1
|
Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022; 39:1721-1765. [PMID: 35762180 DOI: 10.1039/d2np00030j] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022Pyrroloindoline is a privileged tricyclic indoline motif widely present in many biologically active and medicinally valuable natural products. Thus, understanding the biosynthesis of this molecule is critical for developing convenient synthetic routes, which is highly challenging for its chemical synthesis due to the presence of rich chiral centers in this molecule, especially the fully substituted chiral carbon center at the C3-position of its rigid tricyclic structure. In recent years, progress has been made in elucidating the biosynthetic pathways and enzymatic mechanisms of pyrroloindoline-containing natural products (PiNPs). This article reviews the main advances in the past few decades based on the different substitutions on the C3 position of PiNPs, especially the various key enzymatic mechanisms involved in the biosynthesis of different types of PiNPs.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Ondar S, Surov A, Chabovsky A, Putintsev N, Khovalyg A, Kuular A. The role of traditional nomadic pastoralism in the spatial and genetic subdivision of the distribution of populations of small mammals in mountain areas and their sanitary and epidemiological significance (on the example of Tuva). BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213500018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The data on the genetic and spatial subdivision of populations of synanthropic species of small mammals, their dependence on the intensity with the territories of distant-pasture cattle tending are presented, and some patterns of indicators of ectoparasite infestation of their communities are revealed. The factor determining the genetic and spatial differentiation of populations of small mammals can be attributed to the relationship of small mammals with ungulates that has long historical roots (Neogene, Anthropogen). At present, these relations have been preserved with domestic ungulates, which, along with physical and geographical ones, determine the genetic and biotopic differentiation of populations of small mammals. The assumption is made about the deep historical roots of the establishment of such relationships by pasture ungulate animals from the neogene and pleistocene.
Collapse
|
3
|
Aframian N, Eldar A. A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annu Rev Microbiol 2020; 74:587-606. [PMID: 32680450 DOI: 10.1146/annurev-micro-012220-063740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing is a process in which bacteria secrete and sense a diffusible molecule, thereby enabling bacterial groups to coordinate their behavior in a density-dependent manner. Quorum sensing has evolved multiple times independently, utilizing different molecular pathways and signaling molecules. A common theme among many quorum-sensing families is their wide range of signaling diversity-different variants within a family code for different signal molecules with a cognate receptor specific to each variant. This pattern of vast allelic polymorphism raises several questions-How do different signaling variants interact with one another? How is this diversity maintained? And how did it come to exist in the first place? Here we argue that social interactions between signaling variants can explain the emergence and persistence of signaling diversity throughout evolution. Finally, we extend the discussion to include cases where multiple diverse systems work in concert in a single bacterium.
Collapse
Affiliation(s)
- Nitzan Aframian
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| | - Avigdor Eldar
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| |
Collapse
|
4
|
Chen B, Wen J, Zhao X, Ding J, Qi G. Surfactin: A Quorum-Sensing Signal Molecule to Relieve CCR in Bacillus amyloliquefaciens. Front Microbiol 2020; 11:631. [PMID: 32425896 PMCID: PMC7203447 DOI: 10.3389/fmicb.2020.00631] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Bacillus utilize preferred sugars such as glucose over other carbon sources due to carbon catabolite repression (CCR). Surfactin is a small signal molecule to regulate the quorum-sensing (QS) response such as biofilm formation and sporulation in B. subtilis. Here, the srfA operon for synthesis of surfactin was mutated for disrupting the production of surfactin in B. amyloliquefaciens. The srfA-mutant strain showed a defective biofilm and sporulation but could be restored by addition with surfactin, indicating that surfactin is a QS signal molecule in B. amyloliquefaciens. Unexpectedly, mutation of srfA also led to the cells' death although nutrients were still enough to support the bacterial growth during this period. Analysis of transcriptomes found that the srfA-mutant strain could not relieve CCR to use non-preferred carbon sources after glucose exhaustion due to deficiency of surfactin. This was further verified by the fact that addition with glucose could dramatically restore the growth, and addition with surfactin could improve the enzymes' activity (e.g., glucanase and α-amylase) to use non-preferred carbon sources in the srfA-mutant strain. After glucose exhaustion, the cells produce surfactin to relieve CCR for utilizing non-preferred sugars. As a signal molecule to regulate QS, surfactin also directly or indirectly relieves the CcpA-mediated CCR to utilize non-preferred carbon sources countering nutrient limitation (e.g., glucose deprivation) in the environment. In conclusion, our findings provide the first evidence that the QS signal molecule of surfactin is also involved in relieving the CcpA-mediated CCR in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Bing Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiahong Wen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia Ding
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem 2020; 295:34-54. [PMID: 31784450 PMCID: PMC6952617 DOI: 10.1074/jbc.rev119.006545] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
6
|
Clonality and non-linearity drive facultative-cooperation allele diversity. ISME JOURNAL 2018; 13:824-835. [PMID: 30464316 PMCID: PMC6461992 DOI: 10.1038/s41396-018-0310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
Abstract
Kin discrimination describes the differential interaction of organisms with kin versus non-kin. In microorganisms, many genetic loci act as effective kin-discrimination systems, such as kin-directed help and non-kin-directed harm. Another important example is facultative cooperation, where cooperators increase their investment in group-directed cooperation with the abundance of their kin in the group. Many of these kin-discrimination loci are highly diversified, yet it remains unclear what evolutionary mechanisms maintain this diversity, and how it is affected by population structure. Here, we demonstrate the unique dependence of kin-discriminative interactions on population structure, and how this could explain facultative-cooperation allele-diversity. We show mathematically that low relatedness between microbes in non-clonal social groups is needed to maintain the diversity of facultative-cooperation alleles, while high clonality is needed to stabilize this diversity against cheating. Interestingly, we demonstrate with simulations that such population structure occurs naturally in expanding microbial colonies. Finally, analysis of experimental data of quorum-sensing mediated facultative cooperation, in Bacillus subtilis, demonstrates the relevance of our results to realistic microbial interactions, due to their intrinsic non-linear frequency dependence. Our analysis therefore stresses the impact of clonality on the interplay between exploitation and kin discrimination and portrays a way for the evolution of facultative cooperation.
Collapse
|
7
|
Regulation of Streptomyces Chitinases by Two-Component Signal Transduction Systems and their Post Translational Modifications: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
8
|
Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME JOURNAL 2018; 12:2363-2375. [PMID: 29899510 DOI: 10.1038/s41396-018-0178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 11/08/2022]
Abstract
Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems.
Collapse
|
9
|
Kamareddine L, Wong ACN, Vanhove AS, Hang S, Purdy AE, Kierek-Pearson K, Asara JM, Ali A, Morris JG, Watnick PI. Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 2018; 3:243-252. [PMID: 29180725 PMCID: PMC6260827 DOI: 10.1038/s41564-017-0065-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Vibrio cholerae colonizes the human terminal ileum to cause cholera, and the arthropod intestine and exoskeleton to persist in the aquatic environment. Attachment to these surfaces is regulated by the bacterial quorum-sensing signal transduction cascade, which allows bacteria to assess the density of microbial neighbours. Intestinal colonization with V. cholerae results in expenditure of host lipid stores in the model arthropod Drosophila melanogaster. Here we report that activation of quorum sensing in the Drosophila intestine retards this process by repressing V. cholerae succinate uptake. Increased host access to intestinal succinate mitigates infection-induced lipid wasting to extend survival of V. cholerae-infected flies. Therefore, quorum sensing promotes a more favourable interaction between V. cholerae and an arthropod host by reducing the nutritional burden of intestinal colonization.
Collapse
Affiliation(s)
- Layla Kamareddine
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam C N Wong
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Audrey S Vanhove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saiyu Hang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexandra E Purdy
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biology, AC #2237, Amherst College, Amherst, MA, USA
| | - Katharine Kierek-Pearson
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Afsar Ali
- Emerging Pathogens Institute University of Florida, Gainesville, FL, USA
- Department of Environmental & Global Health, School of Public Health and Health Profession, University of Florida, Gainesville, FL, USA
| | - J Glenn Morris
- Emerging Pathogens Institute University of Florida, Gainesville, FL, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology and Immunobiology, Harvard Medical Schoolm, Boston, MA, USA.
| |
Collapse
|
10
|
Abstract
Members of the family Bacillaceae are among the most robust bacteria on Earth, which is mainly due to their ability to form resistant endospores. This trait is believed to be the key factor determining the ecology of these bacteria. However, they also perform fundamental roles in soil ecology (i.e., the cycling of organic matter) and in plant health and growth stimulation (e.g., via suppression of plant pathogens and phosphate solubilization). In this review, we describe the high functional and genetic diversity that is found within the Bacillaceae (a family of low-G+C% Gram-positive spore-forming bacteria), their roles in ecology and in applied sciences related to agriculture. We then pose questions with respect to their ecological behavior, zooming in on the intricate social behavior that is becoming increasingly well characterized for some members of Bacillaceae. Such social behavior, which includes cell-to-cell signaling via quorum sensing or other mechanisms (e.g., the production of extracellular hydrolytic enzymes, toxins, antibiotics and/or surfactants) is a key determinant of their lifestyle and is also believed to drive diversification processes. It is only with a deeper understanding of cell-to-cell interactions that we will be able to understand the ecological and diversification processes of natural populations within the family Bacillaceae. Ultimately, the resulting improvements in understanding will benefit practical efforts to apply representatives of these bacteria in promoting plant growth as well as biological control of plant pathogens.
Collapse
|
11
|
Tashiro Y, Kimura Y, Furubayashi M, Tanaka A, Terakubo K, Saito K, Kawai-Noma S, Umeno D. Directed evolution of the autoinducer selectivity of Vibrio fischeri LuxR. J GEN APPL MICROBIOL 2016; 62:240-247. [DOI: 10.2323/jgam.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yohei Tashiro
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Yuki Kimura
- Department of Applied Chemistry and Biotechnology, Chiba University
| | | | - Akira Tanaka
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Kei Terakubo
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Chiba University
| | | | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University
| |
Collapse
|
12
|
Kin discrimination between sympatric Bacillus subtilis isolates. Proc Natl Acad Sci U S A 2015; 112:14042-7. [PMID: 26438858 DOI: 10.1073/pnas.1512671112] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kin discrimination, broadly defined as differential treatment of conspecifics according to their relatedness, could help biological systems direct cooperative behavior toward their relatives. Here we investigated the ability of the soil bacterium Bacillus subtilis to discriminate kin from nonkin in the context of swarming, a cooperative multicellular behavior. We tested a collection of sympatric conspecifics from soil in pairwise combinations and found that despite their history of coexistence, the vast majority formed distinct boundaries when the swarms met. Some swarms did merge, and most interestingly, this behavior was only seen in the most highly related strain pairs. Overall the swarm interaction phenotype strongly correlated with phylogenetic relatedness, indicative of kin discrimination. Using a subset of strains, we examined cocolonization patterns on plant roots. Pairs of kin strains were able to cocolonize roots and formed a mixed-strain biofilm. In contrast, inoculating roots with pairs of nonkin strains resulted in biofilms consisting primarily of one strain, suggestive of an antagonistic interaction among nonkin strains. This study firmly establishes kin discrimination in a bacterial multicellular setting and suggests its potential effect on ecological interactions.
Collapse
|
13
|
Oslizlo A, Stefanic P, Vatovec S, Beigot Glaser S, Rupnik M, Mandic-Mulec I. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb Biotechnol 2015; 8:527-40. [PMID: 25757097 PMCID: PMC4408185 DOI: 10.1111/1751-7915.12258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
Bacillus subtilis is a widespread and diverse bacterium t exhibits a remarkable intraspecific diversity of the ComQXPA quorum-sensing (QS) system. This manifests in the existence of distinct communication groups (pherotypes) that can efficiently communicate within a group, but not between groups. Similar QS diversity was also found in other bacterial species, and its ecological and evolutionary meaning is still being explored. Here we further address the ComQXPA QS diversity among isolates from the tomato rhizoplane, a natural habitat of B. subtilis, where these bacteria likely exist in their vegetative form. Because this QS system regulates production of anti-pathogenic and biofilm-inducing substances such as surfactins, knowledge on cell-cell communication of this bacterium within rhizoplane is also important from the biocontrol perspective. We confirm the presence of pherotype diversity within B. subtilis strains isolated from a rhizoplane of a single plant. We also show that B. subtilis rhizoplane isolates show a remarkable diversity of surfactin production and potential plant growth promoting traits. Finally, we discover that effects of surfactin deletion on biofilm formation can be strain specific and unexpected in the light of current knowledge on its role it this process.
Collapse
Affiliation(s)
- A Oslizlo
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - P Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - S Vatovec
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - S Beigot Glaser
- National Laboratory for Health, Environment and FoodMaribor, Slovenia
| | - M Rupnik
- National Laboratory for Health, Environment and FoodMaribor, Slovenia
- Faculty of Medicine, University of MariborMaribor, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljana, Slovenia
| | - I Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
14
|
Chemical Structure of Posttranslational Modification with A Farnesyl Group on Tryptophan. Biosci Biotechnol Biochem 2014; 72:914-8. [DOI: 10.1271/bbb.80006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Lack of the Consensus Sequence Necessary for Tryptophan Prenylation in the ComX Pheromone Precursor. Biosci Biotechnol Biochem 2014; 76:1492-6. [DOI: 10.1271/bbb.120206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Raymond B, Bonsall MB. Cooperation and the evolutionary ecology of bacterial virulence: TheBacillus cereusgroup as a novel study system. Bioessays 2013; 35:706-16. [DOI: 10.1002/bies.201300028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ben Raymond
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Michael B. Bonsall
- Department of Zoology; University of Oxford; Oxford UK
- St. Peter's College; Oxford UK
| |
Collapse
|
17
|
Cornforth DM, Sumpter DJT, Brown SP, Brännström Å. Synergy and group size in microbial cooperation. Am Nat 2012; 180:296-305. [PMID: 22854073 PMCID: PMC3635123 DOI: 10.1086/667193] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microbes produce many molecules that are important for their growth and development, and the exploitation of these secretions by nonproducers has recently become an important paradigm in microbial social evolution. Although the production of these public-goods molecules has been studied intensely, little is known of how the benefits accrued and the costs incurred depend on the quantity of public-goods molecules produced. We focus here on the relationship between the shape of the benefit curve and cellular density, using a model assuming three types of benefit functions: diminishing, accelerating, and sigmoidal (accelerating and then diminishing). We classify the latter two as being synergistic and argue that sigmoidal curves are common in microbial systems. Synergistic benefit curves interact with group sizes to give very different expected evolutionary dynamics. In particular, we show that whether and to what extent microbes evolve to produce public goods depends strongly on group size. We show that synergy can create an "evolutionary trap" that can stymie the establishment and maintenance of cooperation. By allowing density-dependent regulation of production (quorum sensing), we show how this trap may be avoided. We discuss the implications of our results on experimental design.
Collapse
|
18
|
Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics 2012; 13:128. [PMID: 22475007 PMCID: PMC3353171 DOI: 10.1186/1471-2164-13-128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens. RESULTS HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments. CONCLUSIONS Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus. J Bacteriol 2012; 194:2854-64. [PMID: 22467783 DOI: 10.1128/jb.06685-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species.
Collapse
|
20
|
Van Dyken JD, Wade MJ. Detecting the molecular signature of social conflict: theory and a test with bacterial quorum sensing genes. Am Nat 2012; 179:436-50. [PMID: 22437174 DOI: 10.1086/664609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extending social evolution theory to the molecular level opens the door to an unparalleled abundance of data and statistical tools for testing alternative hypotheses about the long-term evolutionary dynamics of cooperation and conflict. To this end, we take a collection of known sociality genes (bacterial quorum sensing [QS] genes), model their evolution in terms of patterns that are detectable using gene sequence data, and then test model predictions using available genetic data sets. Specifically, we test two alternative hypotheses of social conflict: (1) the "adaptive" hypothesis that cheaters are maintained in natural populations by frequency-dependent balancing selection as an evolutionarily stable strategy and (2) the "evolutionary null" hypothesis that cheaters are opposed by purifying kin selection yet exist transiently because of their recurrent introduction into populations by mutation (i.e., kin selection-mutation balance). We find that QS genes have elevated within- and among-species sequence variation, nonsignificant signatures of natural selection, and putatively small effect sizes of mutant alleles, all patterns predicted by our evolutionary null model but not by the stable cheater hypothesis. These empirical findings support our theoretical prediction that QS genes experience relaxed selection due to nonclonality of social groups, conditional expression, and the individual-level advantage enjoyed by cheaters. Furthermore, cheaters are evolutionarily transient, persisting in populations because of their recurrent introduction by mutation and not because they enjoy a frequency-dependent fitness advantage.
Collapse
Affiliation(s)
- J David Van Dyken
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
21
|
Tsuji F, Ishihara A, Kurata K, Nakagawa A, Okada M, Kitamura S, Kanamaru K, Masuda Y, Murakami K, Irie K, Sakagami Y. Geranyl modification on the tryptophan residue of ComXRO-E-2pheromone by a cell-free system. FEBS Lett 2011; 586:174-9. [DOI: 10.1016/j.febslet.2011.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022]
|
22
|
Abstract
Bacillus subtilis and related bacilli produce a post-translationally modified oligopeptide, ComX pheromone, that stimulates natural genetic competence controlled by quorum sensing. The ComX pheromones are formed by geranylation or farnesylation on a tryptophan residue at the 3 position of its indole ring. This results in the formation of a tricyclic structure including, a newly formed five-membered ring, similar to proline. Isoprenylation of ComX to form ComX pheromones is essential for pheromonal activity, and is functionally more crucial than its amino acid sequence. The ComX pheromone is the first example of isoprenoidal modifiations of tryptophan residues in living organisms and post-translational isoprenylation of any amino acid in prokaryotes. Because the presence of geranylated compounds is unusual in primary and secondary metabolites outside the plant kingdom, post-translational geranylation in bacilli is unprecedented in nature.
Collapse
|
23
|
Social conflict drives the evolutionary divergence of quorum sensing. Proc Natl Acad Sci U S A 2011; 108:13635-40. [PMID: 21807995 DOI: 10.1073/pnas.1102923108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In microbial "quorum sensing" (QS) communication systems, microbes produce and respond to a signaling molecule, enabling a cooperative response at high cell densities. Many species of bacteria show fast, intraspecific, evolutionary divergence of their QS pathway specificity--signaling molecules activate cognate receptors in the same strain but fail to activate, and sometimes inhibit, those of other strains. Despite many molecular studies, it has remained unclear how a signaling molecule and receptor can coevolve, what maintains diversity, and what drives the evolution of cross-inhibition. Here I use mathematical analysis to show that when QS controls the production of extracellular enzymes--"public goods"--diversification can readily evolve. Coevolution is positively selected by cycles of alternating "cheating" receptor mutations and "cheating immunity" signaling mutations. The maintenance of diversity and the evolution of cross-inhibition between strains are facilitated by facultative cheating between the competing strains. My results suggest a role for complex social strategies in the long-term evolution of QS systems. More generally, my model of QS divergence suggests a form of kin recognition where different kin types coexist in unstructured populations.
Collapse
|
24
|
Tabbene O, Karkouch I, Slimene IB, Elfeddy N, Cosette P, Mangoni ML, Jouenne T, Limam F. Triggering of the antibacterial activity of Bacillus subtilis B38 strain against methicillin-resistant Staphylococcus aureus. Appl Biochem Biotechnol 2010; 164:34-44. [PMID: 20972890 DOI: 10.1007/s12010-010-9112-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
When cultured in minimal growth medium, the B38 strain of Bacillus subtilis did not exhibit any antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolate. Coculturing B38 strain with viable MRSA cells weakly increased antibacterial activity production (20 AU/ml). Addition of dead MRSA cells in a B38 culture, increased by 8-fold the B. subtilis strain antibacterial activity reaching 160 AU/ml against MRSA strain. This antibacterial activity recovered from cell-free supernatants was stimulated by an autoinducing compound which is sensitive to the action of proteinase K suggesting a proteinaceous nature. This compound was heat-stable till 80 °C and showed a molecular mass around 20 kDa as determined by SDS-PAGE. These results suggest that the production of antibacterial compounds by B38 strain is dependent on the amount of the autoinducing compound.
Collapse
Affiliation(s)
- Olfa Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP-901, Hammam-lif Cedex, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
McIntosh JA, Donia MS, Schmidt EW. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 2009; 26:537-59. [PMID: 19642421 PMCID: PMC2975598 DOI: 10.1039/b714132g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis.
Collapse
Affiliation(s)
- John A. McIntosh
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
26
|
|
27
|
Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol 2008; 191:1756-64. [PMID: 19114482 DOI: 10.1128/jb.01290-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis strains communicate through the comQXPA quorum sensing (QS) system, which regulates genes expressed during early stationary phase. A high polymorphism of comQXP' loci was found in closely related strains isolated from desert soil samples separated by distances ranging from meters to kilometers. The observed polymorphism comprised four communication groups (pherotypes), such that strains belonging to the same pherotype exchanged information efficiently but strains from different pherotypes failed to communicate. To determine whether the same level of polymorphism in the comQXP' QS system could be detected at microscale, B. subtilis isolates were obtained from two separate 1-cm(3) soil samples, which were progressively divided into smaller sections. Cross-activation studies using pherotype-responsive reporter strains indicated the same number of communication pherotypes at microscale as previously determined at macroscale. Sequencing of the housekeeping gene gyrA and the QS comQ gene confirmed different evolutionary rates of these genes. Furthermore, an asymmetric communication response was detected inside the two pherotype clusters, suggesting continuous evolution of the QS system and possible development of new languages. To our knowledge, this is the first microscale study demonstrating the presence of different QS languages among isolates of one species, and the implications of this microscale diversity for microbial interactions are discussed.
Collapse
|
28
|
Earl AM, Losick R, Kolter R. Ecology and genomics of Bacillus subtilis. Trends Microbiol 2008; 16:269-75. [PMID: 18467096 PMCID: PMC2819312 DOI: 10.1016/j.tim.2008.03.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 01/26/2023]
Abstract
Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.
Collapse
Affiliation(s)
- Ashlee M. Earl
- Dept. of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Losick
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Roberto Kolter
- Dept. of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. J Bacteriol 2008; 190:4095-9. [PMID: 18375560 DOI: 10.1128/jb.00187-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ComX and CSF are Bacillus subtilis extracellular signaling peptides. Many different strains of B. subtilis do not communicate due to strain-specific variation of ComX. We demonstrate that CSF is a species-specific signaling molecule that partially compensates for the lack of ComX-mediated communication between different strains of B. subtilis.
Collapse
|
30
|
Sturme MHJ, Francke C, Siezen RJ, de Vos WM, Kleerebezem M. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. MICROBIOLOGY-SGM 2008; 153:3939-3947. [PMID: 18048908 DOI: 10.1099/mic.0.2007/012831-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In silico identification criteria were defined to predict if genes encoding histidine protein kinases (HPKs) and response regulators (RRs) could be part of peptide-based quorum sensing (QS) two-component regulatory systems (QS-TCSs) in Firmicutes. These criteria were used to screen HPKs and RRs annotated on the completed genome sequences of Lactobacillus species, and several (putative) QS-TCSs were identified in this way. The five peptide-based QS-TCSs that were predicted on the Lactobacillus plantarum WCFS1 genome were further analysed to test their (QS) functionality. Four of these systems contained an upstream gene encoding a putative autoinducing peptide (AIP), of which two were preceded by a double-glycine-type leader peptide. One of these was identical to the plnABCD regulatory system of L. plantarum C11 and was shown to regulate plantaricin production in L. plantarum WCFS1. The third TCS was designated lamBDCA for Lactobacillus agr-like module, where the lamD gene was shown to encode a cyclic thiolactone peptide. The fourth TCS was paralogous to the lam system and contained a putative AIP-encoding gene but lacked the lamB gene. Finally, a genetically separated orphan HPK and RR that showed clear peptide-based QS characteristics could form a fifth peptide-based QS-TCS. The predicted presence of multiple (peptide-based) QS-TCSs in some lactobacilli and in particular in L. plantarum might be a reflection of the ability of these species to persist in a diverse range of ecological niches.
Collapse
Affiliation(s)
- Mark H J Sturme
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,TI Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Christof Francke
- Radboud University Nijmegen Medical Centre/NCMLS, CMBI 260, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,TI Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Roland J Siezen
- Radboud University Nijmegen Medical Centre/NCMLS, CMBI 260, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,NIZO Food Research BV, 6710 BA Ede, The Netherlands.,TI Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,TI Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Michiel Kleerebezem
- NIZO Food Research BV, 6710 BA Ede, The Netherlands.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,TI Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| |
Collapse
|
31
|
Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007; 158:767-78. [PMID: 17997281 DOI: 10.1016/j.resmic.2007.09.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 09/21/2007] [Indexed: 02/02/2023]
Abstract
Studies show that gene acquisition through natural transformation has contributed significantly to the adaptation and ecological diversification of several bacterial species. Relatively little is still known, however, about the prevalence and phylogenetic distribution of organisms possessing this property. Thus, whether natural transformation only benefits a limited number of species or has a large impact on lateral gene flow in nature remains a matter of speculation. Here we will review the most recent advances in our understanding of the phenomenon and discuss its possible biological functions.
Collapse
Affiliation(s)
- Ola Johnsborg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | | | | |
Collapse
|
32
|
Williams P, Winzer K, Chan WC, Cámara M. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 2007; 362:1119-34. [PMID: 17360280 PMCID: PMC2435577 DOI: 10.1098/rstb.2007.2039] [Citation(s) in RCA: 509] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many years bacteria were considered primarily as autonomous unicellular organisms with little capacity for collective behaviour. However, we now appreciate that bacterial cells are in fact, highly communicative. The generic term 'quorum sensing' has been adopted to describe the bacterial cell-to-cell communication mechanisms which co-ordinate gene expression usually, but not always, when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules (often referred to as pheromones or autoinducers) that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of quorum sensing signal molecules, and consequently, their concentration in the external environment rises. Once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed) so facilitating the expression of quorum sensing-dependent genes. Quorum sensing enables a bacterial population to mount a co-operative response that improves access to nutrients or specific environmental niches, promotes collective defence against other competitor prokaryotes or eukaryotic defence mechanisms and facilitates survival through differentiation into morphological forms better able to combat environmental threats. Quorum sensing also crosses the prokaryotic-eukaryotic boundary since quorum sensing-dependent signalling can be exploited or inactivated by both plants and mammals.
Collapse
Affiliation(s)
- Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|
33
|
Diversifying selection and host adaptation in two endosymbiont genomes. BMC Evol Biol 2007; 7:68. [PMID: 17470297 PMCID: PMC1868728 DOI: 10.1186/1471-2148-7-68] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/30/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts. RESULTS The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis. CONCLUSION Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host:parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as well as nematode Wolbachia may be providing substances to hosts. Selection on cell envelope synthesis, DNA replication and repair machinery, heat shock, and two component switching suggest strategies insect Wolbachia may employ to cope with diverse host and intra-host environments.
Collapse
|
34
|
Mes THM, Doeleman M. Positive selection on transposase genes of insertion sequences in the Crocosphaera watsonii genome. J Bacteriol 2006; 188:7176-85. [PMID: 17015656 PMCID: PMC1636226 DOI: 10.1128/jb.01021-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are mobile elements that are commonly found in bacterial genomes. Here, the structural and functional diversity of these mobile elements in the genome of the cyanobacterium Crocosphaera watsonii WH8501 is analyzed. The number, distribution, and diversity of nucleotide and amino acid stretches with similarity to the transposase gene of this IS family suggested that this genome harbors many functional as well as truncated IS fragments. The selection pressure acting on full-length transposase open reading frames of these ISs suggested (i) the occurrence of positive selection and (ii) the presence of one or more positively selected codons. These results were obtained using three data sets of transposase genes from the same IS family that were collected based on the level of amino acid similarity, the presence of an inverted repeat, and the number of sequences in the data sets. Neither recombination nor ribosomal frameshifting, which may interfere with the selection analyses, appeared to be important forces in the transposase gene family. Some positively selected codons were located in a conserved domain, suggesting that these residues are functionally important. The finding that this type of selection acts on IS-carried genes is intriguing, because although ISs have been associated with the adaptation of the bacterial host to new environments, this has typically been attributed to transposition or transformation, thus involving different genomic locations. Intragenic adaptation of IS-carried genes identified here may constitute a novel mechanism associated with bacterial diversification and adaptation.
Collapse
MESH Headings
- Adaptation, Biological
- Amino Acid Sequence
- Base Sequence
- Cluster Analysis
- Codon/genetics
- Conserved Sequence
- Cyanobacteria/enzymology
- Cyanobacteria/genetics
- DNA Transposable Elements/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Frameshifting, Ribosomal
- Genetic Variation
- Genome, Bacterial
- Molecular Sequence Data
- Phylogeny
- Recombination, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transposases/genetics
Collapse
Affiliation(s)
- Ted H M Mes
- Netherlands Institute of Ecology (NIOO-KNAW), Centre for Estuarine and Marine Ecology, POB 140, 4400 AC Yerseke, The Netherlands.
| | | |
Collapse
|
35
|
Ichihara H, Kuma KI, Toh H. Positive selection in the ComC-ComD system of Streptococcal Species. J Bacteriol 2006; 188:6429-34. [PMID: 16923913 PMCID: PMC1595358 DOI: 10.1128/jb.00484-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competence-stimulating peptide (CSP) and ComD of the streptococcal species are a pheromone and its receptor, respectively, involved in the regulation of competence for natural genetic transformation. We show here that these molecules have undergone positive selection. This study is the first report of positive selection due to competition among bacterial populations.
Collapse
Affiliation(s)
- Hisako Ichihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | | | |
Collapse
|
36
|
Horswill AR, Stoodley P, Stewart PS, Parsek MR. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 2006; 387:371-80. [PMID: 17047948 PMCID: PMC1797063 DOI: 10.1007/s00216-006-0720-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/25/2006] [Accepted: 07/28/2006] [Indexed: 11/04/2022]
Abstract
As researchers attempt to study quorum sensing in relevant clinical or environmental settings, it is apparent that many factors have the potential to affect signaling. These factors span a range of physical, chemical, and biological variables that can impact signal production, stability and distribution. Optimizing experimental systems to natural or clinical environments may be crucial for defining when and where quorum sensing occurs. These points are illustrated in our case study of S. aureus signaling in biofilms, where signal stability may be affected by the host environment. The basic signaling schemes have been worked out at the molecular level for a few of the major quorum-sensing systems. As these studies continue to refine our understanding of these mechanisms, an emerging challenge is to identify if and when the local environment can affect signaling.
Collapse
Affiliation(s)
| | - Paul Stoodley
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA 15212 USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 USA
| | - Matthew R. Parsek
- Department of Microbiology, School of Medicine, University of Washington, 1959 NE Pacific Street, Box 357242, Seattle, WA 98195-7242 USA
| |
Collapse
|
37
|
Okada M, Sato I, Jeong Cho S, Dubnau D, Sakagami Y. Chemical synthesis of ComX pheromone and related peptides containing isoprenoidal tryptophan residues. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Okada M, Sato I, Cho SJ, Iwata H, Nishio T, Dubnau D, Sakagami Y. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat Chem Biol 2005; 1:23-4. [PMID: 16407988 DOI: 10.1038/nchembio709] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 04/21/2005] [Indexed: 11/09/2022]
Abstract
The ComX pheromone is an extracellular signaling molecule that stimulates natural competence in response to crowding in the gram-positive bacterium Bacillus subtilis. The pheromone is formed by isoprenylation of an inactive precursor peptide, but its precise structure is not known. Here we report the structure of the ComX pheromone, showing that addition of a geranyl group to a tryptophan residue results in the formation of an unusual ring structure.
Collapse
Affiliation(s)
- Masahiro Okada
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Slamti L, Lereclus D. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 2005; 187:1182-7. [PMID: 15659693 PMCID: PMC545710 DOI: 10.1128/jb.187.3.1182-1187.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of extracellular virulence factors in various species of the Bacillus cereus group is controlled by the plcR and papR genes, which encode a transcriptional regulator and a cell-cell signaling peptide, respectively. A processed form of PapR, presumably a pentapeptide, specifically interacts with PlcR to facilitate its binding to its DNA targets. This activating mechanism is strain specific, with this specificity being determined by the first residue of the pentapeptide. We carried out in vivo complementation assays and compared the PlcR-PapR sequences of 29 strains from the B. cereus group. Our findings suggested that the fifth amino acid of the pentapeptide is also involved in the specificity of activation. We identified four classes of PlcR-PapR pairs, defining four distinct pherotypes in the B. cereus group. We used these findings to look at the evolution of the PlcR-PapR quorum-sensing system with regard to the phylogeny of the species forming the B. cereus group.
Collapse
Affiliation(s)
- Leyla Slamti
- Génétique et Physiologie des Bacillus Pathogènes, Institut Pasteur, Paris, France
| | | |
Collapse
|