelve recognized and functionally defined families constitute this superfamily. We provide statistical sequence analyses demonstrating that these families were in fact derived from a common ancestor. Further, we characterize the 12 families in terms of (1) the known substrates transported, (2) the modes of transport and energy coupling mechanisms used, (3) the family sizes (in numbers of sequenced protein members in the current NCBI database), (4) the organismal distributions of the members of each family, (5) the size ranges of the constituent proteins, (6) the predicted topologies of these proteins, and (7) the occurrence of non-homologous auxiliary proteins that may either facilitate or be required for transport. No member of the superfamily is known to function in a capacity other than transport. Proteins in several of the constituent families are shown to have arisen by tandem intragenic duplication events, but topological variation has resulted from a variety of dissimilar genetic fusion, splicing and insertional events. The evolutionary relationships between the members of each family are defined, leading to predictions of functionally relevant orthologous relationships. Some but not all of the families include functionally dissimilar paralogues that arose by early extragenic duplication events.
Collapse
Affiliation(s)
- Shraddha Prakash
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
31
|
King SC, Hu LA, Pugh A. Induction of substrate specificity shifts by placement of alanine insertions within the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP. Biochem J 2003; 376:645-53. [PMID: 12956623 PMCID: PMC1223804 DOI: 10.1042/bj20030595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 08/14/2003] [Accepted: 09/04/2003] [Indexed: 11/17/2022]
Abstract
The Escherichia coli GABA (gamma-aminobutyric acid) permease GabP is a prototypical APC (amine/polyamine/choline) super-family transporter that has a CAR (consensus amphipathic region) containing multiple specificity determinants, ostensibly organized on two helical surfaces, one hydrophobic [SHS (sensitive hydrophobic surface)] and the other hydrophilic [SPS (sensitive polar surface)]. To gauge the functional effects of placing alanine insertions at close intervals across the entire GabP CAR, 64 insertion variants were constructed. Insertions, particularly those in the SHS and the SPS, were highly detrimental to steady-state [(3)H]GABA accumulation. TSR (transport specificity ratio) analysis, employing [(3)H]nipecotic acid and [(14)C]GABA, showed that certain alanine insertions were associated with a specificity shift (i.e. a change in k (cat)/ K (m)). An insertion (INS Ala-269) located N-terminal to the SHS increased specificity for [(3)H]nipecotic acid relative to [(14)C]GABA, whereas an insertion (INS Ala-321) located C-terminal to the SPS had the opposite effect. Overall, the results are consistent with a working hypothesis that the GabP CAR contains extensive functional surfaces that may be manipulated by insertion mutagenesis to alter the specificity ( k (cat)/ K (m)) phenotype. The thermodynamic basis of TSR analysis provides generality, suggesting that amino acid insertions could affect specificity in many other transporters, particularly those such as the E. coli phenylalanine permease PheP [Pi, Chow and Pittard (2002) J. Bacteriol. 184, 5842-5847] that have a functionally significant CAR-like domain.
Collapse
Affiliation(s)
- Steven C King
- Department of Integrated Biosciences, Oregon Health & Science University, Portland, OR 97239-3097, USA.
| | | | | |
Collapse
|
32
|
Abstract
Extracytoplasmic solute binding receptors are constituents of primary and secondary active transport systems. Previous studies have shown that the constituents of two such families (ABC and TRAP-T) occur in bacteria and archaea and have undergone minimal shuffling of constituents between systems during evolutionary history. We here show that a third family of binding receptor-dependent transporters, the tripartite tricarboxylate transporter (TTT) family, the prototype of which is the TctABC system of Salmonella typhimurium, occurs in many bacteria but not in archaea or eukaryotes. Phylogenetic analyses suggest that these systems have evolved from a primordial tripartite system with only two out of 39 possible examples of shuffling of constituents between systems. The occurrence of TctA homologues in many bacteria and archaea that apparently lack corresponding TctB and TctC homologues suggests that the appearance of tripartite systems was a relatively recent evolutionary invention that occurred after the divergence of archaea and eukaryotes from bacteria.
Collapse
Affiliation(s)
- Brit Winnen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
33
|
Abstract
We have conducted bioinformatic analyses of integral membrane transport proteins belonging to dozens of families. These families rarely include proteins that function in a capacity other than transport. Many transporters have arisen by intragenic duplication, triplication and quadruplication events, in which the numbers of transmembrane alpha-helical hydrophobic segments (TMSs) have increased. The elements multiplied may encode two, three, four, five, six, 10 or 12 TMSs and gave rise to proteins with four, six, seven, eight, nine, 10, 12, 20, 24 and 30 TMSs. Gene fusion, splicing, deletion and insertion events have also contributed to protein topological diversity. Amino acid substitutions have allowed membrane-embedded domains to become hydrophilic domains and vice versa. Some evidence suggests that amino acid substitutions occurring over evolutionary time may in some cases have drastically altered protein topology. The results summarized in this microreview establish the independent origins of many transporter families and allow postulation of the specific pathways taken for their appearance.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
34
|
Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier MH. Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 2003; 67:66-85, table of contents. [PMID: 12626684 PMCID: PMC150521 DOI: 10.1128/mmbr.67.1.66-85.2003] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanosensitive (MS) channels that provide protection against hypoosmotic shock are found in the membranes of organisms from the three domains of life: bacteria, archaea, and eucarya. Two families of ubiquitous MS channels are recognized, and these have been designated the MscL and MscS families. A high-resolution X-ray crystallographic structure is available for a member of the MscL family, and extensive molecular genetic, biophysical, and biochemical studies conducted in many laboratories have allowed postulation of a gating mechanism allowing the interconversion of a tightly closed state and an open state that controls transmembrane ion and metabolite fluxes. In contrast to the MscL channel proteins, which are of uniform topology, the much larger MscS family includes protein members with topologies that are predicted to vary from 3 to 11 alpha-helical transmembrane segments (TMSs) per polypeptide chain. Sequence analyses reveal that the three C-terminal TMSs of MscS channel proteins are conserved among family members and that the third of these three TMSs exhibits a 20-residue motif that is shared by the channel-forming TMS (TMS 1) of the MscL proteins. We propose that this C-terminal TMS in MscS family homologues serves as the channel-forming helix in a homooligomeric structure. The presence of a conserved residue pattern for the putative channel-forming TMSs in the MscL and MscS family proteins suggests a common structural organization, gating mechanism, and evolutionary origin.
Collapse
Affiliation(s)
- Christopher D Pivetti
- Division of Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:799-813. [PMID: 12603313 DOI: 10.1046/j.1432-1033.2003.03418.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.
Collapse
Affiliation(s)
- Rikki N Hvorup
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cao TB, Saier MH. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:115-25. [PMID: 12507766 DOI: 10.1016/s0005-2736(02)00662-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified all homologues in the current databases of the ubiquitous protein constituents of the general secretory (Sec) pathway. These prokaryotic/eukaryotic proteins include (1) SecY/Sec61alpha, (2) SecE/Sec61gamma, (3) SecG/Sec61beta, (4) Ffh/SRP54 and (5) FtsY/SRP receptor subunit-alpha. Phylogenetic and sequence analyses lead to major conclusions concerning (1) the ubiquity of these proteins in living organisms, (2) the topological uniformity of some but not other Sec constituents, (3) the orthologous nature of almost all of them, (4) a total lack of paralogues in almost all organisms for which complete genome sequences are available, (5) the occurrence of two or even three paralogues in a few bacteria, plants, and yeast, depending on the Sec constituent, and (6) a tremendous degree of sequence divergence in bacteria compared with that in archaea or eukaryotes. The phylogenetic analyses lead to the conclusion that with a few possible exceptions, the five families of Sec constituents analyzed generally underwent sequence divergence in parallel but at different characteristic rates. The results provide evolutionary insights as well as guides for future functional studies. Because every organism with a fully sequenced genome exhibits at least one orthologue of each of these Sec proteins, we conclude that all living organisms have relied on the Sec system as their primary protein secretory/membrane insertion system. Because most prokaryotes and many eukaryotes encode within their genomes only one of each constituent, we also conclude that strong evolutionary pressure has minimized gene duplication events leading to the establishment of Sec paralogues. Finally, the sequence diversity of bacterial proteins as compared with their archaeal and eukaryotic counterparts is in agreement with the suggestion that bacteria were the evolutionary predecessors of archaea and eukaryotes.
Collapse
Affiliation(s)
- Thien B Cao
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
37
|
Yen MR, Harley KT, Tseng YH, Saier MH. Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett 2001; 204:223-31. [PMID: 11731127 DOI: 10.1111/j.1574-6968.2001.tb10889.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial Oxa1p homologs have been shown to function in protein export and membrane insertion in bacteria, mitochondria and chloroplasts, but their mode of action, organismal distribution and evolutionary origins are poorly understood. All sequenced homologs of Oxa1p were retrieved from the databases and multiply aligned. All organisms with a fully sequenced genome possess at least one Oxa1p homolog showing that the family is truly ubiquitous. Most prokaryotes possess just one Oxa1p homolog, but several Gram-positive bacteria and one archaeon possess two, and eukaryotes may have as many as six. Although these proteins vary in length over a 5-fold range, they exhibit a common hydrophobic core region of about 200 residues. Multiple sequence alignments reveal conserved residues and provide the basis for structural and phylogenetic analyses that serve to characterize the Oxa1 family.
Collapse
Affiliation(s)
- M R Yen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|