1
|
Prevalence, Virulence Genes, Phylogenetic Analysis, and Antimicrobial Resistance Profile of Helicobacter Species in Chicken Meat and Their Associated Environment at Retail Shops in Egypt. Foods 2022; 11:foods11131890. [PMID: 35804706 PMCID: PMC9265416 DOI: 10.3390/foods11131890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori (H. pylori) and Helicobacter pullorum (H. pullorum) are frequently reported pathogens in humans and poultry, respectively. Nevertheless, the source of H. pylori is still unclear. This study aimed to detect Helicobacter spp. in chicken carcasses and to assess the antibiogram and the virulence genes of Helicobacter isolates. Three hundred chicken meat samples (100 each of chicken breast, liver, and gizzard), besides 60 swab samples from chicken processing surfaces, were collected from retail shops in Qalyubia Governorate, Egypt, and examined for the prevalence of H. pylori and H. pullorum. The 16S rRNA of three H. pylori and two H. pullorum isolates were sequenced to determine the genetic relationship between these two Helicobacter spp. Of the 300 chicken samples tested, 16 (5.33%) and 14 (4.67%) were positive for H. pylori and H. pullorum, respectively. Multiplex PCR revealed that the virulence genes vacuolating cytotoxin A (vacA)s1, cytotoxin-associated gene A (cagA), and restriction endonuclease-replacing gene A (hrgA) were detected in 66.7%, 77.8%, and 100% of H. pylori strains tested, respectively. H. pylori showed the highest resistance for clarithromycin, while H. pullorum exhibited the highest resistance towards erythromycin and ciprofloxacin. The study concluded that the chicken meat and giblets are potential sources of the virulent and antimicrobial-resistant strains of H. pylori of human origin.
Collapse
|
2
|
Tiwari SK, Shaik AS, Shaik AP, Alyousef AA, Bardia A, Habeeb MA, Khan AA. Gene expression patterns of COX-1, COX-2 and iNOS in H. Pylori infected histopathological conditions. Microb Pathog 2019; 135:103634. [PMID: 31325568 DOI: 10.1016/j.micpath.2019.103634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Research indicates that Helicobacter pylori can inflict severe histological damage through the modulation of host-related genes. The current study investigated the effect of H. pylori genotypes in the outcome of disease, and the expression of anti-apoptotic related genes, COX-1, COX-2, and iNOS genes in benign, pre-malignant, and malignant lesions of gastric carcinogenesis. MATERIALS AND METHODS Tissue samples from H. pylori positive patients were graded based on the genotype of the infected H. pylori strain. Expression of COX-1, COX-2 and iNOS was assessed using a combination of real-time PCR and immunohistochemistry. RESULTS Gene expression studies confirmed that COX-2 and iNOS expression was highly and selectively induced in epithelium with premalignant changes such as atrophic conditions, metaplasia and dysplasia, suggesting an important role of these genes in the sequence to gastric carcinoma of the intestinal type. Furthermore, the expression of COX-2 and iNOS was also dependent on the genotype of H. pylori and subjects with genotype-1 exhibited significantly higher expressions of COX-2 and iNOS compared to other genotypes. Comparison of the expression levels among infected and uninfected individuals demonstrated significant difference in the expression pattern of COX-2 gene whereas iNOS expression was found only in subjects infected H. pylori (p < 0.001). Immunohistochemical staining showed 1.5619 folds higher propensity of COX-2 and 3.2941 folds higher intensity of iNOS expression in subjects infected with H. pylori genotype 1. CONCLUSION The up-regulation of COX-2 and iNOS was associated with the genotype of the H. pylori strain and the presence of certain genotype may greatly affect early events during carcinogenesis.
Collapse
Affiliation(s)
- Santosh K Tiwari
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Asma Sultana Shaik
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abjal Pasha Shaik
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alyousef
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Avinash Bardia
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Md Aejaz Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Aleem A Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains. PLoS One 2019; 14:e0218204. [PMID: 31194814 PMCID: PMC6563999 DOI: 10.1371/journal.pone.0218204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
The nosocomial pathogen Acinetobacter baumannii acquired clinical significance due to the rapid development of its multi-drug resistant (MDR) phenotype. A. baumannii strains have the ability to colonize several ecological niches including soil, water, and animals, including humans. They also survive under extremely harsh environmental conditions thriving on rare and recalcitrant carbon compounds. However, the molecular basis behind such extreme adaptability of A. baumannii is unknown. We have therefore determined the complete genome sequence of A. baumannii DS002, which was isolated from agricultural soils, and compared it with 78 complete genome sequences of A. baumannii strains having complete information on the source of their isolation. Interestingly, the genome of A. baumannii DS002 showed high similarity to the genome of A. baumannii SDF isolated from the body louse. The environmental and clinical strains, which do not share a monophyletic origin, showed the existence of a strain-specific unique gene pool that supports niche-specific survival. The strains isolated from infected samples contained a genetic repertoire with a unique gene pool coding for iron acquisition machinery, particularly those required for the biosynthesis of acinetobactin. Interestingly, these strains also contained genes required for biofilm formation. However, such gene sets were either partially or completely missing in the environmental isolates, which instead harbored genes required for alternate carbon catabolism and a TonB-dependent transport system involved in the acquisition of iron via siderophores or xenosiderophores.
Collapse
|
4
|
Wu JS, Zhao N, Pan H, Wang CM, Wu B, Zhang HM, He HX, Liu D, Amer S, Liu SL. Patterns of polymorphism and divergence in the VP1 gene of enterovirus 71 circulating in the Asia-Pacific region between 1994 and 2013. J Virol Methods 2013; 193:713-28. [PMID: 23933074 DOI: 10.1016/j.jviromet.2013.07.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022]
Abstract
Enterovirus 71 has been implicated in several outbreaks of hand, foot and mouth disease in the Asia-Pacific region. The present study aimed to achieve comprehensive evolutionary dynamic aspects of EV71 during 1994-2013, based on phylogenetic analyses of the VP1 sequences. The results indicated that 4 genotypes, namely C4, C1, C2 and B4 are the predominant strains, especially in Southeast Asian countries. No common ancestor was shared in different countries. Fourteen sites of substitutions were detected in the VP1 gene sequences; including the most common sites related to neutralization at position V249I [47.1% (189/401)] and A289T [42.6% (171/401)]. However, the sites Q22H and Q22R associated with increased virulence were recognized only in 13.7% (55/401) and 18% (72/401), respectively. None of the above mutations seemed to become fixed because the ratio of Ka/Ks was greater than 1.0. Mutations K43E, A58T, S184T, and T240S could possibly change the spatial structure. Two mutations, G145E and T240S, could obviously affect the hydrophobicity of VP1 and thus alter the EV71 immunoreactivity. In conclusion, the VP1 gene of EV71 strains circulating in the Asia-Pacific region during 1994-2013, showed polymorphisms and divergence with very slow evolution rate, which may be one of the reasons for periodic outbreaks in this area.
Collapse
Affiliation(s)
- Jun-Song Wu
- Department of Orthopaedics & Trauma Center of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012; 11:119-31. [PMID: 22186017 DOI: 10.4161/cc.11.1.18475] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human ASXL proteins, orthologs of Drosophila Additional Sex combs, have been implicated in conjunction with TET2 as a major target for mutations and translocations leading to a wide range of myeloid leukemias, related myelodysplastic conditions (ASXL1 and ASXL2) and the Bohring-Opitz syndrome, a developmental disorder (ASXL1). Using sensitive sequence and structure comparison methods, we show that most animal ASXL proteins contain a novel N-terminal domain that is also found in several other eukaryotic chromatin proteins, diverse restriction endonucleases and DNA glycosylases, the RNA polymerase delta subunit of Gram-positive bacteria and certain bacterial proteins that combine features of the RNA polymerase α-subunit and sigma factors. This domain adopts the winged helix-turn-helix fold and is predicted to bind DNA. Based on its domain architectural contexts, we present evidence that this domain might play an important role, both in eukaryotes and bacteria, in the recruitment of diverse effector activities, including the Polycomb repressive complexes, to DNA, depending on the state of epigenetic modifications such as 5-methylcytosine and its oxidized derivatives. In other eukaryotic chromatin proteins, this predicted DNA-binding domain is fused to a region with three conserved motifs that are also found in diverse eukaryotic chromatin proteins, such as the animal BAZ/WAL proteins, plant HB1 and MBD9, yeast Itc1p and Ioc3, RSF1, CECR2 and NURF1. Based on the crystal structure of Ioc3, we establish that these motifs in conjunction with the DDT motif constitute a structural determinant that is central to nucleosomal repositioning by the ISWI clade of SWI2/SNF2 ATPases. We also show that the central domain of the ASXL proteins (ASXH domain) is conserved outside of animals in fungi and plants, where it is combined with other domains, suggesting that it might be an ancient module mediating interactions between chromatin-linked protein complexes and transcription factors via its conserved LXLLL motif. We present evidence that the C-terminal PHD finger of ASXL protein has certain peculiar structural modifications that might allow it to recognize internal modified lysines other than those from the N terminus of histone H3, making it the mediator of previously unexpected interactions in chromatin.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
6
|
Characterization of type II and III restriction-modification systems from Bacillus cereus strains ATCC 10987 and ATCC 14579. J Bacteriol 2011; 194:49-60. [PMID: 22037402 DOI: 10.1128/jb.06248-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.
Collapse
|
7
|
Laganeckas M, Margelevicius M, Venclovas C. Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile-profile alignments. Nucleic Acids Res 2010; 39:1187-96. [PMID: 20961958 PMCID: PMC3045609 DOI: 10.1093/nar/gkq958] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile–profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/.
Collapse
|
8
|
Ando T, Ishiguro K, Watanabe O, Miyake N, Kato T, Hibi S, Mimura S, Nakamura M, Miyahara R, Ohmiya N, Niwa Y, Goto H. Restriction-modification systems may be associated with Helicobacter pylori virulence. J Gastroenterol Hepatol 2010; 25 Suppl 1:S95-8. [PMID: 20586875 DOI: 10.1111/j.1440-1746.2009.06211.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Restriction-modification (R-M) systems are exclusive to unicellular organisms and ubiquitous in the bacterial world. Bacteria use R-M systems as a defense against invasion by foreign DNA. Analysis of the genome sequences of Helicobacter pylori strains 26 695 and J99 identified an extraordinary number of genes with homology to R-M genes in other bacterial species. All H. pylori strains possess their own unique complement of active R-M systems. All of the methylases that have been studied so far were present in all major human population groupings, suggesting that their horizontal acquisition pre-dated the separation of these populations. The two most strongly conserved methylase genes of H. pylori, hpy IM and hpy IIIM, are both preceded by alternative genes that compete for presence at their loci, and furthermore these genes may be associated with H. pylori pathogenicity. Further study should investigate the roles of H. pylori R-M systems.
Collapse
Affiliation(s)
- Takafumi Ando
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Humbert O, Salama NR. The Helicobacter pylori HpyAXII restriction-modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components. Nucleic Acids Res 2008; 36:6893-906. [PMID: 18978016 PMCID: PMC2588503 DOI: 10.1093/nar/gkn718] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 12/15/2022] Open
Abstract
The naturally competent organism Helicobacter pylori encodes a large number of restriction-modification (R-M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R-M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R-M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R-M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel 'half pipe' structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model.
Collapse
Affiliation(s)
- Olivier Humbert
- Division of Human Biology, Fred Hutchinson Cancer Research Center and Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Nina R. Salama
- Division of Human Biology, Fred Hutchinson Cancer Research Center and Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:63-96. [PMID: 18039108 DOI: 10.1146/annurev.pathol.1.110304.100125] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is the main cause of peptic ulceration, distal gastric adenocarcinoma, and gastric lymphoma. Only 15% of those colonized develop disease, and pathogenesis depends upon strain virulence, host genetic susceptibility, and environmental cofactors. Virulence factors include the cag pathogenicity island, which induces proinflammatory, pro-proliferative epithelial cell signaling; the cytotoxin VacA, which causes epithelial damage; and an adhesin, BabA. Host genetic polymorphisms that lead to high-level pro-inflammatory cytokine release in response to infection increase cancer risk. Pathogenesis is dependent upon inflammation, a Th-1 acquired immune response and hormonal changes including hypergastrinaemia. Antral-predominant inflammation leads to increased acid production from the uninflamed corpus and predisposes to duodenal ulceration; corpus-predominant gastritis leads to hypochlorhydria and predisposes to gastric ulceration and adenocarcinoma. Falling prevalence of H. pylori in developed countries has led to a falling incidence of associated diseases. However, whether there are disadvantages of an H. pylori-free stomach, for example increased risk of esosphageal adenocarcinoma, remains unclear.
Collapse
Affiliation(s)
- John C Atherton
- Wolfson Digestive Diseases Centre and Institute of Infections, Immunity, and Inflammation, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
11
|
Tiwari SK, Khan AA, Manoj G, Ahmed S, Abid Z, Habeeb A, Habibullah CM. A simple multiplex PCR assay for diagnosing virulent Helicobacter pylori infection in human gastric biopsy specimens from subjects with gastric carcinoma and other gastro-duodenal diseases. J Appl Microbiol 2007; 103:2353-60. [PMID: 17850305 DOI: 10.1111/j.1365-2672.2007.03478.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To evaluate and develop a multiplex polymerase chain reaction (PCR) assay for diagnosing and specific identification of virulent Helicobacter pylori strains and their main virulence genes cagA, cagE, cagT, vacA and hrgA. METHODS AND RESULTS Genomic DNA from 82 gastric tissues was screened. A master pool of all the ingredients of multiplex reaction was prepared for amplification. Amplicons were sequenced to confirm the amplification of each target genes. Multiplex PCR assay was able to detect all the five target genes in 81.7% and deletions in one or more loci among 18.3%. Genotype cagT +ve/hrgA +ve/cagA +ve/cagE +ve/vacAs1 +ve was more predominant in this study population (67.07%). hrgA, cagT, cagE and cagA genes were present in 100%, 92.7%, 85.4% and 81.7% of the subjects, respectively. The vacAs1 subtype had higher prevalence frequency in patients with overt gastrointestinal disease (78.57%) than with GERD (gastro-esophageal reflux disease) and NUD (non-ulcer dispepsia) (50%). CONCLUSIONS The multiplex PCR assay developed herein was able to genotype H. pylori isolates based on the main virulence genes. SIGNIFICANCE AND IMPACT OF THE STUDY The ability to identify H. pylori and the majority of their virulence gene markers by multiplex PCR assay represents a considerable advancement over other PCR-based methods for genotyping H. pylori from large population, and can be explored to gain insights at the genotypic variability exhibited by this pathogen.
Collapse
Affiliation(s)
- S K Tiwari
- Center for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Ghose C, Perez-Perez GI, van Doorn LJ, Domínguez-Bello MG, Blaser MJ. High frequency of gastric colonization with multiple Helicobacter pylori strains in Venezuelan subjects. J Clin Microbiol 2005; 43:2635-41. [PMID: 15956377 PMCID: PMC1151950 DOI: 10.1128/jcm.43.6.2635-2641.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple Helicobacter pylori strains may colonize an individual host. Using enzyme-linked immunosorbent assay and line probe assay (LiPA) techniques, we analyzed the prevalence of mixed H. pylori colonization in 127 subjects from Venezuela, a country of high H. pylori prevalence, from three regions representing different population groups: the Andes (Merida), where Caucasian mestizos predominate, a major city near the coast (Caracas), where Amerindian-Caucasian-African mestizos predominate, and an Amazonian community (Puerto Ayacucho), where Amerindians predominate and mestizos reflect Amerindian and Caucasian ancestry. Among 121 H. pylori-positive persons, the prevalence of cagA-positive strains varied from 50% (Merida) to 86% (Puerto Ayacucho) by LiPA. Rates of mixed colonization also varied, as assessed by LiPA of the vacA s (mean, 49%) and m (mean, 26%) regions. In total, 55% of the individuals had genotypic evidence of mixed colonization. vacA s1c, a marker of Amerindian (East Asian) origin, was present in all three populations, especially from Puerto Ayacucho (86%). These results demonstrate the high prevalence of mixed colonization and indicate that the H. pylori East Asian vacA genotype has survived in all three populations tested.
Collapse
Affiliation(s)
- C Ghose
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
13
|
Lu H, Graham DY, Yamaoka Y. The Helicobacter pylori restriction endonuclease-replacing gene, hrgA, and clinical outcome: comparison of East Asia and Western countries. Dig Dis Sci 2004; 49:1551-5. [PMID: 15481336 DOI: 10.1023/b:ddas.0000042263.18541.ec] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been suggested that the putative Helicobacter pylori virulence factor hrgA is the first disease-specific marker for an H. pylori-related disease, (i.e., development of gastric cancer in East Asia). Our aim was to test the hypothesis that the presence of hrgA has disease specificity. We examined 458 H. pylori isolates including 289 from East Asia and 169 from Western countries whose cagA and vacA genotypes had previously been characterized. hrgA/hpyIIIR status and iceA genotypes were determined by polymerase chain reaction using DNA expanded from a single colony. hrgA was present in 29% of gastric cancers, 29% of ulcers, and 31% of gastritis cases among H. pylori from East Asia (P > 0.9). Overall, there was no significant relationship between the presence of the hrgA gene and disease presentation (cancer, ulcer, or neither) or between its presence and the cag pathogenicity island, vacA s1 , babA2, and oipA, "on" genotypes. The prevalence of the hrgA gene was significantly lower in H. pylori from East Asia (29%) vs. those from the West (49%) (P < 0.001). The prevalence of the hrgA gene was not related to clinical outcome or to other important putative virulence factors.
Collapse
Affiliation(s)
- Hong Lu
- Department of Medicine, Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|