1
|
Ho K, Harshey RM. Membrane-associated σ factors disrupt rRNA operon clustering in Escherichia coli. PLoS Biol 2025; 23:e3003113. [PMID: 40245090 PMCID: PMC12037070 DOI: 10.1371/journal.pbio.3003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/28/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Chromosomal organization in Escherichia coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or "clustering" of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies-fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Ho K, Harshey RM. Membrane-associated σ factors disrupt rRNA operon clustering in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.20.614170. [PMID: 39345417 PMCID: PMC11429968 DOI: 10.1101/2024.09.20.614170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Chromosomal organization in E. coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or 'clustering' of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies - fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
3
|
Benvenuti JL, Casa PL, Pessi de Abreu F, Martinez GS, de Avila E Silva S. From straight to curved: A historical perspective of DNA shape. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:46-54. [PMID: 39260792 DOI: 10.1016/j.pbiomolbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
DNA is the macromolecule responsible for storing the genetic information of a cell and it has intrinsic properties such as deformability, stability and curvature. DNA Curvature plays an important role in gene transcription and, consequently, in the subsequent production of proteins, a fundamental process of cells. With recent advances in bioinformatics and theoretical biology, it became possible to analyze and understand the involvement of DNA Curvature as a discriminatory characteristic of gene-promoting regions. These regions act as sites where RNAp (ribonucleic acid-polymerase) binds to initiate transcription. This review aims to describe the formation of Curvature, as well as highlight its importance in predicting promoters. Furthermore, this article provides the potential of DNA Curvature as a distinguishing feature for promoter prediction tools, as well as outlining the calculation procedures that have been described by other researchers. This work may support further studies directed towards the enhancement of promoter prediction software.
Collapse
Affiliation(s)
- Jean Lucas Benvenuti
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil.
| | - Pedro Lenz Casa
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Pessi de Abreu
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil; Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
4
|
Shalev O, Ashkenazy H, Neumann M, Weigel D. Commensal Pseudomonas protect Arabidopsis thaliana from a coexisting pathogen via multiple lineage-dependent mechanisms. THE ISME JOURNAL 2022; 16:1235-1244. [PMID: 34897280 PMCID: PMC9038753 DOI: 10.1038/s41396-021-01168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
AbstractPlants are protected from pathogens not only by their own immunity but often also by colonizing commensal microbes. In Arabidopsis thaliana, a group of cryptically pathogenic Pseudomonas strains often dominates local populations. This group coexists in nature with commensal Pseudomonas strains that can blunt the deleterious effects of the pathogens in the laboratory. We have investigated the interaction between one of the Pseudomonas pathogens and 99 naturally co-occurring commensals, finding plant protection to be common among non-pathogenic Pseudomonas. While protective ability is enriched in one specific lineage, there is also a substantial variation for this trait among isolates of this lineage. These functional differences do not align with core-genome phylogenies, suggesting repeated gene inactivation or loss as causal. Using genome-wide association, we discovered that different bacterial genes are linked to plant protection in each lineage. We validated a protective role of several lineage-specific genes by gene inactivation, highlighting iron acquisition and biofilm formation as prominent mechanisms of plant protection in this Pseudomonas lineage. Collectively, our work illustrates the importance of functional redundancy in plant protective traits across an important group of commensal bacteria.
Collapse
|
5
|
Significance of both alkB and P450 alkane-degrading systems in Tsukamurella tyrosinosolvens: proteomic evidence. Appl Microbiol Biotechnol 2022; 106:3153-3171. [PMID: 35396956 DOI: 10.1007/s00253-022-11906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/02/2022]
Abstract
The Tsukamurella tyrosinosolvens PS2 strain was isolated from hydrocarbons-contaminated petrochemical sludge as a long chain alkane-utilizing bacteria. Complete genome analysis showed the presence of two alkane oxidation systems: alkane 1-monooxygenase (alkB) and cytochrome P450 monooxygenase (P450) genes with established high homology to the well-known alkane-degrading actinobacteria. According to the comparative genome analysis, both systems have a wide distribution among environmental and clinical isolates of the genus Tsukamurella and other members of Actinobacteria. We compared the expression of different proteins during the growth of Tsukamurella on sucrose and on hexadecane. Both alkane monooxygenases were upregulated on hexadecane: AlkB-up to 2.5 times, P450-up to 276 times. All proteins of the hexadecane oxidation pathway to acetyl-CoA were also upregulated. Accompanying proteins for alkane degradation involved in biosurfactant synthesis and transport of organic and inorganic molecules were increased. The change in the carbon source affected the pathways for the regulation of translation and transcription. The proteomic profile showed that hexadecane is an adverse factor causing activation of general and universal stress proteins as well as shock and resistance proteins. Differently expressed proteins of Tsukamurella tyrosinosolvens PS2 shed light on the alkane degradation in other members of Actinobacteria class. KEY POINTS: • alkB and P450 systems have a wide distribution among the genus Tsukamurella. • alkB and P450 systems have coexpression with the predominant role of P450 protein. • Hexadecane causes significant changes in bacterial proteome.
Collapse
|
6
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
8
|
An extracytoplasmic function (ECF) sigma/anti-sigma factor system regulates hypochlorous acid resistance and impacts expression of the type IV secretion system in Brucella melitensis. J Bacteriol 2021; 203:e0012721. [PMID: 33820796 PMCID: PMC8315932 DOI: 10.1128/jb.00127-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intracellular bacterial pathogen Brucella causes persistent infections in various mammalian species. To survive and replicate within macrophages, these bacteria must be able to withstand oxidative stresses and express the type IV secretion system (T4SS) to evade host immune responses. The extracytoplasmic function (ECF) sigma factor system is a major signal transduction mechanism in bacteria that senses environmental cues and responds by regulating gene expression. In this study, we defined an ECF σ bcrS and its cognate anti-σ factor abcS in Brucella melitensis M28 by conserved domain analysis and a protein interaction assay. BcrS directly activates an adjacent operon, bcrXQP, that encodes a methionine-rich peptide and a putative methionine sulfoxide reductase system, whereas AbcS is a negative regulator of bcrS and bcrXQP. The bcrS-abcS and bcrXQP operons can be induced by hypochlorous acid and contribute to hypochlorous acid resistance in vitro. Next, RNA sequencing analysis and genome-wide recognition sequence search identified the regulons of BcrS and AbcS. Interestingly, we found that BcrS positively influences T4SS expression in an AbcS-dependent manner and that AbcS also affects T4SS expression independently of BcrS. Last, we demonstrate that abcS is required for the maintenance of persistent infection, while bcrS is dispensable in a mouse infection model. Collectively, we conclude that BcrS and AbcS influence expression of multiple genes responsible for Brucella virulence traits. IMPORTANCEBrucella is a notorious intracellular pathogen that induces chronic infections in animals and humans. To survive and replicate within macrophages, these bacteria require a capacity to withstand oxidative stresses and to express the type IV secretion system (T4SS) to combat host immune responses. In this study, we characterized an extracytoplasmic function sigma/anti-sigma factor system that regulates resistance to reactive chlorine species and T4SS expression, thereby establishing a potential link between two crucial virulence traits of Brucella. Furthermore, the anti-sigma factor AbcS contributes to Brucella persistent infection of mice. Thus, this work provides novel insights into Brucella virulence regulation as well as a potential drug target for fighting Brucella infections.
Collapse
|
9
|
Otero-Asman JR, García-García AI, Civantos C, Quesada JM, Llamas MA. Pseudomonas aeruginosa possesses three distinct systems for sensing and using the host molecule haem. Environ Microbiol 2019; 21:4629-4647. [PMID: 31390127 DOI: 10.1111/1462-2920.14773] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Pathogens have developed several strategies to obtain iron during infection, including the use of iron-containing molecules from the host. Haem accounts for the vast majority of the iron pool in vertebrates and thus represents an important source of iron for pathogens. Using a proteomic approach, we have identified in this work a previously uncharacterized system, which we name Hxu, that together with the known Has and Phu systems, is used by the human pathogen Pseudomonas aeruginosa to respond to haem. We show that the Has and Hxu systems are functional signal transduction pathways of the cell-surface signalling class and report the mechanism triggering the activation of these signalling systems. Both signalling cascades involve an outer membrane receptor (HasR and HxuA respectively) that upon sensing haem in the extracellular medium produces the activation of an σECF factor in the cytosol. HxuA has a major role in signalling and a minor role in haem acquisition in conditions in which the HasR and PhuR receptors or other sources of iron are present. Remarkably, P. aeruginosa compensates the lack of the HasR receptor by increasing the production of HxuA, which underscores the importance of haem signalling for this pathogen.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Ana I García-García
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| |
Collapse
|
10
|
Moraleda-Muñoz A, Marcos-Torres FJ, Pérez J, Muñoz-Dorado J. Metal-responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Mol Microbiol 2019; 112:385-398. [PMID: 31187912 PMCID: PMC6851896 DOI: 10.1111/mmi.14328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
In order to survive, bacteria must adapt to multiple fluctuations in their environment, including coping with changes in metal concentrations. Many metals are essential for viability, since they act as cofactors of indispensable enzymes. But on the other hand, they are potentially toxic because they generate reactive oxygen species or displace other metals from proteins, turning them inactive. This dual effect of metals forces cells to maintain homeostasis using a variety of systems to import and export them. These systems are usually inducible, and their expression is regulated by metal sensors and signal‐transduction mechanisms, one of which is mediated by extracytoplasmic function (ECF) sigma factors. In this review, we have focused on the metal‐responsive ECF sigma factors, several of which are activated by iron depletion (FecI, FpvI and PvdS), while others are activated by excess of metals such as nickel and cobalt (CnrH), copper (CarQ and CorE) or cadmium and zinc (CorE2). We focus particularly on their physiological roles, mechanisms of action and signal transduction pathways.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| |
Collapse
|
11
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
12
|
Braun V. The Outer Membrane Took Center Stage. Annu Rev Microbiol 2018; 72:1-24. [PMID: 30200853 DOI: 10.1146/annurev-micro-090817-062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point-the outer membrane of Escherichia coli-through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
13
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
14
|
Casella LG, Weiss A, Pérez-Rueda E, Antonio Ibarra J, Shaw LN. Towards the complete proteinaceous regulome of Acinetobacter baumannii. Microb Genom 2017; 3:mgen000107. [PMID: 28663824 PMCID: PMC5382811 DOI: 10.1099/mgen.0.000107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii. As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so doing, 243 transcription factors, 14 two-component systems (TCSs), 2 orphan response regulators, 1 hybrid TCS and 5 σ factors were found. A comparison of these elements between AB5075 and other clinical isolates, as well as a laboratory strain, led to the identification of several conserved regulatory elements, whilst at the same time uncovering regulators unique to hypervirulent strains. Lastly, by comparing regulatory elements compiled in this study to genes shown to be essential for AB5075 infection, we were able to highlight elements with a specific importance for pathogenic behaviour. Collectively, our work offers a unique insight into the regulatory network of A. baumannii strains, and provides insight into the evolution of hypervirulent lineages.
Collapse
Affiliation(s)
- Leila G Casella
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Andy Weiss
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Ernesto Pérez-Rueda
- 2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Mérida, Yucatán, Mexico.,3Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- 4Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Delegación Miguel Hidalgo, CP, 11340 Mexico, DF, Mexico
| | - Lindsey N Shaw
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| |
Collapse
|
15
|
Quesada JM, Otero-Asman JR, Bastiaansen KC, Civantos C, Llamas MA. The Activity of the Pseudomonas aeruginosa Virulence Regulator σ(VreI) Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB. Front Microbiol 2016; 7:1159. [PMID: 27536271 PMCID: PMC4971064 DOI: 10.3389/fmicb.2016.01159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σECF) is predominant. Pseudomonas aeruginosa contains nineteen σECF, including the virulence regulator σVreI. σVreI is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σVreI regulon are also expressed in low Pi despite the fact that the σVreI repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σVreI is partially active under Pi starvation, maximal transcription of the σVreI regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σVreI activation. Furthermore, we demonstrate that the activity of σVreI is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σVreI to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and −10 and −35 elements, are proposed.
Collapse
Affiliation(s)
- Jose M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones CientíficasGranada, Spain; Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
16
|
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b. Appl Environ Microbiol 2016; 82:1917-1923. [PMID: 26773085 DOI: 10.1128/aem.03884-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.
Collapse
|
17
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015. [PMID: 26620262 DOI: 10.1128/jb.00784-15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
18
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015; 198:755-65. [PMID: 26620262 DOI: 10.1128/jb.00784-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
19
|
Bastiaansen KC, Otero-Asman JR, Luirink J, Bitter W, Llamas MA. Processing of cell-surface signalling anti-sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains. Environ Microbiol 2015; 17:3263-77. [PMID: 25581349 DOI: 10.1111/1462-2920.12776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 02/02/2023]
Abstract
Cell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σ(ECF) activation. Using the Pseudomonas aeruginosa FoxR anti-sigma factor, we show here that RseP is responsible for the generation of an N-terminal tail that likely contains pro-sigma activity. Furthermore, it has been reported previously that this anti-sigma factor is processed in two separate domains prior to signal recognition. Here, we demonstrate that this process is common in these types of proteins and that the processing event is probably due to autoproteolytic activity. The resulting domains interact and function together to transduce the CSS signal. However, our results also indicate that this processing event is not essential for activity. In fact, we have identified functional CSS anti-sigma factors that are not cleaved prior to signal perception. Together, our results indicate that CSS regulation can occur through both complete and initially processed anti-sigma factors.
Collapse
Affiliation(s)
- Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.,Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
20
|
Abstract
ABSTRACT
Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.
Collapse
|
21
|
Llamas MA, Imperi F, Visca P, Lamont IL. Cell-surface signaling inPseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 2014; 38:569-97. [DOI: 10.1111/1574-6976.12078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
|
22
|
Bates SR, Quake SR. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping. PLoS One 2014; 9:e91542. [PMID: 24643045 PMCID: PMC3958368 DOI: 10.1371/journal.pone.0091542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated.
Collapse
Affiliation(s)
- Steven R. Bates
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering and HHMI, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
The Bartonella quintana extracytoplasmic function sigma factor RpoE has a role in bacterial adaptation to the arthropod vector environment. J Bacteriol 2013; 195:2662-74. [PMID: 23564167 DOI: 10.1128/jb.01972-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment.
Collapse
|
24
|
Affiliation(s)
- Sofia Österberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| | | | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
25
|
Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84-132. [PMID: 21372321 PMCID: PMC3063351 DOI: 10.1128/mmbr.00035-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.
Collapse
Affiliation(s)
- Jeremy J. Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L. Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David R. Hendrixson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
26
|
Mettrick KA, Lamont IL. Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa. Mol Microbiol 2009; 74:1257-71. [PMID: 19889096 DOI: 10.1111/j.1365-2958.2009.06932.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group IV (extracytoplasmic function) sigma factors direct the expression of a large number of regulons in bacteria. The activities of many Group IV sigma factors are inhibited by members of a family of anti-sigma factor proteins, with appropriate environmental signals causing the sigma factor to be released for interaction with core RNA polymerase and consequent transcription of target genes. One subgroup of Group IV sigmas directs expression of genes for uptake of siderophores (iron-chelating compounds) by Gram-negative bacteria. The activities of these sigma factors are controlled by anti-sigma factors that span the cytoplasmic membrane. Binding of siderophore by a receptor protein in the outer membrane results in signal transduction from the periplasmic portion to the cytoplasmic portion of the appropriate anti-sigma factor, with consequent activity of the cognate sigma factor and upregulation of the gene encoding the receptor protein. We have investigated receptor/anti-sigma/sigma factor signalling pathways for uptake of the siderophores ferrichrome and desferrioxamine by Pseudomonas aeruginosa. In these pathways the 'anti-sigma' proteins are normally required for sigma factor activity and the cytoplasmic parts of the 'anti-sigmas' have 'pro-sigma' activity. We suggest that the family of anti-sigma factor proteins may be better considered as 'sigma regulators'.
Collapse
Affiliation(s)
- Karla A Mettrick
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
27
|
Jordan PW, Saunders NJ. Host iron binding proteins acting as niche indicators for Neisseria meningitidis. PLoS One 2009; 4:e5198. [PMID: 19352437 PMCID: PMC2662411 DOI: 10.1371/journal.pone.0005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 03/09/2009] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays. Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators. Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also underlie the lethal features of meningococcal septicaemia, when haemoglobin may become a major source of iron.
Collapse
Affiliation(s)
- Philip W. Jordan
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nigel J. Saunders
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 2008; 96:115-39. [DOI: 10.1007/s10482-008-9284-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
29
|
Brooks BE, Buchanan SK. Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1930-45. [PMID: 17673165 PMCID: PMC2562455 DOI: 10.1016/j.bbamem.2007.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/23/2007] [Accepted: 06/06/2007] [Indexed: 11/27/2022]
Abstract
A variety of mechanisms are used to signal extracytoplasmic conditions to the cytoplasm. These mechanisms activate extracytoplasmic function (ECF) sigma factors which recruit RNA-polymerase to specific genes in order to express appropriate proteins in response to the changing environment. The two best understood ECF signaling pathways regulate sigma(E)-mediated expression of periplasmic stress response genes in Escherichia coli and FecI-mediated expression of iron-citrate transport genes in E. coli. Homologues from other Gram-negative bacteria suggest that these two signaling mechanisms and variations on these mechanisms may be the general schemes by which ECF sigma factors are regulated in Gram-negative bacteria.
Collapse
Affiliation(s)
- Benjamin E. Brooks
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
30
|
Wei X, Sayavedra-Soto LA, Arp DJ. Characterization of the ferrioxamine uptake system of Nitrosomonas europaea. MICROBIOLOGY-SGM 2007; 153:3963-3972. [PMID: 18048911 DOI: 10.1099/mic.0.2007/010603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemolithoautotroph Nitrosomonas europaea has two genes predicted to encode outer-membrane (OM) ferrioxamine transporters. Expression of the ferrioxamine uptake system required induction, as shown by the shorter lag phase in ferrioxamine-containing cultures when ferrioxamine-exposed cells were used as an inoculum. The two OM ferrioxamine siderophore transporters encoded by foxA(1) (NE1097) and foxA(2) (NE1088) were produced only in cells grown in Fe-limited ferrioxamine-containing medium. The inactivation of foxA(1), singly or in combination with foxA(2), prevented growth in Fe-limited medium containing excess desferrioxamine (DFX). The foxA(2)-disrupted single mutant grew poorly in the regular Fe-limited (0.2 microM) medium with 10 microM DFX, but grew well when the Fe level was raised to 1.0 microM with 10 microM DFX. For efficient acquisition of Fe-loaded ferrioxamine, N. europaea needs both ferrioxamine transporters FoxA(1) and FoxA(2). FoxA(1) probably regulates its own production, and it controls the production of FoxA(2) as well.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
31
|
Wei X, Vajrala N, Hauser L, Sayavedra-Soto LA, Arp DJ. Iron nutrition and physiological responses to iron stress in Nitrosomonas europaea. Arch Microbiol 2006; 186:107-18. [PMID: 16802173 DOI: 10.1007/s00203-006-0126-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/11/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Nitrosomonas europaea, as an ammonia-oxidizing bacterium, has a high Fe requirement and has 90 genes dedicated to Fe acquisition. Under Fe-limiting conditions (0.2 microM Fe), N. europaea was able to assimilate up to 70% of the available Fe in the medium even though it is unable to produce siderophores. Addition of exogenous siderophores to Fe-limited medium increased growth (final cell mass). Fe-limited cells had lower heme and cellular Fe contents, reduced membrane layers, and lower NH3- and NH2OH-dependent O2 consumption activities than Fe-replete cells. Fe acquisition-related proteins, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and enterobactin and diffusion protein OmpC, were expressed to higher levels under Fe limitation, providing biochemical evidence for adaptation of N. europaea to Fe-limited conditions.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | | | | | | | | |
Collapse
|
32
|
Braun V, Mahren S, Sauter A. Gene regulation by transmembrane signaling. Biometals 2006; 18:507-17. [PMID: 16333751 DOI: 10.1007/s10534-005-3497-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 09/24/2005] [Indexed: 11/30/2022]
Abstract
Studies of the ferric citrate transport genes in Escherichia coli K-12 have revealed a novel type of transcriptional regulation. The inducer, ferric citrate, binds to an outer membrane protein and must not be transported into the cells to initiate transcription of the ferric citrate transport genes. Rather, a signaling cascade from the cell surface across the outer membrane, the periplasm, and the cytoplasmic membrane into the cytoplasm transmits information on the presence of the inducer in the culture medium into the cytoplasm, where gene transcription occurs. The outer membrane protein FecA serves as a signal receiver and as a signal transmitter across the outer membrane. The FecR protein serves as a signal receiver in the periplasm and as a signal transmitter across the cytoplasmic membrane into the cytoplasm, where the FecI sigma factor is activated to bind RNA polymerase and specifically initiate transcription of the fecABCDE transport genes by binding to the promoter upstream of the fecA gene. Transcription of the fecI fecR regulatory genes is repressed by Fe(2+) bound to the Fur repressor protein. Under iron-limiting conditions, Fur is not loaded with Fe(2+), the fecI and fecR genes are transcribed, and the FecI and FecR proteins are synthesized and respond to the presence of ferric citrate in the medium when ferric citrate binds to the FecA protein. Regulation of the fec genes represents the paradigm of a growing number of gene regulation systems involving transmembrane signaling across three cellular compartments.
Collapse
Affiliation(s)
- Volkmar Braun
- Microbiology/Membrane Physiology, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72096, Germany.
| | | | | |
Collapse
|
33
|
Braun V, Mahren S, Sauter A. Gene Regulation by Transmembrane Signaling. Biometals 2006; 19:103-13. [PMID: 16718597 DOI: 10.1007/s10534-005-8253-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 09/24/2005] [Indexed: 10/24/2022]
Abstract
Studies of the ferric citrate transport genes in Escherichia coli K-12 have revealed a novel type of transcriptional regulation. The inducer, ferric citrate, binds to an outer membrane protein and must not be transported into the cells to initiate transcription of the ferric citrate transport genes. Rather, a signaling cascade from the cell surface across the outer membrane, the periplasm, and the cytoplasmic membrane into the cytoplasm transmits information on the presence of the inducer in the culture medium into the cytoplasm, where gene transcription occurs. The outer membrane protein FecA serves as a signal receiver and as a signal transmitter across the outer membrane. The FecR protein serves as a signal receiver in the periplasm and as a signal transmitter across the cytoplasmic membrane into the cytoplasm, where the FecI sigma factor is activated to bind RNA polymerase and specifically initiate transcription of the fecABCDE transport genes by binding to the promoter upstream of the fecA gene. Transcription of the fecI fecR regulatory genes is repressed by Fe2+ bound to the Fur repressor protein. Under iron-limiting conditions, Fur is not loaded with Fe2+, the fecI and fecR genes are transcribed, and the FecI and FecR proteins are synthesized and respond to the presence of ferric citrate in the medium when ferric citrate binds to the FecA protein. Regulation of the fec genes represents the paradigm of a growing number of gene regulation systems involving transmembrane signaling across three cellular compartments.
Collapse
Affiliation(s)
- Volkmar Braun
- Microbiology/Membrane Physiology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72096, Germany.
| | | | | |
Collapse
|
34
|
Mahren S, Schnell H, Braun V. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Arch Microbiol 2005; 184:175-86. [PMID: 16193283 DOI: 10.1007/s00203-005-0035-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/24/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
In Escherichia coli K-12, transcription of the ferric citrate transport genes fecABCDE is initiated by binding of diferric dicitrate to the outer membrane protein FecA which elicits a signaling cascade from the cell surface to the cytoplasm. The FecI sigma factor is only active in the presence of FecR, which transfers the signal across the cytoplasmic membrane. In other bacteria, fecIRA homologues control iron transport gene transcription by siderophores other than citrate. However, in most cases, the FecI homologues are active in the absence of the FecR homologues, which might function as anti-sigma factors. Since not all E. coli strains contain a fec system, we determined the occurrence of fec genes in selected Enterobacteriaceae and the dependence of FecI activity on FecR. Incomplete FecIRA systems were chromosomally encoded in Enterobacter aerogenes strains and plasmid-encoded in K. pneumoniae. E. coli B, Photorhabdus luminescens and one of three Klebsiella pneumoniae strains had a functional FecIRA regulatory system as in E. coli K-12. The cytoplasmic N-terminal FecR fragments caused constitutive FecI activity in the absence of ferric citrate. The PCR-generated mutant FecI(D40G) was inactive and FecI(S15P) was partially active. FecR of E. coli K-12 activated FecI of all tested strains except FecI encoded on the virulence plasmid pLVPK of K. pneumoniae, which differed from E. coli K-12 FecI by having mutations in region 4, which is important for interaction with FecR. The C-terminally truncated FecR homologue of pLVPK was inactive. pLVPK-encoded FecA contains a 38-residue sequence in front of the signal sequence that did not prevent processing and proper integration of FecA into the outer membrane of E. coli and lacks the signaling sequence required for transcription initiation of the fec transport genes, making it induction-incompetent but transport-competent. The evidence indicates that fecIRABCDE genes are acquired by horizontal DNA transfer and can undergo debilitating mutations.
Collapse
Affiliation(s)
- Susanne Mahren
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | |
Collapse
|
35
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 868] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Braun V, Mahren S. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 2004; 29:673-84. [PMID: 16102597 DOI: 10.1016/j.femsre.2004.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/06/2004] [Accepted: 10/07/2004] [Indexed: 11/27/2022] Open
Abstract
The ferric citrate transport system of Escherichia coli is the first example of a transcription initiation mechanism that starts at the cell surface. The inducer, ferric citrate, binds to an outer membrane transport protein, and without further transport elicits a signal that is transmitted across the outer membrane, the periplasm, and the cytoplasmic membrane into the cytoplasm. Signal transfer across the three subcellular compartments is mediated by the outer membrane transport protein that interacts in the periplasm with a cytoplasmic transmembrane protein. The latter is required for activation of a sigma factor which belongs to the extracytoplasmic function sigma factor family. A similar kind of transcription regulation has been demonstrated in Pseudomonas putida, P. aeruginosa, Serratia marcescens, Klebsiella pneumoniae, Aerobacter aerogenes, Bordetella pertussis, B. bronchseptica, B. avium, and Ralstonia solanacearum. The genomes of P. putida, P. aeruginosa, Nitrosomonas europaea, Bacteroides thetaiotaomicron and Caulobacter crescentus predict the existence of many more such transcriptional regulatory devices.
Collapse
Affiliation(s)
- Volkmar Braun
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Germany.
| | | |
Collapse
|
37
|
Kirby AE, King ND, Connell TD. RhuR, an extracytoplasmic function sigma factor activator, is essential for heme-dependent expression of the outer membrane heme and hemoprotein receptor of Bordetella avium. Infect Immun 2004; 72:896-907. [PMID: 14742534 PMCID: PMC321627 DOI: 10.1128/iai.72.2.896-907.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 09/20/2003] [Accepted: 10/23/2003] [Indexed: 11/20/2022] Open
Abstract
Genes involved in iron (Fe) acquisition often are regulated in response to the local availability of Fe. In many bacteria, Fe-dependent responsiveness is mediated by Fur, a global Fe-dependent transcriptional repressor. Tighter regulatory control of Fur-responsive genes is afforded by incorporating additional regulators into Fur-dependent regulatory cascades. RhuI, a Fur-dependent extracytoplasmic function sigma factor of Bordetella avium, in response to the dual stimulation of Fe starvation and the presence of heme (or hemoproteins), regulates P(bhuR), a heme-responsive promoter which directs expression of the bhuRSTUV heme utilization operon. While BhuR, the outer membrane heme receptor, and RhuI have been shown to be indispensable for heme-dependent activation of P(bhuR), collateral components of the regulatory cascade have not been described. In this investigation, RhuR, an integral cytoplasmic membrane protein with homology to anti-sigma factors, is shown to be an essential activator of P(bhuR) expression. The functional domain of RhuR required for heme-dependent activation of P(bhuR) expression was mapped to the N-terminal 97 amino acids of the protein by use of a chimeric RhuR-BlaM fusion. Expression of the chimera in a rhuR mutant rendered P(bhuR) constitutive, thereby decoupling the promoter from heme dependency. Growth studies confirmed that B. avium requires RhuR for optimal utilization of hemoglobin, but not hemin, as a sole source of nutrient Fe. These data imply that B. avium expresses, in addition to the BhuR heme/hemoprotein utilization system, an alternative RhuR-independent heme utilization mechanism. A model is proposed in which RhuR is the functional bridge between BhuR and RhuI in a heme-dependent regulatory cascade.
Collapse
Affiliation(s)
- Amy E Kirby
- The Witebsky Center for Microbial Pathogenesis and Immunology, Department of Microbiology and Immunology, The University of Buffalo, The State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
38
|
Yue WW, Grizot S, Buchanan SK. Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 2003; 332:353-68. [PMID: 12948487 DOI: 10.1016/s0022-2836(03)00855-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Escherichia coli possesses a TonB-dependent transport system, which exploits the iron-binding capacity of citrate and its natural abundance. Here, we describe three structures of the outer membrane ferric citrate transporter FecA: unliganded and complexed with iron-free or diferric dicitrate. We show the structural mechanism for discrimination between the iron-free and ferric siderophore: the binding of diferric dicitrate, but not iron-free dicitrate alone, causes major conformational rearrangements in the transporter. The structure of FecA bound with iron-free dicitrate represents the first structure of a TonB-dependent transporter bound with an iron-free siderophore. Binding of diferric dicitrate to FecA results in changes in the orientation of the two citrate ions relative to each other and in their interactions with FecA, compared to the binding of iron-free dicitrate. The changes in ligand binding are accompanied by conformational changes in three areas of FecA: two extracellular loops, one plug domain loop and the periplasmic TonB-box motif. The positional and conformational changes in the siderophore and transporter initiate two independent events: ferric citrate transport into the periplasm and transcription induction of the fecABCDE transport genes. From these data, we propose a two-step ligand recognition event: FecA binds iron-free dicitrate in the non-productive state or first step, followed by siderophore displacement to form the transport-competent, diferric dicitrate-bound state in the second step.
Collapse
Affiliation(s)
- Wyatt W Yue
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|