1
|
Yeak KYC, Tempelaars M, Wu JL, Westerveld W, Reder A, Michalik S, Dhople VM, Völker U, Pané-Farré J, Wells-Bennik MHJ, Abee T. SigB modulates expression of novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in Bacillus cereus. BMC Microbiol 2023; 23:37. [PMID: 36759782 PMCID: PMC9912610 DOI: 10.1186/s12866-023-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members. RESULTS We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt, Δbc1009 and ΔsigB deletion mutants under heat stress at 42 °C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50 °C after pre-adaptation at 42 °C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of ΔsigB cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30 °C revealed 96 proteins with SigB and Bc1009-dependent differences in levels: 51 were also identified under heat stress, and 45 showed significant differential expression at 30 °C. This includes proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30 °C and 42 °C included proteins involved in motility, and ΔsigB and Δbc1009 cells showed reduced motility compared to wt cells in swimming assays at both temperatures. CONCLUSION Our results extend the B. cereus SigB regulon to > 300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of > 180 members, conceivably via interactions with other transcriptional regulatory networks.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Kernhemseweg 2, PO Box 20, 6718 ZB Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marcel Tempelaars
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Jia Lun Wu
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Wouter Westerveld
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Alexander Reder
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu M. Dhople
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- grid.10253.350000 0004 1936 9756Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Karl-Von-Frisch-Strasse 14, 35043 Marburg, Germany
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Guan P, Chang Y, Li S, Wang X, Dong Z, Zhou W, Zheng Q, Huang Z, Suo B. Transcriptome analysis reveals the molecular mechanism of cinnamaldehyde against Bacillus cereus spores in ready-to-eat beef. Food Res Int 2023; 163:112185. [PMID: 36596126 DOI: 10.1016/j.foodres.2022.112185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the antibacterial effect and mechanism of cinnamaldehyde on Bacillus cereus spores in ready-to-eat beef. The colour difference and texture of the ready-to-eat beef supplemented with cinnamaldehyde did not differ greatly from the colour and texture of the blank beef. However, cinnamaldehyde has an effective antibacterial effect on the total number of bacterial colonies and B. cereus spores in ready-to-eat beef. Transmission electron microscopy (TEM) analysis revealed that the cell membrane of B. cereus was disrupted by cinnamaldehyde, leading to leakage of intracellular components. Transcriptome sequencing (RNA-seq) indicated that the B. cereus spore resistance regulation system (sigB, sigW, rsbW, rsbV, yfkM and yflT) and phosphoenolpyruvate phosphotransferase system (PTS) (ptsH, ptsI and ptsG) respond positively to cinnamaldehyde in an adverse environment. Intracellular disorders due to damage to the cell membrane involve some transporters (copA, opuBA and opuD) and some oxidative stress systems (ywrO, scdA and katE) in the regulation of the body. However, downregulation of K+ transport channels (kdpD and kdpB), osmotic pressure regulation (opuE) and some oxidative stress (norR and srrA)-related genes may accelerate spore apoptosis. In addition, cinnamaldehyde also effectively inhibits the spore germination-related genes (smc, mreB and gerE). This study provides new insights into the molecular mechanism of the antibacterial effect of cinnamaldehyde on B. cereus spores in ready-to-eat beef.
Collapse
Affiliation(s)
- Peng Guan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuting Chang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Zijie Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weitao Zhou
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qi Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhongmin Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
3
|
The Alternative Sigma Factor SigB Is Required for the Pathogenicity of Bacillus thuringiensis. J Bacteriol 2020; 202:JB.00265-20. [PMID: 32817096 DOI: 10.1128/jb.00265-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
To adapt to changing and potentially hostile environments, bacteria can activate the transcription of genes under the control of alternative sigma factors, such as SigB, a master regulator of the general stress response in several Gram-positive species. Bacillus thuringiensis is a Gram-positive spore-forming invertebrate pathogen whose life cycle includes a variety of environments, including plants and the insect hemocoel or gut. Here, we assessed the role of SigB during the infectious cycle of B. thuringiensis in a Galleria mellonella insect model. We used a fluorescent reporter coupled to flow cytometry and showed that SigB was activated in vivo We also showed that the pathogenicity of the ΔsigB mutant was severely affected when inoculated via the oral route, suggesting that SigB is critical for B. thuringiensis adaptation to the gut environment of the insect. We could not detect an effect of the sigB deletion on the survival of the bacteria or on their sporulation efficiency in the cadavers. However, the gene encoding the pleiotropic regulator Spo0A was upregulated in the ΔsigB mutant cells during the infectious process.IMPORTANCE Pathogenic bacteria often need to transition between different ecosystems, and their ability to cope with such variations is critical for their survival. Several Gram-positive species have developed an adaptive response mediated by the general stress response alternative sigma factor SigB. In order to understand the ecophysiological role of this regulator in Bacillus thuringiensis, an entomopathogenic bacterium widely used as a biopesticide, we sought to examine the fate of a ΔsigB mutant during its life cycle in the natural setting of an insect larva. This allowed us, in particular, to show that SigB was activated during infection and that it was required for the pathogenicity of B. thuringiensis via the oral route of infection.
Collapse
|
4
|
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One 2014; 9:e103326. [PMID: 25083861 PMCID: PMC4118872 DOI: 10.1371/journal.pone.0103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leyla Slamti
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
| | - Matthew J. McKay
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Ida K. Hegna
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
- AgroParistech, UMR Micalis, Jouy-en-Josas, France
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mark P. Molloy
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
5
|
Desriac N, Broussolle V, Postollec F, Mathot AG, Sohier D, Coroller L, Leguerinel I. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers. Front Microbiol 2013; 4:284. [PMID: 24106490 PMCID: PMC3788345 DOI: 10.3389/fmicb.2013.00284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/03/2013] [Indexed: 01/20/2023] Open
Abstract
Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain.
Collapse
Affiliation(s)
- Noémie Desriac
- ADRIA Développement, UMT 08.3 PHYSI’Opt, QuimperFrance
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| | - Véronique Broussolle
- UMR408, Sécurité et Qualité des Produits d’Origine Végétale, Institut National de la Recherche AgronomiqueAvignon, France
- UMR408, Sécurité et Qualité des Produits d’Origine Végétale, Université d’Avignon et des Pays de VaucluseAvignon, France
| | | | - Anne-Gabrielle Mathot
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| | | | - Louis Coroller
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| | - Ivan Leguerinel
- EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT 08.3 PHYSI’Opt, IFR148 ScInBioS, Université de BrestQuimper, France
| |
Collapse
|
6
|
Scott E, Dyer DW. Divergence of the SigB regulon and pathogenesis of the Bacillus cereus sensu lato group. BMC Genomics 2012; 13:564. [PMID: 23088190 PMCID: PMC3485630 DOI: 10.1186/1471-2164-13-564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/10/2012] [Indexed: 12/31/2022] Open
Abstract
Background The Bacillus cereus sensu lato group currently includes seven species (B. cereus, B. anthracis, B. mycoides, B. pseudomycoides, B. thuringiensis, B. weihenstephanensis and B. cytotoxicus) that recent phylogenetic and phylogenomic analyses suggest are likely a single species, despite their varied phenotypes. Although horizontal gene transfer and insertion-deletion events are clearly important for promoting divergence among these genomes, recent studies have demonstrated that a major basis for phenotypic diversity in these organisms may be differential regulation of the highly similar gene content shared by these organisms. To explore this hypothesis, we used an in silico approach to evaluate the relationship of pathogenic potential and the divergence of the SigB-dependent general stress response within the B. cereus sensu lato group, since SigB has been demonstrated to support pathogenesis in Bacillus, Listeria and Staphylococcus species. Results During the divergence of these organisms from a common “SigB-less” ancestor, the placement of SigB promoters at varied locations in the B. cereus sensu lato genomes predict alternative structures for the SigB regulon in different organisms. Predicted promoter changes suggesting differential transcriptional control of a common gene pool predominate over evidence of indels or horizontal gene transfer for explaining SigB regulon divergence. Conclusions Four lineages of the SigB regulon have arisen that encompass different gene contents and suggest different strategies for supporting pathogenesis. This is consistent with the hypothesis that divergence within the B. cereus sensu lato group rests in part on alternative strategies for regulation of a common gene pool.
Collapse
Affiliation(s)
- Edgar Scott
- Department of Microbiology and Immunology, Oklahoma University Health Sciences Center, Oklahoma City, 73117, USA
| | | |
Collapse
|
7
|
Li X, Ding X, Xia L, Sun Y, Yuan C, Yin J. Proteomic analysis of Bacillus thuringiensis strain 4.0718 at different growth phases. ScientificWorldJournal 2012; 2012:798739. [PMID: 22649324 PMCID: PMC3353320 DOI: 10.1100/2012/798739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs) including Cry1Ac(3), Cry2Aa, and BTRX28, immune inhibitor (InhA), and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Microbial Molecular Biology of Hunan Province, College of Life Science, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | |
Collapse
|
8
|
van Melis CCJ, Nierop Groot MN, Tempelaars MH, Moezelaar R, Abee T. Characterization of germination and outgrowth of sorbic acid-stressed Bacillus cereus ATCC 14579 spores: phenotype and transcriptome analysis. Food Microbiol 2010; 28:275-83. [PMID: 21315984 DOI: 10.1016/j.fm.2010.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/01/2010] [Accepted: 04/10/2010] [Indexed: 11/15/2022]
Abstract
Sorbic acid (SA) is widely used as a preservative, but the effect of SA on spore germination and outgrowth has gained limited attention up to now. Therefore, the effect of sorbic acid on germination of spores of Bacillus cereus strain ATCC 14579 was analyzed both at phenotype and transcriptome level. Spore germination and outgrowth were assessed at pH 5.5 without and with 0.75, 1.5 and 3.0 mM (final concentrations) undissociated sorbic acid (HSA). This resulted in distinct HSA concentration-dependent phenotypes, varying from reduced germination and outgrowth rates to complete blockage of germination at 3.0 mM HSA. The phenotypes reflecting different stages in the germination process could be confirmed using flow cytometry and could be recognized at transcriptome level by distinct expression profiles. In the absence and presence of 0.75 and 1.5 mM HSA, similar cellular ATP levels were found up to the initial stage of outgrowth, suggesting that HSA-induced inhibition of outgrowth is not caused by depletion of ATP. Transcriptome analysis revealed the presence of a limited number of transcripts in dormant spores, outgrowth related expression, and genes specifically associated with sorbic acid stress, including alterations in cell envelope and multidrug resistance. The potential role of these HSA-stress associated genes in spore outgrowth is discussed.
Collapse
Affiliation(s)
- C C J van Melis
- Top Institute Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
de Been M, Tempelaars MH, van Schaik W, Moezelaar R, Siezen RJ, Abee T. A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of Bacillus cereus. Environ Microbiol 2009; 12:730-45. [PMID: 19958380 DOI: 10.1111/j.1462-2920.2009.02116.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor sigma(B) is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing sigma(B) upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the sigma(B)-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of this domain for sigma(B) induction upon stress. The domain architecture of RsbK suggests that in the B. cereus group and in other bacilli, environmental and intracellular stress signalling routes are combined into one single protein. This strategy is markedly different from the sigma(B) activation pathway in other low-GC Gram-positives.
Collapse
Affiliation(s)
- Mark de Been
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
10
|
Hecker M, Pané-Farré J, Uwe V. SigB-Dependent General Stress Response inBacillus subtilisand Related Gram-Positive Bacteria. Annu Rev Microbiol 2007; 61:215-36. [DOI: 10.1146/annurev.micro.61.080706.093445] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Hecker
- Institut für Mikrobiologie, 2Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald 17489, Germany; , ,
| | - Jan Pané-Farré
- Institut für Mikrobiologie, 2Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald 17489, Germany; , ,
| | - Völker Uwe
- Institut für Mikrobiologie, 2Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald 17489, Germany; , ,
| |
Collapse
|
11
|
Kristoffersen SM, Ravnum S, Tourasse NJ, Økstad OA, Kolstø AB, Davies W. Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579 [corrected]. J Bacteriol 2007; 189:5302-13. [PMID: 17496091 PMCID: PMC1951874 DOI: 10.1128/jb.00239-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
Tolerance to bile salts was investigated in forty Bacillus cereus strains, including 17 environmental isolates, 11 dairy isolates, 3 isolates from food poisoning outbreaks, and 9 other clinical isolates. Growth of all strains was observed at low bile salt concentrations, but no growth was observed on LB agar plates containing more than 0.005% bile salts. Preincubation of the B. cereus type strain, ATCC 14579, in low levels of bile salts did not increase tolerance levels. B. cereus ATCC 14579 was grown to mid-exponential growth phase and shifted to medium containing bile salts (0.005%). Global expression patterns were determined by hybridization of total cDNA to a 70-mer oligonucleotide microarray. A general stress response and a specific response to bile salts were observed. The general response was similar to that observed in cultures grown in the absence of bile salts but at a higher (twofold) cell density. Up-regulation of several putative multidrug exporters and transcriptional regulators and down-regulation of most motility genes were observed as part of the specific response. Motility experiments in soft agar showed that motility decreased following bile salts exposure, in accordance with the transcriptional data. Genes encoding putative virulence factors were either unaffected or down-regulated.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Department of Molecular Biosciences, University of Oslo, PB1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Vilas-Bôas GT, Peruca APS, Arantes OMN. Biology and taxonomy ofBacillus cereus,Bacillus anthracis, andBacillus thuringiensis. Can J Microbiol 2007; 53:673-87. [PMID: 17668027 DOI: 10.1139/w07-029] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis , and Bacillus thuringiensis ) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.
Collapse
Affiliation(s)
- G T Vilas-Bôas
- Departamento de Biologia Geral, CCB, UEL, CP 6001, Londrina/PR, 86051-990, Brazil.
| | | | | |
Collapse
|
13
|
van Schaik W, van der Voort M, Molenaar D, Moezelaar R, de Vos WM, Abee T. Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. J Bacteriol 2007; 189:4384-90. [PMID: 17416654 PMCID: PMC1913364 DOI: 10.1128/jb.00313-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor sigma(B) has an important role in the acquisition of stress resistance in many gram-positive bacteria, including the food-borne pathogen Bacillus cereus. Here, we describe the identification of the set of sigma(B)-regulated genes in B. cereus by DNA microarray analysis of the transcriptome upon a mild heat shock. Twenty-four genes could be identified as being sigma(B) dependent as witnessed by (i) significantly lower expression levels of these genes in mutants with a deletion of sigB and rsbY (which encode the alternative sigma factor sigma(B) and a crucial positive regulator of sigma(B) activity, respectively) than in the parental strain B. cereus ATCC 14579 and (ii) increased expression of these genes upon a heat shock. Newly identified sigma(B)-dependent genes in B. cereus include a histidine kinase and two genes that have predicted functions in spore germination. This study shows that the sigma(B) regulon of B. cereus is considerably smaller than that of other gram-positive bacteria. This appears to be in line with phylogenetic analyses where sigma(B) of the B. cereus group was placed close to the ancestral form of sigma(B) in gram-positive bacteria. The data described in this study and previous studies in which the complete sigma(B) regulon of the gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus were determined enabled a comparison of the sets of sigma(B)-regulated genes in the different gram-positive bacteria. This showed that only three genes (rsbV, rsbW, and sigB) are conserved in their sigma(B) dependency in all four bacteria, suggesting that the sigma(B) regulon of the different gram-positive bacteria has evolved to perform niche-specific functions.
Collapse
Affiliation(s)
- Willem van Schaik
- Wageningen Centre for Food Sciences, P.O. Box 557, 6700AN Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Wang W, Hollmann R, Deckwer WD. Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase. Proteome Sci 2006; 4:19. [PMID: 17022804 PMCID: PMC1622742 DOI: 10.1186/1477-5956-4-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/05/2006] [Indexed: 11/30/2022] Open
Abstract
High cell density cultivations were performed under identical conditions for two Bacillus megaterium strains (MS941 and WH320), both carrying a heterologous dextransucrase (dsrS) gene under the control of the xylA promoter. At characteristic points of the cultivations (end of batch, initial feeding, before and after induction) the proteome was analyzed based on two dimensional gel electrophoresis and mass spectrometric protein identification using the protein database "bmegMEC.v2" recently made available. High expression but no secretion of DsrS was found for the chemical mutant WH320 whereas for MS 941, a defined protease deficient mutant of the same parent strain (DSM319), not even expression of DsrS could be detected. The proteomic analysis resulted in the identification of proteins involved in different cellular pathways such as in central carbon and overflow metabolism, in protein synthesis, protein secretion and degradation, in cell wall metabolism, in cell division and sporulation, in membrane transport and in stress responses. The two strains exhibited considerable variations in expression levels of specific proteins during the different phases of the cultivation process, whereas induction of DsrS production had, in general, little effect. The largely differing behaviour of the two strains with regard to DsrS expression can be attributed, at least in part, to changes observed in the proteome which predominantly concern biosynthetic enzymes and proteins belonging to the membrane translocation system, which were strongly down-regulated at high cell densities in MS941 compared with WH320. At the same time a cell envelope-associated quality control protease and two peptidoglycan-binding proteins related to cell wall turnover were strongly expressed in MS941 but not found in WH320. However, to further explain the very different physiological responses of the two strains to the same cultivation conditions, it is necessary to identify the mutated genes in WH320 in addition to the known lacZ. In view of the results of this proteomic study it seems that at high cell density conditions and hence low growth rates MS941, in contrast to WH320, does not maintain a vegetative growth which is essential for the expression of the foreign dsrS gene by using the xylA promoter. It is conceivable that applications of a promoter which is highly active under nutrient-limited cultivation conditions is necessary, at least for MS941, for the overexpression of recombinant genes in such B. megaterium fed-batch cultivation process. However to obtain a heterologous protein in secreted and properly folded form stills remains a big challenge.
Collapse
Affiliation(s)
- Wei Wang
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Rajan Hollmann
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Wolf-Dieter Deckwer
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| |
Collapse
|
15
|
Fedhila S, Daou N, Lereclus D, Nielsen-LeRoux C. Identification ofBacillus cereusinternalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 2006; 62:339-55. [PMID: 16978259 DOI: 10.1111/j.1365-2958.2006.05362.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus cereus is an opportunistic bacterium frequently associated with food-borne infections causing gastroenteritis. We developed an in vivo expression technology (IVET), with an insect host, for identification of the B. cereus genes specifically expressed during infection. This IVET-based approach uses site-specific recombinase TnpI to identify transient promoter activation. We constructed a genomic library of B. cereus ATCC14579 by cloning DNA fragments upstream from tnpI. The library was screened in vivo by oral infection of the insect Galleria mellonella. We selected 100 clones from dead larvae. Sequencing of the inserts followed by a second screen for specific in vivo induction led to the identification of 20 in vivo-induced genes (ivi genes). They belonged to several different functional classes: regulation, metabolism, DNA repair and replication, cell division, transport, virulence and adaptation. A strongly induced gene, ivi29, was further analysed. It encodes an internalin-like protein with four distinct domains: an N-terminal signal peptide for export, a NEAT domain thought to be involved in iron transport, a leucine-rich repeat domain that may interact with host cells, and a C-terminal SLH domain presumably binding the protein to the peptidoglycan. As suggested by a Fur box in the promoter, transcriptional analysis showed ivi29 expression to be repressed by iron, suggesting that expression was induced in vivo due to iron deprivation in the host. This iron-regulated, leucine-rich surface protein was designated IlsA. Disruption of ilsA reduced the virulence of the bacteria to the insect larvae indicating its role in the overall pathogenesis of B. cereus.
Collapse
Affiliation(s)
- Sinda Fedhila
- Unité Génétique Microbienne et Environnement, Institut National de la Recherche Agronomique, La Minière, 78285 Guyancourt cedex, France
| | | | | | | |
Collapse
|
16
|
Zhang W, Culley DE, Scholten JCM, Hogan M, Vitiritti L, Brockman FJ. Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie van Leeuwenhoek 2006; 89:221-37. [PMID: 16710634 DOI: 10.1007/s10482-005-9024-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/03/2005] [Indexed: 10/24/2022]
Abstract
Whole-genome microarrays of Desulfovibrio vulgaris were used to determine relative transcript levels in cells grown to exponential or stationary phase on a medium containing either lactate or formate as electron donor. The results showed that 158 and 477 genes were differentially expressed when comparing exponential to stationary phase in lactate- or formate-based media, respectively; and 505 and 355 genes were responsive to the electron donor used at exponential or stationary phase, respectively. Functional analyses suggested that the differentially regulated genes were involved in almost every aspect of cellular metabolism, with genes involved in protein synthesis, carbon, and energy metabolism being the most regulated. The results suggested that HynBA-1 might function as a primary periplasmic hydrogenase responsible for oxidation of H2 linked to the proton gradient in lactate-based medium, while several periplasmic hydrogenases including HynBA-1 and Hyd might carry out this role in formate-based medium. The results also indicated that the alcohol dehydrogenase and heterodisulfide reductase catalyzed pathway for proton gradient formation might be actively functioning for ATP synthesis in D. vulgaris. In addition, hierarchical clustering analysis using expression data across different electron donors and growth phases allowed the identification of the common electron donor independent changes in gene expression specifically associated with the exponential to stationary phase transition, and those specifically associated with the different electron donors independent of growth phase. The study provides the first global description and functional interpretation of transcriptomic response to growth phase and electron donor in D. vulgaris.
Collapse
Affiliation(s)
- Weiwen Zhang
- Department of Microbiology, Pacific Northwest National Laboratory, 902 Battelle Boulevard, 999, Richland, WA 99352, USA.
| | | | | | | | | | | |
Collapse
|
17
|
van Schaik W, Zwietering MH, de Vos WM, Abee T. Deletion of the sigB gene in Bacillus cereus ATCC 14579 leads to hydrogen peroxide hyperresistance. Appl Environ Microbiol 2005; 71:6427-30. [PMID: 16204573 PMCID: PMC1265915 DOI: 10.1128/aem.71.10.6427-6430.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor sigma(B). Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.
Collapse
Affiliation(s)
- Willem van Schaik
- Laboratory of Food Microbiology, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-543. [PMID: 16339734 DOI: 10.1128/mmbr.69.4.527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
19
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-43. [PMID: 16339734 PMCID: PMC1306804 DOI: 10.1128/mmbr.69.4.527-543.2005] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
20
|
de Vries YP, Hornstra LM, Atmadja RD, Schaik WV, de Vos WM, Abee T. Deletion ofsigBinBacillus cereusaffects spore properties. FEMS Microbiol Lett 2005; 252:169-73. [PMID: 16171954 DOI: 10.1016/j.femsle.2005.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/17/2005] [Accepted: 08/29/2005] [Indexed: 11/25/2022] Open
Abstract
In Bacillus cereus and other gram-positive bacteria the alternative sigma factor sigma(B) is an important regulator of the stress response. Deletion of the sigB gene generally leads to a stress-sensitive phenotype of vegetative cells. In this study, we describe the effect of the deletion of the sigB gene in B. cereus on spore properties. In particular, spores of the sigB deletion mutant showed a defect in germination upon exposure to the germinants alanine and inosine.
Collapse
Affiliation(s)
- Ynte P de Vries
- Wageningen Centre for Food Sciences, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
van Schaik W, Abee T. The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. Curr Opin Biotechnol 2005; 16:218-24. [PMID: 15831390 DOI: 10.1016/j.copbio.2005.01.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The alternative sigma factor sigmaB modulates the stress response of several Gram-positive bacteria, including Bacillus subtilis and the food-borne human pathogens Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. In all these bacteria, sigmaB is responsible for the transcription of genes that can confer stress resistance to the vegetative cell. Recent findings indicate that sigmaB also plays an important role in antibiotic resistance, pathogenesis and cellular differentiation processes such as biofilm formation and sporulation. Although there are important differences in the regulation of sigmaB and in the set of genes regulated by sigmaB in B. subtilis, B. cereus, L. monocytogenes and S. aureus, there are also some conserved themes. A mechanistic understanding of the sigmaB activation processes and assessment of its regulon could provide tools for pathogen control and inactivation both in the food industry and clinical settings.
Collapse
Affiliation(s)
- Willem van Schaik
- Wageningen Centre for Food Sciences and Laboratory of Food Microbiology, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | | |
Collapse
|
22
|
van Schaik W, Tempelaars MH, Zwietering MH, de Vos WM, Abee T. Analysis of the role of RsbV, RsbW, and RsbY in regulating {sigma}B activity in Bacillus cereus. J Bacteriol 2005; 187:5846-51. [PMID: 16077134 PMCID: PMC1196065 DOI: 10.1128/jb.187.16.5846-5851.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 05/24/2005] [Indexed: 12/23/2022] Open
Abstract
The alternative sigma factor sigma(B) is an important regulator of the stress response of Bacillus cereus. Here, the role of the regulatory proteins RsbV, RsbW, and RsbY in regulating sigma(B) activity in B. cereus is analyzed. Functional characterization of RsbV and RsbW showed that they act as an anti-sigma factor antagonist and an anti-sigma factor, respectively. RsbW can also act as a kinase on RsbV. These data are in line with earlier functional characterizations of RsbV and RsbW homologs in B. subtilis. The rsbY gene is unique to B. cereus and its closest relatives and is predicted to encode a protein with an N-terminal CheY domain and a C-terminal PP2C domain. In an rsbY deletion mutant, the sigma(B) response upon stress exposure was almost completely abolished, but the response could be restored by complementation with full-length rsbY. Expression analysis showed that rsbY is transcribed from both a sigma(A)-dependent promoter and a sigma(B)-dependent promoter. The central role of RsbY in regulating the activity of sigma(B) indicates that in B. cereus, the sigma(B) activation pathway is markedly different from that in other gram-positive bacteria.
Collapse
|
23
|
Abstract
Genome sequences are now available for many of the microbes that cause food-borne diseases. The information contained in pathogen genome sequences, together with the development of themed and whole-genome DNA microarrays and improved proteomics techniques, might provide tools for the rapid detection and identification of such organisms, for assessing their biological diversity and for understanding their ability to respond to stress. The genomic information also provides insight into the metabolic capacity and versatility of microbes; for example, specific metabolic pathways might contribute to the growth and survival of pathogens in a range of niches, such as food-processing environments and the human host. New concepts are emerging about how pathogens function, both within foods and in interactions with the host. The future should bring the first practical benefits of genome sequencing to the field of microbial food safety, including strategies and tools for the identification and control of emerging pathogens.
Collapse
Affiliation(s)
- Tjakko Abee
- Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | |
Collapse
|
24
|
de Vries YP, van der Voort M, Wijman J, van Schaik W, Hornstra LM, de Vos WM, Abee T. Progress in Food-related Research Focussing on Bacillus cereus. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ynte P. de Vries
- Wageningen Centre for Food Sciences
- Wageningen UR Laboratory of Food Microbiology
- Agrotechnology and Food Innovations A&F
| | - Menno van der Voort
- Wageningen Centre for Food Sciences
- Wageningen UR Laboratory of Food Microbiology
| | - Janneke Wijman
- Wageningen Centre for Food Sciences
- Wageningen UR Laboratory of Food Microbiology
| | - Willem van Schaik
- Wageningen Centre for Food Sciences
- Wageningen UR Laboratory of Food Microbiology
| | - Luc M. Hornstra
- Wageningen Centre for Food Sciences
- Agrotechnology and Food Innovations A&F
| | | | - Tjakko Abee
- Wageningen Centre for Food Sciences
- Wageningen UR Laboratory of Food Microbiology
| |
Collapse
|