1
|
Fesenko I, Sahakyan H, Dhyani R, Shabalina SA, Storz G, Koonin EV. The hidden bacterial microproteome. Mol Cell 2025; 85:1024-1041.e6. [PMID: 39978337 PMCID: PMC11890958 DOI: 10.1016/j.molcel.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/05/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Microproteins encoded by small open reading frames comprise the "dark matter" of proteomes. Although microproteins have been detected in diverse organisms from all three domains of life, many more remain to be identified, and only a few have been functionally characterized. In this comprehensive study of intergenic small open reading frames (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identify 67,297 clusters of ismORFs subject to purifying selection. Expression of tagged Escherichia coli microproteins is detected for 11 of the 16 tested, validating the predictions. Although the ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins, some globular folds, oligomeric structures, and possible interactions with proteins encoded by neighboring genes are predicted. Complete information on the predicted microprotein families, including evidence of transcription and translation, and structure predictions are available as an easily searchable resource for investigation of microprotein functions.
Collapse
Affiliation(s)
- Igor Fesenko
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rajat Dhyani
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
2
|
Georgieva M, Stojceski F, Wüthrich F, Sosthène C, Blanco Pérez L, Grasso G, Jacquier N. Mutations in the essential outer membrane protein BamA contribute to Escherichia coli resistance to the antimicrobial peptide TAT-RasGAP 317-326. J Biol Chem 2025; 301:108018. [PMID: 39608713 PMCID: PMC11842939 DOI: 10.1016/j.jbc.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to classical antibiotics against antibiotic-resistant pathogens. TAT-RasGAP317-326 is an AMP with broad range antibacterial activity, but its mechanism of action is unknown. In this study, we analyzed a strain of Escherichia coli with extensive resistance to TAT-RasGAP317-326 but not to other AMPs that we obtained after twenty passages during an in vitro resistance selection experiment. This strain accumulated four mutations. One of these is a point mutation in bamA, which encodes an essential protein involved in the folding and proper insertion of outer membrane proteins. The mutation resulted in a change of charge in a surface-exposed negatively charged loop of the BamA protein. Using CRISPR-Cas9-based targeted mutagenesis, we showed that mutations lowering the negative charge of this loop decreased sensitivity of E. coli to TAT-RasGAP317-326. In silico simulations unveiled the molecular driving forces responsible for the interaction between TAT-RasGAP317-326 and BamA. These results indicated that electrostatic interactions, particularly hydrogen bonds, are involved in the stability of the molecular complex, representing a predictive fingerprint of the TAT-RasGAP317-326 - BamA interaction strength. Interestingly, BamA activity was only partially affected by TAT-RasGAP317-326, indicating that BamA may function as a specific receptor for this AMP. Our results indicate that binding and entry of TAT-RasGAP317-326 may involve different mechanisms compared to other AMPs, which is in line with limited cross-resistance observed between different AMPs. This limited cross-resistance is important for the clinical application of AMPs towards drug-resistant pathogens.
Collapse
Affiliation(s)
- Maria Georgieva
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence, IDSIA USI-SUPSI, Lugano, Switzerland
| | - Fabian Wüthrich
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carole Sosthène
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Blanco Pérez
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence, IDSIA USI-SUPSI, Lugano, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Blassick CM, Lugagne JB, Dunlop MJ. Dynamic heterogeneity in an E. coli stress response regulon mediates gene activation and antimicrobial peptide tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625634. [PMID: 39677761 PMCID: PMC11642793 DOI: 10.1101/2024.11.27.625634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The bacterial stress response is an intricately regulated system that plays a critical role in cellular resistance to drug treatment. The complexity of this response is further complicated by cell-to-cell heterogeneity in the expression of bacterial stress response genes. These genes are often organized into networks comprising one or more transcriptional regulators that control expression of a suite of downstream genes. While the expression heterogeneity of many of these upstream regulators has been characterized, the way in which this variability affects the larger downstream stress response remains hard to predict, prompting two key questions. First, how does heterogeneity and expression noise in stress response regulators propagate to the diverse downstream genes in their regulons. Second, when expression levels vary, how do multiple downstream genes act together to protect cells from stress. To address these questions, we focus on the transcription factor PhoP, a critical virulence regulator which coordinates pathogenicity in several gram-negative species. We use optogenetic stimulation to precisely control PhoP expression levels and examine how variations in PhoP affect the downstream activation of genes in the PhoP regulon. We find that these downstream genes exhibit differences both in mean expression level and sensitivity to increasing levels of PhoP. These response functions can also vary between individual cells, increasing heterogeneity in the population. We tie these variations to cell survival when bacteria are exposed to a clinically-relevant antimicrobial peptide, showing that high expression of the PhoP-regulon gene pmrD provides a protective effect against Polymyxin B. Overall, we demonstrate that even subtle heterogeneity in expression of a stress response regulator can have clear consequences for enabling bacteria to survive stress.
Collapse
|
4
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
5
|
Choi BJ, Choi U, Ryu DB, Lee CR. PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli. mSystems 2024; 9:e0096424. [PMID: 39345149 PMCID: PMC11495068 DOI: 10.1128/msystems.00964-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Tetracyclines and glycylcycline are among the important antibiotics used to combat infections caused by multidrug-resistant Gram-negative pathogens. Despite the clinical importance of these antibiotics, their mechanisms of resistance remain unclear. In this study, we elucidated a novel mechanism of resistance to tetracycline and glycylcycline antibiotics via lipopolysaccharide (LPS) modification. Disruption of the Escherichia coli PhoPQ two-component system, which regulates the transcription of various genes involved in magnesium transport and LPS modification, leads to increased susceptibility to tetracycline, minocycline, doxycycline, and tigecycline. These phenotypes are caused by enhanced expression of phosphoethanolamine transferase EptB, which catalyzes the modification of the inner core sugar of LPS. PhoPQ-mediated regulation of EptB expression appears to affect the intracellular transportation of doxycycline. Disruption of EptB increases resistance to tetracycline and glycylcycline antibiotics, whereas the other two phosphoethanolamine transferases, EptA and EptC, that participate in the modification of other LPS residues, are not associated with resistance to tetracyclines and glycylcycline. Overall, our results demonstrated that PhoPQ-mediated modification of a specific residue of LPS by phosphoethanolamine transferase EptB governs intrinsic resistance to tetracycline and glycylcycline antibiotics. IMPORTANCE Elucidating the resistance mechanisms of clinically important antibiotics helps in maintaining the clinical efficacy of antibiotics and in the prescription of adequate antibiotic therapy. Although tetracycline and glycylcycline antibiotics are clinically important in combating multidrug-resistant Gram-negative bacterial infections, their mechanisms of resistance are not fully understood. Our research demonstrates that the E. coli PhoPQ two-component system affects resistance to tetracycline and glycylcycline antibiotics by controlling the expression of phosphoethanolamine transferase EptB, which catalyzes the modification of the inner core residue of lipopolysaccharide (LPS). Therefore, our findings highlight a novel resistance mechanism to tetracycline and glycylcycline antibiotics and the physiological significance of LPS core modification in E. coli.
Collapse
Affiliation(s)
- Byoung Jun Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Umji Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Dae-Beom Ryu
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| |
Collapse
|
6
|
Handler S, Kirkpatrick CL. New layers of regulation of the general stress response sigma factor RpoS. Front Microbiol 2024; 15:1363955. [PMID: 38505546 PMCID: PMC10948607 DOI: 10.3389/fmicb.2024.1363955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The general stress response (GSR) sigma factor RpoS from Escherichia coli has emerged as one of the key paradigms for study of how numerous signal inputs are accepted at multiple levels into a single pathway for regulation of gene expression output. While many studies have elucidated the key pathways controlling the production and activity of this sigma factor, recent discoveries have uncovered still more regulatory mechanisms which feed into the network. Moreover, while the regulon of this sigma factor comprises a large proportion of the E. coli genome, the downstream expression levels of all the RpoS target genes are not identically affected by RpoS upregulation but respond heterogeneously, both within and between cells. This minireview highlights the most recent developments in our understanding of RpoS regulation and expression, in particular those which influence the regulatory network at different levels from previously well-studied pathways.
Collapse
|
7
|
Barretto LAF, Van PKT, Fowler CC. Conserved patterns of sequence diversification provide insight into the evolution of two-component systems in Enterobacteriaceae. Microb Genom 2024; 10:001215. [PMID: 38502064 PMCID: PMC11004495 DOI: 10.1099/mgen.0.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.
Collapse
Affiliation(s)
- Luke A. F. Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Patryc-Khang T. Van
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| |
Collapse
|
8
|
Janssens A, Nguyen VS, Cecil AJ, Van der Verren SE, Timmerman E, Deghelt M, Pak AJ, Collet JF, Impens F, Remaut H. SlyB encapsulates outer membrane proteins in stress-induced lipid nanodomains. Nature 2024; 626:617-625. [PMID: 38081298 DOI: 10.1038/s41586-023-06925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane β-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic β-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate β-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.
Collapse
Affiliation(s)
- Arne Janssens
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Van Son Nguyen
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adam J Cecil
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Sander E Van der Verren
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Evy Timmerman
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Michaël Deghelt
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexander J Pak
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, USA
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and Biotechnology, WELBIO, Brussels, Belgium
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Francis Impens
- VIB Proteomics Core, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Vinchhi R, Yelpure C, Balachandran M, Matange N. Pervasive gene deregulation underlies adaptation and maladaptation in trimethoprim-resistant E. coli. mBio 2023; 14:e0211923. [PMID: 38032208 PMCID: PMC10746255 DOI: 10.1128/mbio.02119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Bacteria employ a number of mechanisms to adapt to antibiotics. Mutations in transcriptional regulators alter the expression levels of genes that can change the susceptibility of bacteria to antibiotics. Two-component signaling proteins are a major class of signaling molecule used by bacteria to regulate transcription. In previous work, we found that mutations in MgrB, a feedback regulator of the PhoQP two-component system, conferred trimethoprim tolerance to Escherichia coli. Here, we elucidate how mutations in MgrB have a domino-like effect on the gene regulatory network of E. coli. As a result, pervasive perturbation of gene regulation ensues. Depending on the environmental context, this pervasive deregulation is either adaptive or maladaptive. Our study sheds light on how deregulation of gene expression can be beneficial for bacteria when challenged with antibiotics, and why regulators like MgrB may have evolved in the first place.
Collapse
Affiliation(s)
- Rhea Vinchhi
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Chetna Yelpure
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Manasvi Balachandran
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| |
Collapse
|
11
|
Metal-Responsive Transcription Factors Co-Regulate Anti-Sigma Factor (Rsd) and Ribosome Dimerization Factor Expression. Int J Mol Sci 2023; 24:ijms24054717. [PMID: 36902154 PMCID: PMC10003395 DOI: 10.3390/ijms24054717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Bacteria exposed to stress survive by regulating the expression of several genes at the transcriptional and translational levels. For instance, in Escherichia coli, when growth is arrested in response to stress, such as nutrient starvation, the anti-sigma factor Rsd is expressed to inactivate the global regulator RpoD and activate the sigma factor RpoS. However, ribosome modulation factor (RMF) expressed in response to growth arrest binds to 70S ribosomes to form inactive 100S ribosomes and inhibit translational activity. Moreover, stress due to fluctuations in the concentration of metal ions essential for various intracellular pathways is regulated by a homeostatic mechanism involving metal-responsive transcription factors (TFs). Therefore, in this study, we examined the binding of a few metal-responsive TFs to the promoter regions of rsd and rmf through promoter-specific TF screening and studied the effects of these TFs on the expression of rsd and rmf in each TF gene-deficient E. coli strain through quantitative PCR, Western blot imaging, and 100S ribosome formation analysis. Our results suggest that several metal-responsive TFs (CueR, Fur, KdpE, MntR, NhaR, PhoP, ZntR, and ZraR) and metal ions (Cu2+, Fe2+, K+, Mn2+, Na+, Mg2+, and Zn2+) influence rsd and rmf gene expression while regulating transcriptional and translational activities.
Collapse
|
12
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
13
|
Gagarinova A, Hosseinnia A, Rahmatbakhsh M, Istace Z, Phanse S, Moutaoufik MT, Zilocchi M, Zhang Q, Aoki H, Jessulat M, Kim S, Aly KA, Babu M. Auxotrophic and prototrophic conditional genetic networks reveal the rewiring of transcription factors in Escherichia coli. Nat Commun 2022; 13:4085. [PMID: 35835781 PMCID: PMC9283627 DOI: 10.1038/s41467-022-31819-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial transcription factors (TFs) are widely studied in Escherichia coli. Yet it remains unclear how individual genes in the underlying pathways of TF machinery operate together during environmental challenge. Here, we address this by applying an unbiased, quantitative synthetic genetic interaction (GI) approach to measure pairwise GIs among all TF genes in E. coli under auxotrophic (rich medium) and prototrophic (minimal medium) static growth conditions. The resulting static and differential GI networks reveal condition-dependent GIs, widespread changes among TF genes in metabolism, and new roles for uncharacterized TFs (yjdC, yneJ, ydiP) as regulators of cell division, putrescine utilization pathway, and cold shock adaptation. Pan-bacterial conservation suggests TF genes with GIs are co-conserved in evolution. Together, our results illuminate the global organization of E. coli TFs, and remodeling of genetic backup systems for TFs under environmental change, which is essential for controlling the bacterial transcriptional regulatory circuits. The bacterium E. coli has around 300 transcriptional factors, but the functions of many of them, and the interactions between their respective regulatory networks, are unclear. Here, the authors study genetic interactions among all transcription factor genes in E. coli, revealing condition-dependent interactions and roles for uncharacterized transcription factors.
Collapse
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada.
| |
Collapse
|
14
|
Tang MX, Pei TT, Xiang Q, Wang ZH, Luo H, Wang XY, Fu Y, Dong T. Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae. THE ISME JOURNAL 2022; 16:1765-1775. [PMID: 35354946 PMCID: PMC9213406 DOI: 10.1038/s41396-022-01228-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg2+ or Ca2+ was supplemented. Transcriptome and genetic analyses demonstrate that the metal-sensing PhoPQ two-component system is important for Mg2+-dependent sensitivity. Competition analysis in infant mice shows that TseH was active under in vivo conditions. Using a panel of V. cholerae single-effector active mutants, we further show that E. coli also exhibited variable susceptibilities to other T6SS effectors depending on cations and temperatures, respectively. Lastly, V. cholerae effector VasX could sensitize Pseudomonas aeruginosa to its intrinsically resistant antibiotic irgasan in a temperature-dependent manner. Collectively, these findings suggest that abiotic factors, that V. cholerae frequently encounters in natural and host environments, could modulate cellular responses and dictate the competitive fitness conferred by the T6SS effectors in complex multispecies communities.
Collapse
Affiliation(s)
- Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
15
|
The EnvZ/OmpR Two-Component System Regulates the Antimicrobial Activity of TAT-RasGAP 317-326 and the Collateral Sensitivity to Other Antibacterial Agents. Microbiol Spectr 2022; 10:e0200921. [PMID: 35579440 PMCID: PMC9241736 DOI: 10.1128/spectrum.02009-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rapid emergence of antibiotic-resistant bacteria poses a serious threat to public health worldwide. Antimicrobial peptides (AMPs) are promising antibiotic alternatives; however, little is known about bacterial mechanisms of AMP resistance and the interplay between AMP resistance and the bacterial response to other antimicrobials. In this study, we identified Escherichia coli mutants resistant to the TAT-RasGAP317-326 antimicrobial peptide and found that resistant bacteria show collateral sensitivity to other AMPs and antibacterial agents. We determined that resistance to TAT-RasGAP317-326 peptide arises through mutations in the histidine kinase EnvZ, a member of the EnvZ/OmpR two-component system responsible for osmoregulation in E. coli. In particular, we found that TAT-RasGAP317-326 binding and entry is compromised in E. coli peptide-resistant mutants. We showed that peptide resistance is associated with transcriptional regulation of a number of pathways and EnvZ-mediated resistance is dependent on the OmpR response regulator but is independent of the OmpC and OmpF outer membrane porins. Our findings provide insight into the bacterial mechanisms of TAT-RasGAP317-326 resistance and demonstrate that resistance to this AMP is associated with collateral sensitivity to other antibacterial agents. IMPORTANCE Antimicrobial peptides (AMP) are promising alternatives to classical antibiotics in the fight against antibiotic resistance. Resistance toward antimicrobial peptides can occur, but little is known about the mechanisms driving this phenomenon. Moreover, there is limited knowledge on how AMP resistance relates to the bacterial response to other antimicrobial agents. Here, we address these questions in the context of the antimicrobial peptide TAT-RasGAP317-326. We show that resistant Escherichia coli strains can be selected and do not show resistance to other antimicrobial agents. Resistance is caused by a mutation in a regulatory pathway, which lowers binding and entry of the peptide in E. coli. Our results highlight a mechanism of resistance that is specific to TAT-RasGAP317-326. Further research is required to characterize these mechanisms and to evaluate the potential of antimicrobial combinations to curb the development of antimicrobial resistance.
Collapse
|
16
|
Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Appl Microbiol Biotechnol 2022; 106:3879-3893. [PMID: 35604438 PMCID: PMC9125544 DOI: 10.1007/s00253-022-11940-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022]
Abstract
Abstract
It has been about a century since the discovery of the first antibiotic, and during this period, several antibiotics were produced and marketed. The production of high-potency antibiotics against infections led to victories, but these victories were temporary. Overuse and misuse of antibiotics have continued to the point that humanity today is almost helpless in the fight against infection. Researchers have predicted that by the middle of the new century, there will be a dark period after the production of antibiotics that doctors will encounter antibiotic-resistant infections for which there is no cure. Accordingly, researchers are looking for new materials with antimicrobial properties that will strengthen their ammunition to fight antibiotic-resistant infections. One of the most important alternatives to antibiotics introduced in the last three decades is antimicrobial peptides (AMPs), which affect a wide range of microbes. Due to their different antimicrobial properties from antibiotics, AMPs can fight and kill MDR, XDR, and colistin-resistant bacteria through a variety of mechanisms. Therefore, in this study, we intend to use the latest studies to give a complete description of AMPs, the importance of colistin-resistant bacteria, and their resistance mechanisms, and represent impact of AMPs on colistin-resistant bacteria. Key points • AMPs as limited options to kill colistin-resistant bacteria. • Challenge of antibiotics resistance, colistin resistance, and mechanisms. • What is AMPs in the war with colistin-resistant bacteria?
Collapse
|
17
|
Guo H, Zhao T, Huang C, Chen J. The Role of the Two-Component System PhoP/PhoQ in Intrinsic Resistance of Yersinia enterocolitica to Polymyxin. Front Microbiol 2022; 13:758571. [PMID: 35222323 PMCID: PMC8867023 DOI: 10.3389/fmicb.2022.758571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Polymyxin is the "last resort" of antibiotics. The self-induced resistance to polymyxin in Gram-negative bacteria could be mediated by lipopolysaccharide (LPS) modification, which is regulated by the two-component system, PhoP/PhoQ. Yersinia enterocolitica is a common foodborne pathogen. However, PhoP/PhoQ has not been thoroughly studied in Y. enterocolitica. In this study, the functions of PhoP/PhoQ in Y. enterocolitica intrinsic resistance were investigated. The resistance of Y. enterocolitica was found to decrease with the deletion of PhoP/PhoQ. Further, PhoP/PhoQ was found to play an important role in maintaining membrane permeability, intercellular metabolism, and reducing membrane depolarization. Based on subsequent studies, the binding ability of polymyxin to Y. enterocolitica was decreased by the modification of LPS with structures, such as L-Ara4N and palmitate. Analysis of the gene transcription levels revealed that the LPS modification genes, pagP and arn operon, were downregulated with the deletion of PhoP/PhoQ in Y. enterocolitica during exposure to polymyxin. In addition, pmrA, pmrB, and eptA were downregulated in the mutants compared with the wild-type strain. Such findings demonstrate that PhoP/PhoQ contributes to the intrinsic resistance of Y. enterocolitica toward polymyxins. LPS modification with L-Ara4N or palmitate is mainly responsible for the resistance of Y. enterocolitica to polymyxins. The transcription of genes related to LPS modification and PmrA/PmrB can be both affected by PhoP/PhoQ in Y. enterocolitica. This study adds to current knowledge regarding the role of PhoP/PhoQ in intrinsic resistance of Y. enterocolitica to polymyxin.
Collapse
Affiliation(s)
| | | | | | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Xue J, Huang Y, Zhang H, Hu J, Pan X, Peng T, Lv J, Meng K, Li S. Arginine GlcNAcylation and Activity Regulation of PhoP by a Type III Secretion System Effector in Salmonella. Front Microbiol 2022; 12:825743. [PMID: 35126337 PMCID: PMC8811161 DOI: 10.3389/fmicb.2021.825743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella type III secretion system (T3SS) effector SseK3 is a glycosyltransferase delivered directly into the host cells to modify host protein substrates, thus manipulating host cellular signal transduction. Here, we identify and characterize the Arg-GlcNAcylation activity of SseK3 inside bacterial cells. Combining Arg-GlcNAc protein immunoprecipitation and mass spectrometry, we found that 60 bacterial proteins were GlcNAcylated during Salmonella infection, especially the two-component signal transduction system regulatory protein PhoP. Moreover, the Arg-GlcNAcylation of PhoP by SseK3 was detected in vivo and in vitro, and four arginine residues, Arg65, Arg66, Arg118, and Arg215 were identified as the GlcNAcylation sites. Site-directed mutagenesis showed that the PhoP R215A change significantly reduced the DNA-binding ability and arginine to alanine change at all four sites (PhoP 4RA) completely eliminated the DNA-binding ability, suggesting that Arg215 is essential for the DNA-binding activity of PhoP and GlcNAcylation of PhoP affects this activity. Additionally, GlcNAcylation of PhoP negatively regulated the activity of PhoP and decreased the expression of its downstream genes. Overall, our work provides an example of the intra-bacterial activities of the T3SS effectors and increases our understanding of endogenous Arg-GlcNAcylation.
Collapse
Affiliation(s)
- Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jiaqingzi Hu
- Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Ting Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shan Li,
| |
Collapse
|
19
|
Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. Microbiol Spectr 2021; 9:e0028921. [PMID: 34756069 PMCID: PMC8579933 DOI: 10.1128/spectrum.00289-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics.
Collapse
|
20
|
Ju X, Fang X, Xiao Y, Li B, Shi R, Wei C, You C. Small RNA GcvB Regulates Oxidative Stress Response of Escherichia coli. Antioxidants (Basel) 2021; 10:antiox10111774. [PMID: 34829644 PMCID: PMC8614746 DOI: 10.3390/antiox10111774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Small non-translated regulatory RNAs control plenty of bacterial vital activities. The small RNA GcvB has been extensively studied, indicating the multifaceted roles of GcvB beyond amino acid metabolism. However, few reported GcvB-dependent regulation in minimal medium. Here, by applying a high-resolution RNA-seq assay, we compared the transcriptomes of a wild-type Escherichia coli K-12 strain and its gcvB deletion derivative grown in minimal medium and identified putative targets responding to GcvB, including flu, a determinant gene of auto-aggregation. The following molecular studies and the enhanced auto-aggregation ability of the gcvB knockout strain further substantiated the induced expression of these genes. Intriguingly, the reduced expression of OxyR (the oxidative stress regulator) in the gcvB knockout strain was identified to account for the increased expression of flu. Additionally, GcvB was characterized to up-regulate the expression of OxyR at the translational level. Accordingly, compared to the wild type, the GcvB deletion strain was more sensitive to oxidative stress and lost some its ability to eliminate endogenous reactive oxygen species. Taken together, we reveal that GcvB regulates oxidative stress response by up-regulating OxyR expression. Our findings provide an insight into the diversity of GcvB regulation and add an additional layer to the regulation of OxyR.
Collapse
Affiliation(s)
- Xian Ju
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Xingxing Fang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Bingyu Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
- Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Ruoping Shi
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
| | - Chaoliang Wei
- Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China; (X.J.); (X.F.); (Y.X.); (B.L.); (R.S.)
- Correspondence:
| |
Collapse
|
21
|
Abstract
The two-component system PhoP/PhoQ is essential for Salmonella enterica serovar Typhimurium virulence. Here, we report that PhoP is methylated extensively. Two consecutive glutamate (E) and aspartate (D)/E residues, i.e., E8/D9 and E107/E108, and arginine (R) 112 can be methylated. Individual mutation of these above-mentioned residues caused impaired phosphorylation and dimerization or DNA-binding ability of PhoP to a different extent and led to attenuated bacterial virulence. With the help of specific antibodies recognizing methylated E8 and monomethylated R112, we found that the methylation levels of E8 or R112 decreased dramatically when bacteria encountered low magnesium, acidic pH, or phagocytosis by macrophages, under which PhoP can be activated. Furthermore, CheR, a bacterial chemotaxis methyltransferase, was identified to methylate R112. Overexpression of cheR decreased PhoP activity but increased PhoP stability. Together, the current study reveals that methylation plays an important role in regulating PhoP activities in response to environmental cues and, consequently, modulates Salmonella virulence.
Collapse
|
22
|
Queiroz PA, Meneguello JE, Silva BR, Caleffi-Ferracioli KR, Scodro RB, Cardoso RF, Marchiosi R, Siqueira VL. Proteomic profiling of Klebsiella pneumoniae carbapenemase (KPC)-producer Klebsiella pneumoniae after induced polymyxin resistance. Future Microbiol 2021; 16:1195-1207. [PMID: 34590903 DOI: 10.2217/fmb-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the changes in protein expression associated with polymyxin resistance in Klebsiella pneumoniae, we profiled a comparative proteomic analysis of polymyxin B-resistant mutants KPC-2-producing K. pneumoniae, and of its susceptible counterparts. Material & methods: Two-dimensional reversed phase nano ultra-performance liquid chromatography mass spectrometry was used for proteomic analysis. Results: Our results showed that the proteomic profile involved several biological processes, and we highlight the downregulation of outer membrane protein A (OmpA) and the upregulation of SlyB outer membrane lipoprotein (conserved protein member of the PhoPQ regulon) and AcrA multidrug efflux pump in polymyxin B-resistant strains. Conclusion: Our results highlight the possible participation of the SlyB, AcrA and OmpA proteins in the determination of polymyxin B heteroresistance in KPC-2-producing K. pneumoniae.
Collapse
Affiliation(s)
- Paula A Queiroz
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Bruna R Silva
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringa, Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| |
Collapse
|
23
|
Patel V, Matange N. Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection. eLife 2021; 10:70931. [PMID: 34591012 PMCID: PMC8483737 DOI: 10.7554/elife.70931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Gene regulatory networks allow organisms to generate coordinated responses to environmental challenges. In bacteria, regulatory networks are re-wired and re-purposed during evolution, though the relationship between selection pressures and evolutionary change is poorly understood. In this study, we discover that the early evolutionary response of Escherichia coli to the antibiotic trimethoprim involves derepression of PhoPQ signaling, an Mg2+-sensitive two-component system, by inactivation of the MgrB feedback-regulatory protein. We report that derepression of PhoPQ confers trimethoprim-tolerance to E. coli by hitherto unrecognized transcriptional upregulation of dihydrofolate reductase (DHFR), target of trimethoprim. As a result, mutations in mgrB precede and facilitate the evolution of drug resistance. Using laboratory evolution, genome sequencing, and mutation re-construction, we show that populations of E. coli challenged with trimethoprim are faced with the evolutionary ‘choice’ of transitioning from tolerant to resistant by mutations in DHFR, or compensating for the fitness costs of PhoPQ derepression by inactivating the RpoS sigma factor, itself a PhoPQ-target. Outcomes at this evolutionary branch-point are determined by the strength of antibiotic selection, such that high pressures favor resistance, while low pressures favor cost compensation. Our results relate evolutionary changes in bacterial gene regulatory networks to strength of selection and provide mechanistic evidence to substantiate this link.
Collapse
Affiliation(s)
- Vishwa Patel
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nishad Matange
- Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
24
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Petrovskaya LE, Ziganshin RH, Kryukova EA, Zlobinov AV, Gapizov SS, Shingarova LN, Mironov VA, Lomakina GY, Dolgikh DA, Kirpichnikov MP. Increased Synthesis of a Magnesium Transporter MgtA During Recombinant Autotransporter Expression in Escherichia coli. Appl Biochem Biotechnol 2021; 193:3672-3703. [PMID: 34351586 DOI: 10.1007/s12010-021-03634-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Overproduction of the membrane proteins in Escherichia coli cells is a common approach to obtain sufficient material for their functional and structural studies. However, the efficiency of this process can be limited by toxic effects which decrease the viability of the host and lead to low yield of the product. During the expression of the esterase autotransporter AT877 from Psychrobacter cryohalolentis K5T, we observed significant growth inhibition of the C41(DE3) cells in comparison with the same cells producing other recombinant proteins. Induction of AT877 synthesis also resulted in the elevated expression of a magnesium transporter MgtA and decreased ATP content of the cells. To characterize the response to overexpression of the autotransporter in bacterial cells, we performed a comparative analysis of their proteomic profile by mass spectrometry. According to the obtained data, E. coli cells which synthesize AT877 experience complex stress condition presumably associated with secretion apparatus overloading and improper localization of the recombinant protein. Several response pathways were shown to be activated by AT877 overproduction including Cpx, PhoP/PhoQ, Psp, and σE The obtained results open new opportunities for optimization of the recombinant membrane protein expression in E. coli for structural studies and biotechnological applications.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| | - Rustam H Ziganshin
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow, 119334, Russia
| | - Alexander V Zlobinov
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Sultan Sh Gapizov
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow, 119334, Russia
- Department of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119234, Russia
| | - Lyudmila N Shingarova
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Vasiliy A Mironov
- Roche Diagnostics Rus LLC, Letnikovskaya str. 2/2, Moscow, 115114, Russia
| | - Galina Yu Lomakina
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
- Bauman Moscow State Technical University, Baumanskaya 2-ya, 5/1, Moscow, 105005, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow, 119334, Russia
- Department of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic , Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
- Department of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119234, Russia
| |
Collapse
|
26
|
Shi H, Li T, Xu J, Yu J, Yang S, Zhang XE, Tao S, Gu J, Deng JY. MgrB Inactivation Confers Trimethoprim Resistance in Escherichia coli. Front Microbiol 2021; 12:682205. [PMID: 34394028 PMCID: PMC8355897 DOI: 10.3389/fmicb.2021.682205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
After several decades of use, trimethoprim (TMP) remains one of the key access antimicrobial drugs listed by the World Health Organization. To circumvent the problem of trimethoprim resistance worldwide, a better understanding of drug-resistance mechanisms is required. In this study, we screened the single-gene knockout library of Escherichia coli, and identified mgrB and other several genes involved in trimethoprim resistance. Subsequent comparative transcriptional analysis between ΔmgrB and the wild-type strain showed that expression levels of phoP, phoQ, and folA were significantly upregulated in ΔmgrB. Further deleting phoP or phoQ could partially restore trimethoprim sensitivity to ΔmgrB, and co-overexpression of phoP/Q caused TMP resistance, suggesting the involvement of PhoP/Q in trimethoprim resistance. Correspondingly, MgrB and PhoP were shown to be able to modulated folA expression in vivo. After that, efforts were made to test if PhoP could directly modulate the expression of folA. Though phosphorylated PhoP could bind to the promotor region of folA in vitro, the former only provided a weak protection on the latter as shown by the DNA footprinting assay. In addition, deleting the deduced PhoP box in ΔmgrB could only slightly reverse the TMP resistance phenotype, suggesting that it is less likely for PhoP to directly modulate the transcription of folA. Taken together, our data suggested that, in E. coli, MgrB affects susceptibility to trimethoprim by modulating the expression of folA with the involvement of PhoP/Q. This work broadens our understanding of the regulation of folate metabolism and the mechanisms of TMP resistance in bacteria.
Collapse
Affiliation(s)
- Hongmei Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jintian Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jifang Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jing Gu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao-Yu Deng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, China
| |
Collapse
|
27
|
The expanding world of protein kinase-like families in bacteria: forty families and counting. Biochem Soc Trans 2021; 48:1337-1352. [PMID: 32677675 DOI: 10.1042/bst20190712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
The protein kinase-like clan/superfamily is a large group of regulatory, signaling and biosynthetic enzymes that were historically regarded as typically eukaryotic proteins, although bacterial members have also been known for a long time. In this review, we explore the diversity of bacterial protein kinase like families, and discuss functional versatility of these enzymes, both the ones acting within the bacterial cell, and those acting within eukaryotic cells as effectors during infection. We focus on novel bacterial kinase-like families discovered in the last five years. A bioinformatics perspective is held here, hence sequence and structure comparison overview is presented, and also a comparison of genomic neighbourhoods of the families. We perform a phylum-level census of the families. Also, we discuss apparent pseudokinases that turned out to perform alternative catalytic functions by repurposing their atypical kinase-like active sites. We also highlight some 'unpopular' kinase-like families that await characterisation.
Collapse
|
28
|
Taati Moghadam M, Mirzaei M, Fazel Tehrani Moghaddam M, Babakhani S, Yeganeh O, Asgharzadeh S, Farahani HE, Shahbazi S. The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Microb Drug Resist 2021; 27:1513-1524. [PMID: 33913748 DOI: 10.1089/mdr.2020.0505] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mirzaei
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Omid Yeganeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Asgharzadeh
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Yang B, Liu C, Pan X, Fu W, Fan Z, Jin Y, Bai F, Cheng Z, Wu W. Identification of Novel PhoP-PhoQ Regulated Genes That Contribute to Polymyxin B Tolerance in Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9020344. [PMID: 33572426 PMCID: PMC7916210 DOI: 10.3390/microorganisms9020344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Polymyxin B and E (colistin) are the last resorts to treat multidrug-resistant Gram-negative pathogens. Pseudomonas aeruginosa is intrinsically resistant to a variety of antibiotics. The PhoP-PhoQ two-component regulatory system contributes to the resistance to polymyxins by regulating an arnBCADTEF-pmrE operon that encodes lipopolysaccharide modification enzymes. To identify additional PhoP-regulated genes that contribute to the tolerance to polymyxin B, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) assay and found novel PhoP binding sites on the chromosome. We further verified that PhoP directly controls the expression of PA14_46900, PA14_50740 and PA14_52340, and the operons of PA14_11970-PA14_11960 and PA14_52350-PA14_52370. Our results demonstrated that mutation of PA14_46900 increased the bacterial binding and susceptibility to polymyxin B. Meanwhile, mutation of PA14_11960 (papP), PA14_11970 (mpl), PA14_50740 (slyB), PA14_52350 (ppgS), and PA14_52370 (ppgH) reduced the bacterial survival rates and increased ethidium bromide influx under polymyxin B or Sodium dodecyl sulfate (SDS) treatment, indicating roles of these genes in maintaining membrane integrity in response to the stresses. By 1-N-phenylnaphthylamine (NPN) and propidium iodide (PI) staining assay, we found that papP and slyB are involved in maintaining outer membrane integrity, and mpl and ppgS-ppgH are involved in maintaining inner membrane integrity. Overall, our results reveal novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance.
Collapse
|
31
|
Choi J, Groisman EA. Horizontally acquired regulatory gene activates ancestral regulatory system to promote Salmonella virulence. Nucleic Acids Res 2020; 48:10832-10847. [PMID: 33045730 PMCID: PMC7641745 DOI: 10.1093/nar/gkaa813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Horizontally acquired genes are typically regulated by ancestral regulators. This regulation enables expression of horizontally acquired genes to be coordinated with that of preexisting genes. Here, we report a singular example of the opposite regulation: a horizontally acquired gene that controls an ancestral regulator, thereby promoting bacterial virulence. We establish that the horizontally acquired regulatory gene ssrB is necessary to activate the ancestral regulatory system PhoP/PhoQ of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mildly acidic pH, which S. Typhimurium experiences inside macrophages. SsrB promotes phoP transcription by binding upstream of the phoP promoter. SsrB also increases ugtL transcription by binding to the ugtL promoter region, where it overcomes gene silencing by the heat-stable nucleoid structuring protein H-NS, enhancing virulence. The largely non-pathogenic species S. bongori failed to activate PhoP/PhoQ in mildly acidic pH because it lacks both the ssrB gene and the SsrB binding site in the target promoter. Low Mg2+ activated PhoP/PhoQ in both S. bongori and ssrB-lacking S. Typhimurium, indicating that the SsrB requirement for PhoP/PhoQ activation is signal-dependent. By controlling the ancestral genome, horizontally acquired genes are responsible for more crucial abilities, including virulence, than currently thought.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
32
|
Abstract
Sensing specific gut metabolites is an important strategy for inducing crucial virulence programs by enterohemorrhagic Escherichia coli (EHEC) O157:H7 during colonization and infection. Here, we identified a virulence-regulating pathway wherein the PhoQ/PhoP two-component regulatory system signals to the O island 119-encoded low magnesium-induced regulator A (LmiA), which, in turn, activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence in the low-magnesium conditions of the large intestine. This regulatory pathway is widely present in a range of EHEC and enteropathogenic E. coli (EPEC) serotypes. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, mice fed a magnesium-rich diet showed significantly reduced EHEC O157:H7 adherence in vivo, indicating that magnesium may help in preventing EHEC and EPEC infection in humans. The large intestinal pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 detects host cues to regulate virulence gene expression during colonization and infection. However, virulence regulatory mechanisms of EHEC O157:H7 in the human large intestine are not fully understood. Herein, we identified a virulence-regulating pathway where the PhoQ/PhoP two-component regulatory system senses low magnesium levels and signals to the O island 119-encoded Z4267 (LmiA; low magnesium-induced regulator A), directly activating loci of enterocyte effacement genes to promote EHEC O157:H7 adherence in the large intestine. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, feeding mice a magnesium-rich diet significantly reduced EHEC O157:H7 adherence in vivo. This LmiA-mediated virulence regulatory pathway is also conserved among several EHEC and enteropathogenic E. coli serotypes; therefore, our findings support the use of magnesium as a dietary supplement and provide greater insights into the dietary cues that can prevent enteric infections.
Collapse
|
33
|
Huang L, Feng Y, Zong Z. Heterogeneous resistance to colistin in Enterobacter cloacae complex due to a new small transmembrane protein. J Antimicrob Chemother 2020; 74:2551-2558. [PMID: 31169899 DOI: 10.1093/jac/dkz236] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enterobacter strains can display heterogeneous resistance (heteroresistance) to colistin but the mechanisms remain largely unknown. We investigated potential mechanisms of colistin heteroresistance in an Enterobacter clinical strain, WCHECl-1060, and found a new mechanism. METHODS Strain WCHECl-1060 was subjected to WGS to identify known colistin resistance mechanisms. Tn5 insertional mutagenesis, gene knockout and complementation and shotgun cloning were employed to investigate unknown colistin heteroresistance mechanisms. RNA sequencing was performed to link the newly identified mechanism with known ones. RESULTS We showed that the phoP gene [encoding part of the PhoP-PhoQ two-component system (TCS)], the dedA(Ecl) gene (encoding an inner membrane protein of the DedA family) and the tolC gene (encoding part of the AcrAB-TolC efflux pump) are required for colistin heteroresistance. We identified a new gene, ecr, encoding a 72 amino acid transmembrane protein, which was able to mediate colistin heteroresistance. We then performed RNA sequencing and transcriptome analysis and found that in the presence of ecr the expression of phoP and the arnBCADTEF operon, which synthesizes and transfers l-Ara4N to lipid A, was increased significantly. CONCLUSIONS The small protein encoded by ecr represents a new colistin heteroresistance mechanism and is likely to mediate colistin heteroresistance via the PhoP-PhoQ TCS to act on the arnBCADTEF operon.
Collapse
Affiliation(s)
- Liang Huang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
35
|
Dean SN, Milton ME, Cavanagh J, van Hoek ML. Francisella novicida Two-Component System Response Regulator BfpR Modulates iglC Gene Expression, Antimicrobial Peptide Resistance, and Biofilm Production. Front Cell Infect Microbiol 2020; 10:82. [PMID: 32232010 PMCID: PMC7082314 DOI: 10.3389/fcimb.2020.00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Response regulators are a critical part of the two-component system of gene expression regulation in bacteria, transferring a signal from a sensor kinase into DNA binding activity resulting in alteration of gene expression. In this study, we investigated a previously uncharacterized response regulator in Francisella novicida, FTN_1452 that we have named BfpR (Biofilm-regulating Francisella protein Regulator, FTN_1452). In contrast to another Francisella response regulator, QseB/PmrA, BfpR appears to be a negative regulator of biofilm production, and also a positive regulator of antimicrobial peptide resistance in this bacterium. The protein was crystallized and X-ray crystallography studies produced a 1.8 Å structure of the BfpR N-terminal receiver domain revealing interesting insight into its potential interaction with the sensor kinase. Structural analysis of BfpR places it in the OmpR/PhoP family of bacterial response regulators along with WalR and ResD. Proteomic and transcriptomic analyses suggest that BfpR overexpression affects expression of the critical Francisella virulence factor iglC, as well as other proteins in the bacterium. We demonstrate that mutation of bfpR is associated with an antimicrobial peptide resistance phenotype, a phenotype also associated with other response regulators, for the human cathelicidin peptide LL-37 and a sheep antimicrobial peptide SMAP-29. F. novicida with mutated bfpR replicated better than WT in intracellular infection assays in human-derived macrophages suggesting that the down-regulation of iglC expression in bfpR mutant may enable this intracellular replication to occur. Response regulators have been shown to play important roles in the regulation of bacterial biofilm production. We demonstrate that F. novicida biofilm formation was highly increased in the bfpR mutant, corresponding to altered glycogen synthesis. Waxworm infection experiments suggest a role of BfpR as a negative modulator of iglC expression with de-repression by Mg2+. In this study, we find that the response regulator BfpR may be a negative regulator of biofilm formation, and a positive regulator of antimicrobial peptide resistance in F. novicida.
Collapse
Affiliation(s)
- Scott N Dean
- National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Monique L van Hoek
- National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
36
|
Abstract
The Gram-negative envelope is a complex structure that consists of the inner membrane, the periplasm, peptidoglycan and the outer membrane, and protects the bacterial cell from the environment. Changing environmental conditions can cause damage, which triggers the envelope stress responses to maintain cellular homeostasis. In this Review, we explore the causes, both environmental and intrinsic, of envelope stress, as well as the cellular stress response pathways that counter these stresses. Furthermore, we discuss the damage to the cell that occurs when these pathways are aberrantly activated either in the absence of stress or to an excessive degree. Finally, we review the mechanisms whereby the σE response constantly acts to prevent cell death caused by highly toxic unfolded outer membrane proteins. Together, the recent work that we discuss has provided insights that emphasize the necessity for proper levels of stress response activation and the detrimental consequences that can occur in the absence of proper regulation.
Collapse
|
37
|
Cross-talk between the RcsCDB and RstAB systems to control STM1485 gene expression in Salmonella Typhimurium during acid-resistance response. Biochimie 2019; 160:46-54. [PMID: 30763640 DOI: 10.1016/j.biochi.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023]
Abstract
Bacterial survive and respond to adverse changes in the environment by regulating gene transcription through two-component regulatory systems. In Salmonella Typhimurium the STM1485 gene expression is induced under low pH (4.5) during replication inside the epithelial host cell, but it is not involved in sensing or resisting to this condition. Since the RcsCDB system is activated under acidic conditions, we investigated whether this system is able to modulate STM1485 expression. We demonstrated that acid-induced activation of the RcsB represses STM1485 transcription by directly binding to the promoter. Under the same condition, the RstA regulator activates the expression of this gene. Physiologically, we observed that RcsB-dependent repression is required for the survival of bacteria when they are exposed to pancreatic fluids. We hypothesized that STM1485 plays an important role in Salmonella adaptation to pH changes, during transition in the gastrointestinal tract. We suggest that bacteria surviving the gastrointestinal environment invade the epithelial cells, where they can remain in vacuoles. In this new environment, acidity and magnesium starvation activate the expression of the RstA regulator in a PhoPQ-dependent manner, which in turn induces STM1485 expression. These levels of STM1485 allow increased bacterial replication within vacuoles to continue the course of infection.
Collapse
|
38
|
Yoshitani K, Ishii E, Taniguchi K, Sugimoto H, Shiro Y, Akiyama Y, Kato A, Utsumi R, Eguchi Y. Identification of an internal cavity in the PhoQ sensor domain for PhoQ activity and SafA-mediated control. Biosci Biotechnol Biochem 2019; 83:684-694. [PMID: 30632929 DOI: 10.1080/09168451.2018.1562879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The PhoQ/PhoP two-component signal transduction system is conserved in various Gram-negative bacteria and is often involved in the expression of virulence in pathogens. The small inner membrane protein SafA activates PhoQ in Escherichia coli independently from other known signals that control PhoQ activity. We have previously shown that SafA directly interacts with the sensor domain of the periplasmic region of PhoQ (PhoQ-SD) for activation, and that a D179R mutation in PhoQ-SD attenuates PhoQ activation by SafA. In this study, structural comparison of wild-type PhoQ-SD and D179R revealed a difference in the cavity (SD (sensory domain) pocket) found in the central core of this domain. This was the only structural difference between the two proteins. Site-directed mutagenesis of the residues surrounding the SD pocket has supported the SD pocket as a site involved in PhoQ activity. Furthermore, the SD pocket has also been shown to be involved in SafA-mediated PhoQ control.
Collapse
Affiliation(s)
- Kohei Yoshitani
- a Department of Bioscience , Graduate School of Agriculture, Kindai University , Nara , Japan.,b Department of Biosystems Science , Institute for Frontier Life and Medical Sciences, Kyoto University , Kyoto , Japan
| | - Eiji Ishii
- a Department of Bioscience , Graduate School of Agriculture, Kindai University , Nara , Japan.,b Department of Biosystems Science , Institute for Frontier Life and Medical Sciences, Kyoto University , Kyoto , Japan
| | - Katsuhide Taniguchi
- a Department of Bioscience , Graduate School of Agriculture, Kindai University , Nara , Japan
| | - Hiroshi Sugimoto
- c SR Life Science Instrumentation Team , RIKEN SPring-8 Center , Sayo , Japan.,d Graduate School of Life Science , University of Hyogo , Hyogo , Japan
| | - Yoshitsugu Shiro
- d Graduate School of Life Science , University of Hyogo , Hyogo , Japan
| | - Yoshinori Akiyama
- b Department of Biosystems Science , Institute for Frontier Life and Medical Sciences, Kyoto University , Kyoto , Japan
| | - Akinori Kato
- a Department of Bioscience , Graduate School of Agriculture, Kindai University , Nara , Japan
| | - Ryutaro Utsumi
- a Department of Bioscience , Graduate School of Agriculture, Kindai University , Nara , Japan.,e Department of Biomolecular Science and Reaction , The Institute of Scientific and Industrial Research, Osaka University , Osaka , Japan
| | - Yoko Eguchi
- a Department of Bioscience , Graduate School of Agriculture, Kindai University , Nara , Japan.,f Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology , Kindai University , Wakayama , Japan
| |
Collapse
|
39
|
Lin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, Lv Z, Shang Y, Qu D. Virulence and Stress Responses of Shigella flexneri Regulated by PhoP/PhoQ. Front Microbiol 2018; 8:2689. [PMID: 29379483 PMCID: PMC5775216 DOI: 10.3389/fmicb.2017.02689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
The two-component signal transduction system PhoP/PhoQ is an important regulator for stress responses and virulence in most Gram-negative bacteria, but characterization of PhoP/PhoQ in Shigella has not been thoroughly investigated. In the present study, we found that deletion of phoPQ (ΔphoPQ) from Shigella flexneri 2a 301 (Sf301) resulted in a significant decline (reduced by more than 15-fold) in invasion of HeLa cells and Caco-2 cells, and less inflammation (− or +) compared to Sf301 (+++) in the guinea pig Sereny test. In low Mg2+ (10 μM) medium or pH 5 medium, the ΔphoPQ strain exhibited a growth deficiency compared to Sf301. The ΔphoPQ strain was more sensitive than Sf301 to polymyxin B, an important antimicrobial agent for treating multi-resistant Gram-negative infections. By comparing the transcriptional profiles of ΔphoPQ and Sf301 using DNA microarrays, 117 differentially expressed genes (DEGs) were identified, which were involved in Mg2+ transport, lipopolysaccharide modification, acid resistance, bacterial virulence, respiratory, and energy metabolism. Based on the reported PhoP box motif [(T/G) GTTTA-5nt-(T/G) GTTTA], we screened 38 suspected PhoP target operons in S. flexneri, and 11 of them (phoPQ, mgtA, slyB, yoaE, yrbL, icsA, yhiWX, rstA, hdeAB, pagP, and shf–rfbU-virK-msbB2) were demonstrated to be PhoP-regulated genes based on electrophoretic mobility shift assays and β-galactosidase assays. One of these PhoP-regulated genes, icsA, is a well-known virulence factor in S. flexneri. In conclusion, our data suggest that the PhoP/PhoQ system modulates S. flexneri virulence (in an icsA-dependent manner) and stress responses of Mg2+, pH and antibacterial peptides.
Collapse
Affiliation(s)
- Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Mingliang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
40
|
Abstract
The PhoQ/PhoP two-component system plays an essential role in the response of enterobacteria to the environment of their mammalian hosts. It is known to sense several stimuli that are potentially associated with the host, including extracellular magnesium limitation, low pH, and the presence of cationic antimicrobial peptides. Here, we show that the PhoQ/PhoP two-component systems of Escherichia coli and Salmonella can also perceive an osmotic upshift, another key stimulus to which bacteria become exposed within the host. In contrast to most previously established stimuli of PhoQ, the detection of osmotic upshift does not require its periplasmic sensor domain. Instead, we show that the activity of PhoQ is affected by the length of the transmembrane (TM) helix as well as by membrane lateral pressure. We therefore propose that osmosensing relies on a conformational change within the TM domain of PhoQ induced by a perturbation in cell membrane thickness and lateral pressure under hyperosmotic conditions. Furthermore, the response mediated by the PhoQ/PhoP two-component system was found to improve bacterial growth recovery under hyperosmotic stress, partly through stabilization of the sigma factor RpoS. Our findings directly link the PhoQ/PhoP two-component system to bacterial osmosensing, suggesting that this system can mediate a concerted response to most of the established host-related cues.
Collapse
|
41
|
Chadani Y, Niwa T, Izumi T, Sugata N, Nagao A, Suzuki T, Chiba S, Ito K, Taguchi H. Intrinsic Ribosome Destabilization Underlies Translation and Provides an Organism with a Strategy of Environmental Sensing. Mol Cell 2017; 68:528-539.e5. [PMID: 29100053 DOI: 10.1016/j.molcel.2017.10.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023]
Abstract
Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takashi Izumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Nobuyuki Sugata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
42
|
Antenucci F, Fougeroux C, Bossé JT, Magnowska Z, Roesch C, Langford P, Holst PJ, Bojesen AM. Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae. Vet Res 2017; 48:74. [PMID: 29122004 PMCID: PMC5679336 DOI: 10.1186/s13567-017-0479-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022] Open
Abstract
Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A. pleuropneumoniae immunogens. Potential immunogens were identified in the complete genomes of three A. pleuropneumoniae strains belonging to different serovars using the following parameters: predicted outer-membrane subcellular localization; ≤ 1 trans-membrane helices; presence of a signal peptide in the protein sequence; presence in all known A. pleuropneumoniae genomes; homology with other well characterized factors with relevant data regarding immunogenicity/protective potential. Using this approach, we selected the proteins ApfA and VacJ to be expressed and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that ApfA and VacJ are highly conserved proteins, naturally expressed during infection by all A. pleuropneumoniae serovars tested. Furthermore, OMVs, ApfA and VacJ were shown to possess a high immunogenic potential in vitro. These findings favour the immunogen selection protocol used, and suggest that OMVs, along with ApfA and VacJ, could represent effective immunogens for the prevention of A. pleuropneumoniae infections in a serovar-independent manner. This hypothesis is nonetheless predictive in nature, and in vivo testing in a relevant animal model will be necessary to verify its validity.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, København K, 1014, Copenhagen, Denmark
| | - Janine T Bossé
- Department of Medicine, St Mary's Campus, Imperial College London, 236 Wright Fleming Wing, London, UK
| | - Zofia Magnowska
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark
| | - Camille Roesch
- Izon Science Ltd, Bâtiment Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Paul Langford
- Department of Medicine, St Mary's Campus, Imperial College London, 236 Wright Fleming Wing, London, UK
| | - Peter Johannes Holst
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, København K, 1014, Copenhagen, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark.
| |
Collapse
|
43
|
Utsumi R. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics. Biosci Biotechnol Biochem 2017; 81:1663-1669. [PMID: 28743208 DOI: 10.1080/09168451.2017.1350565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.
Collapse
Affiliation(s)
- Ryutaro Utsumi
- a Department of Bioscience, Graduate School of Agriculture , Kindai University , Nara , Japan
| |
Collapse
|
44
|
Abstract
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516
| |
Collapse
|
45
|
An Essential Regulatory System Originating from Polygenic Transcriptional Rewiring of PhoP-PhoQ of Xanthomonas campestris. Genetics 2017; 206:2207-2223. [PMID: 28550013 DOI: 10.1534/genetics.117.200204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
How essential, regulatory genes originate and evolve is intriguing because mutations of these genes not only lead to lethality in organisms, but also have pleiotropic effects since they control the expression of multiple downstream genes. Therefore, the evolution of essential, regulatory genes is not only determined by genetic variations of their own sequences, but also by the biological function of downstream genes and molecular mechanisms of regulation. To understand the origin of essential, regulatory genes, experimental dissection of the complete regulatory cascade is needed. Here, we provide genetic evidences to reveal that PhoP-PhoQ is an essential two-component signal transduction system in the gram-negative bacterium Xanthomonas campestris, but that its orthologs in other bacteria belonging to Proteobacteria are nonessential. Mutational, biochemical, and chromatin immunoprecipitation together with high-throughput sequencing analyses revealed that phoP and phoQ of X. campestris and its close relative Pseudomonas aeruginosa are replaceable, and that the consensus binding motifs of the transcription factor PhoP are also highly conserved. PhoP Xcc in X. campestris regulates the transcription of a number of essential, structural genes by directly binding to cis-regulatory elements (CREs); however, these CREs are lacking in the orthologous essential, structural genes in P. aeruginosa, and thus the regulatory relationships between PhoP Pae and these downstream essential genes are disassociated. Our findings suggested that the recruitment of regulatory proteins by critical structural genes via transcription factor-CRE rewiring is a driving force in the origin and functional divergence of essential, regulatory genes.
Collapse
|
46
|
Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc Natl Acad Sci U S A 2017; 114:5689-5694. [PMID: 28512220 DOI: 10.1073/pnas.1703415114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthesis of the 31-amino acid, inner membrane protein MgtS (formerly denoted YneM) is induced by very low Mg2+ in a PhoPQ-dependent manner in Escherichia coli Here we report that MgtS acts to increase intracellular Mg2+ levels and maintain cell integrity upon Mg2+ depletion. Upon development of a functional tagged derivative of MgtS, we found that MgtS interacts with MgtA to increase the levels of this P-type ATPase Mg2+ transporter under Mg2+-limiting conditions. Correspondingly, the effects of MgtS upon Mg2+ limitation are lost in a ∆mgtA mutant, and MgtA overexpression can suppress the ∆mgtS phenotype. MgtS stabilization of MgtA provides an additional layer of regulation of this tightly controlled Mg2+ transporter and adds to the list of small proteins that regulate inner membrane transporters.
Collapse
|
47
|
Breland EJ, Eberly AR, Hadjifrangiskou M. An Overview of Two-Component Signal Transduction Systems Implicated in Extra-Intestinal Pathogenic E. coli Infections. Front Cell Infect Microbiol 2017; 7:162. [PMID: 28536675 PMCID: PMC5422438 DOI: 10.3389/fcimb.2017.00162] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Extra-intestinal pathogenic E. coli (ExPEC) infections are common in mammals and birds. The predominant ExPEC types are avian pathogenic E. coli (APEC), neonatal meningitis causing E. coli/meningitis associated E. coli (NMEC/MAEC), and uropathogenic E. coli (UPEC). Many reviews have described current knowledge on ExPEC infection strategies and virulence factors, especially for UPEC. However, surprisingly little has been reported on the regulatory modules that have been identified as critical in ExPEC pathogenesis. Two-component systems (TCSs) comprise the predominant method by which bacteria respond to changing environments and play significant roles in modulating bacterial fitness in diverse niches. Recent studies have highlighted the potential of manipulating signal transduction systems as a means to chemically re-wire bacterial pathogens, thereby reducing selective pressure and avoiding the emergence of antibiotic resistance. This review begins by providing a brief introduction to characterized infection strategies and common virulence factors among APEC, NMEC, and UPEC and continues with a comprehensive overview of two-component signal transduction networks that have been shown to influence ExPEC pathogenesis.
Collapse
Affiliation(s)
- Erin J Breland
- Department of Pharmacology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA.,Department of Urology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
48
|
Guckes KR, Breland EJ, Zhang EW, Hanks SC, Gill NK, Algood HMS, Schmitz JE, Stratton CW, Hadjifrangiskou M. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal 2017; 10:10/461/eaag1775. [PMID: 28074004 PMCID: PMC5677524 DOI: 10.1126/scisignal.aag1775] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria use two-component systems (TCSs) to react appropriately to environmental stimuli. Typical TCSs comprise a sensor histidine kinase that acts as a receptor coupled to a partner response regulator that coordinates changes in bacterial behavior, often through its activity as a transcriptional regulator. TCS interactions are typically confined to cognate pairs of histidine kinases and response regulators. We describe two distinct TCSs in uropathogenic Escherichia coli (UPEC) that interact to mediate a response to ferric iron. The PmrAB and QseBC TCSs were both required for proper transcriptional response to ferric iron. Ferric iron induced the histidine kinase PmrB to phosphotransfer to both its cognate response regulator PmrA and the noncognate response regulator QseB, leading to transcriptional responses coordinated by both regulators. Pretreatment of the UPEC strain UTI89 with ferric iron led to increased resistance to polymyxin B that required both PmrA and QseB. Similarly, pretreatment of several UPEC isolates with ferric iron increased tolerance to polymyxin B. This study defines physiologically relevant cross talk between TCSs in a bacterial pathogen and provides a potential mechanism for antibiotic resistance of some strains of UPEC.
Collapse
Affiliation(s)
- Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin J Breland
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ellisa W Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Holly M S Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. .,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
49
|
Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol 2016; 1:16053. [PMID: 27572838 DOI: 10.1038/nmicrobiol.2016.53] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/22/2016] [Indexed: 12/28/2022]
Abstract
Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.
Collapse
|
50
|
PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother 2015; 59:2051-61. [PMID: 25605366 DOI: 10.1128/aac.05052-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg(2+), a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444-1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg(2+) growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood.
Collapse
|