1
|
Choi E, Chaudhry SI, Martens-Habbena W. Role of Nitric Oxide in Hydroxylamine Oxidation by Ammonia-Oxidizing Bacteria. Appl Environ Microbiol 2023; 89:e0217322. [PMID: 37439697 PMCID: PMC10467338 DOI: 10.1128/aem.02173-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
An important role of nitric oxide (NO) as either a free intermediate in the NH3 oxidation pathway or a potential oxidant for NH3 or NH2OH has been proposed for ammonia-oxidizing bacteria (AOB) and archaea (AOA), respectively. However, tracing NO metabolism at low concentrations remains notoriously difficult. Here, we use electrochemical sensors and the mild NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) to trace apparent NO concentration and determine production rates at low micromolar concentrations in the model AOB strain Nitrosomonas europaea. In agreement with previous studies, we found that PTIO does not affect NH3 oxidation instantaneously in both Nitrosospira briensis and Nitrosomonas europaea, unlike inhibitors for ammonia oxidation such as allylthiourea and acetylene, although it effectively scavenged NO from the cell suspensions. Quantitative analysis showed that NO production by N. europaea amounted to 3.15% to 6.23% of NO2- production, whereas N. europaea grown under O2 limitation produced NO equivalent to up to 40% of NO2- production at high substrate concentrations. In addition, we found that PTIO addition to N. europaea grown under O2 limitation abolished N2O production. These results indicate different turnover rates of NO during NH3 oxidation under O2-replete and O2-limited growth conditions in AOB. The results suggest that NO may not be a free intermediate or remain tightly bound to iron centers of enzymes during hydroxylamine oxidation and that only NH3 saturation and adaptation to O2 limitation may lead to significant dissociation of NO from hydroxylamine dehydrogenase. IMPORTANCE Ammonia oxidation by chemolithoautotrophic ammonia-oxidizing bacteria (AOB) is thought to contribute significantly to global nitrous oxide (N2O) emissions and leaching of oxidized nitrogen, particularly through their activity in nitrogen (N)-fertilized agricultural production systems. Although substantial efforts have been made to characterize the N metabolism in AOB, recent findings suggest that nitric oxide (NO) may play an important mechanistic role as a free intermediate of hydroxylamine oxidation in AOB, further implying that besides hydroxylamine dehydrogenase (HAO), additional enzymes may be required to complete the ammonia oxidation pathway. However, the NO spin trap PTIO was found to not inhibit ammonia oxidation in AOB. This study provides a combination of physiological and spectroscopic evidence that PTIO indeed scavenges only free NO in AOB and that significant amounts of free NO are produced only during incomplete hydroxylamine oxidation or nitrifier denitrification under O2-limited growth conditions.
Collapse
Affiliation(s)
- Eunkyung Choi
- Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA
| | - Sana I. Chaudhry
- Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA
| |
Collapse
|
2
|
Wang Y, Wu G, Zheng X, Mao W, Guan Y. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter. BIORESOURCE TECHNOLOGY 2022; 355:127223. [PMID: 35483533 DOI: 10.1016/j.biortech.2022.127223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Pyrite is one kind of cost-effective electron donors for nitrate denitrification. In this study, a pyrite-driven autotrophic denitrification biofilter was applied for simultaneous removal of NH4+ and NO3- over the 150-day. The influent NH4+/NO3- ratio (0.3-1.7) had less effect on system performance, while for the hydraulic retention times (HRTs, 24-3 h), the removal percentage of both > 90% and removal loading rates of 52.8 and 59.4 mg N/(L·d) for NH4+ and NO3- removal were obtained at the HRT of 6 h. The 16S rRNA genes analysis showed that Ferritrophicum, Thiobacillus, Candidatus_Brocadia, and unidentified_Nitrospiraceae were predominant. Analyses of nitrogen and sulfur metabolism showed that ammonia was removed by complete nitrification, nitrate was reduced to N2, and sulfide was oxidized to sulfate. Dynamics of pollutants within the reactor and microbial activity showed nitrification/Anammox and pyrite-driven autotrophic denitrification were responsible for the synergistic removal of NH4+/NO3- in this system.
Collapse
Affiliation(s)
- Yanfei Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | - Xiaona Zheng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wei Mao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Abstract
Ammonia-oxidizing bacteria (AOB) convert ammonia (NH3) to nitrite (NO2-) as their primary metabolism and thus provide a blueprint for the use of NH3 as a chemical fuel. The first energy-producing step involves the homotrimeric enzyme hydroxylamine oxidoreductase (HAO), which was originally reported to oxidize hydroxylamine (NH2OH) to NO2-. HAO uses the heme P460 cofactor as the site of catalysis. This heme is supported by seven other c hemes in each monomer that mediate electron transfer. Heme P460 cofactors are c-heme-based cofactors that have atypical protein cross-links between the peptide backbone and the porphyrin macrocycle. This cofactor has been observed in both the HAO and cytochrome (cyt) P460 protein families. However, there are differences; specifically, HAO uses a single tyrosine residue to form two covalent attachments to the macrocycle whereas cyt P460 uses a lysine residue to form one. In Nitrosomonas europaea, which expresses both HAO and cyt P460, these enzymes achieve the oxidation of NH2OH and were both originally reported to produce NO2-. Each can inspire means to effect controlled release of chemical energy.Spectroscopically studying the P460 cofactors of HAO is complicated by the 21 non-P460 heme cofactors, which obscure the active site. However, monoheme cyt P460 is more approachable biochemically and spectroscopically. Thus, we have used cyt P460 to study biological NH2OH oxidation. Under aerobic conditions substoichiometric production of NO2- was observed along with production of nitrous oxide (N2O). Under anaerobic conditions, however, N2O was the exclusive product of NH2OH oxidation. We have advanced our understanding of the mechanism of this enzyme and have showed that a key intermediate is a ferric nitrosyl that can dissociate the bound nitric oxide (NO) molecule and react with O2, thus producing NO2- abiotically. Because N2O was the true product of one P460 cofactor-containing enzyme, this prompted us to reinvestigate whether NO2- is enzymatically generated from HAO catalysis. Like cyt P460, we showed that HAO does not produce NO2- enzymatically, but unlike cyt P460, its final product is NO, establishing it as an intermediate of nitrification. More broadly, NO can be recognized as a molecule common to the primary metabolisms of all organisms involved in nitrogen "defixation".Delving deeper into cyt P460 yielded insights broadly applicable to controlled biochemical redox processes. Studies of an inactive cyt P460 from Nitrosomonas sp. AL212 showed that this enzyme was unable to oxidize NH2OH because it lacked a glutamate residue in its secondary coordination sphere that was present in the active N. europaea cyt P460 variant. Restoring the Glu residue imbued activity, revealing that a second-sphere base is Nature's key to controlled oxidation of NH2OH. A key lesson of bioinorganic chemistry is reinforced: the polypeptide matrix is an essential part of dictating function. Our work also exposed some key functional contributions of noncanonical heme-protein cross-links. The heme-Lys cross-link of cyt P460 enforces the relative position of the cofactor and second-sphere residues. Moreover, the cross-link prevents the dissociation of the axial histidine residue, which stops catalysis, emphasizing the importance of this unique post-translational modification.
Collapse
Affiliation(s)
- Rachael E. Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M. Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Vieira A, Marques R, Galinha C, Povoa P, Carvalho G, Oehmen A. Nitrous oxide emissions from a full-scale biological aerated filter (BAF) subject to seawater infiltration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20939-20948. [PMID: 31115817 DOI: 10.1007/s11356-019-05470-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The increase of salt concentrations in influent wastewaters will be a consequence of the sea level rises in coastal areas due to climate change and the future use of seawater to flush toilets as a cost-attractive option for alternative water resources. Yet, little is known about the salinity effect on full-scale wastewater treatment plants (WWTPs) performance and on greenhouse gas (GHG) emissions, such as nitrous oxide (N2O). This study aimed at quantifying the N2O emissions of a full-scale biological aerated filter (BAF) and to correlate the dynamic behavior of the emissions with the process conditions and the periods of infiltration of seawater. A full-scale BAF was monitored for 3 months to assess both their gaseous and liquid N2O fluxes. The total average daily N2O emissions of the plant were 6.16 g N-N2O/kg of NH4-N removed. For the first time at full-scale, a correlation between the N2O emissions and the wastewater influent conductivity (salinity) was found, in which the increase in seawater infiltration in the sewer at high tide augments the daily N2O production and emission to 13.78 g N-N2O/kg of NH4-N removed. The proportional increase in influent conductivity and the N2O emission factor in this WWTP suggested that periods of high conductivity could serve as an indicator of increased N2O emissions by the plant. Furthermore, the operational conditions and the wastewater influent characteristics that influence the N2O emissions were identified as being the dissolved oxygen (DO) dynamics due to the filter washing steps, leading to rapid transitions from oxic to sub-oxic conditions, as well as the (re-)adaptation of microbial consortia due to the dynamics of the biofilm thickness associated to the daily washing process. This study shows the impact that the washing process and seawater infiltration has on the N2O emissions of a BAF and contributes to a better understanding of the operational conditions impacting the emissions in WWTPs.
Collapse
Affiliation(s)
- Anabela Vieira
- iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157, Oeiras, Portugal
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Ricardo Marques
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Claudia Galinha
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Pedro Povoa
- Águas do Tejo Atlântico, Águas de Portugal, 1250-144, Lisbon, Portugal
| | - Gilda Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Adrian Oehmen
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal.
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
6
|
Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, Herbold C, Stein LY, Richter A, Wissel H, Brüggemann N, Wagner M, Daims H. Low yield and abiotic origin of N 2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun 2019; 10:1836. [PMID: 31015413 PMCID: PMC6478695 DOI: 10.1038/s41467-019-09790-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of N2O and NO globally. However, nothing is known about N2O and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to N2O, and emits N2O at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that N2O formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less N2O during nitrification than AOB.
Collapse
Affiliation(s)
- K Dimitri Kits
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Man-Young Jung
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Julia Vierheilig
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, 3500, Austria
- Interuniversity Cooperation Centre for Water and Health, Krems, 3500, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Shurong Liu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Andreas Richter
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Holger Wissel
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
7
|
Jia S, Chen X, Suenaga T, Terada A, Ishikawa S, Nishimura F, Ding S, Fujiwara T. Spatial and daily variations of nitrous oxide emissions from biological reactors in a full-scale activated sludge anoxic/oxic process. J Biosci Bioeng 2019; 127:333-339. [DOI: 10.1016/j.jbiosc.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 11/25/2022]
|
8
|
Brotto AC, Annavajhala MK, Chandran K. Metatranscriptomic Investigation of Adaptation in NO and N 2O Production From a Lab-Scale Nitrification Process Upon Repeated Exposure to Anoxic-Aerobic Cycling. Front Microbiol 2018; 9:3012. [PMID: 30574136 PMCID: PMC6291752 DOI: 10.3389/fmicb.2018.03012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms of microbial adaptation to repeated anoxic-aerobic cycling were investigated by integrating whole community gene expression (metatranscriptomics) and physiological responses, including the production of nitric (NO) and nitrous (N2O) oxides. Anoxic-aerobic cycling was imposed for 17 days in a lab-scale full-nitrification mixed culture system. Prior to cycling, NO and N2O levels were sustained at 0.097 ± 0.006 and 0.054 ± 0.019 ppmv, respectively. Once the anoxic-aerobic cycling was initiated, peak emissions were highest on the first day (9.8 and 1.3 ppmv, respectively). By the end of day 17, NO production returned to pre-cycling levels (a peak of 0.12 ± 0.007 ppmv), while N2O production reached a new baseline (a peak of 0.32 ± 0.05 ppmv), one order of magnitude higher than steady-state conditions. Concurrently, post-cycling transcription of norBQ and nosZ returned to pre-cycling levels after an initial 5.7- and 9.5-fold increase, while nirK remained significantly expressed (1.6-fold) for the duration of and after cycling conditions. The imbalance in nirK and nosZ mRNA abundance coupled with continuous conversion of NO to N2O might explain the elevated post-cycling baseline for N2O. Metatranscriptomic investigation notably indicated possible NO production by NOB under anoxic-aerobic cycling through a significant increase in nirK expression. Opposing effects on AOB (down-regulation) and NOB (up-regulation) CO2 fixation were observed, suggesting that nitrifying bacteria are differently impacted by anoxic-aerobic cycling. Genes encoding the terminal oxidase of the electron transport chain (ccoNP, coxBC) were the most significantly transcribed, highlighting a hitherto unexplored pathway to manage high electron fluxes resulting from increased ammonia oxidation rates, and leading to overall, increased NO and N2O production. In sum, this study identified underlying metabolic processes and mechanisms contributing to NO and N2O production through a systems-level interrogation, which revealed the differential ability of specific microbial groups to adapt to sustained operational conditions in engineered biological nitrogen removal processes.
Collapse
Affiliation(s)
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
|
10
|
Shimizu T, Horiguchi K, Hatanaka Y, Masuda S, Shimada K, Matsuura K, Haruta S. Nitrite-reducing ability is related to growth inhibition by nitrite in Rhodobacter sphaeroides f. sp. denitrificans. Biosci Biotechnol Biochem 2018; 82:148-151. [DOI: 10.1080/09168451.2017.1412247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Growth inhibition of Rhodobacter sphaeroides f. sp. denitrificans IL106 by nitrite under anaerobic-light conditions became less pronounced when the gene encoding nitrite reductase was deleted. Growth of another deletion mutant of the genes encoding nitric oxide reductase was severely suppressed by nitrite. Our results suggest that nitrite reductase increases the sensitivity to nitrite through the production of nitric oxide.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Kouhei Horiguchi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Yui Hatanaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Keizo Shimada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
11
|
Kinh CT, Riya S, Hosomi M, Terada A. Identification of hotspots for NO and N 2O production and consumption in counter- and co-diffusion biofilms for simultaneous nitrification and denitrification. BIORESOURCE TECHNOLOGY 2017; 245:318-324. [PMID: 28898826 DOI: 10.1016/j.biortech.2017.08.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A membrane-aerated biofilm reactor (MABR) provides a counter-current substrate diffusion geometry in which oxygen is supplied from a gas-permeable membrane on which a biofilm is grown. This study hypothesized that an MABR would mitigate NO and N2O emissions compared with those from a conventional biofilm reactor (CBR). Two laboratory-scale reactors, representing an MABR and CBR, were operated by feeding synthetic industrial wastewater. The surficial nitrogen removal rate for the MABR [4.51±0.52g-N/(m2day)] was higher than that for the CBR [3.56±0.81g-N/(m2day)] (p<0.05). The abundance of β-proteobacterial ammonia-oxidizing bacteria in the MABR biofilm aerobic zone was high. The NO and N2O concentrations at the biofilm-liquid interface in the MABR were 0.0066±0.0014 and 0.01±0.0009mg-N/L, respectively, two and 28 times lower than those in the CBR. The NO and N2O production hotspots were closely located in the MABR aerobic zone.
Collapse
Affiliation(s)
- Co Thi Kinh
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16 Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
12
|
Duan H, Ye L, Erler D, Ni BJ, Yuan Z. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review. WATER RESEARCH 2017; 122:96-113. [PMID: 28595125 DOI: 10.1016/j.watres.2017.05.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/01/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N2O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N2O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N2O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N2O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Dirk Erler
- Centre for Coastal Biogeochemistry, School of Environmental Science and Engineering, Southern Cross University, Lismore, NSW 2480 Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Jurczyk Ł, Koc-Jurczyk J. Quantitative dynamics of ammonia-oxidizers during biological stabilization of municipal landfill leachate pretreated by Fenton's reagent at neutral pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:310-326. [PMID: 28159310 DOI: 10.1016/j.wasman.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The application of multi-stage systems including biological step, for the treatment of leachate from municipal landfills, is economically and technologically justified. When microbial activity is utilized as 2nd stage of treatment, the task of 1st stage is to increase the bioavailability of organic matter. In this work, the effect of advanced oxidation process by Fenton's reagent for treatment efficiency of landfill leachate in the sequencing batch reactor was assessed. The quantitative dynamics of bacteria taking a part in ammonia removal process was evaluated by determination of number of DNA copies of 16S rRNA and amoA. Products of neutral pH chemical oxidation, had a definite positive impact on the quantity of β-proteobacteria 16S rRNA, whereas the same gene specified for Nitrospira sp. as well as amoA did not show a significant increase during the process of biological treatment, regardless of whether the reactor was fed with raw leachate or chemically pre-treated.
Collapse
Affiliation(s)
- Łukasz Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland.
| | - Justyna Koc-Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland
| |
Collapse
|
14
|
Frame CH, Lau E, Nolan EJ, Goepfert TJ, Lehmann MF. Acidification Enhances Hybrid N 2O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms. Front Microbiol 2017; 7:2104. [PMID: 28119667 PMCID: PMC5220105 DOI: 10.3389/fmicb.2016.02104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 02/01/2023] Open
Abstract
Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2−), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2− produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2− was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2− each contributed N equally to N2O by a “hybrid-N2O” mechanism consistent with a reaction between NH2OH and NO2−, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0–34.4‰) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia with 15NH4+ and NO2−. However, the site preference of dissolved N2O here was low (4.9‰), indicating that another mechanism, not captured during the incubations, was important. Multiplex sequencing of 16S rRNA revealed distinct ammonia oxidizer communities: AOB dominated numerically in Lake Lugano, and AOA dominated in the seawater. Potential for hybrid N2O formation exists among both communities, and at least in AOB-dominated environments, acidification may accelerate this mechanism.
Collapse
Affiliation(s)
- Caitlin H Frame
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Evan Lau
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - E Joseph Nolan
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | | | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| |
Collapse
|
15
|
Is there a pathway for N2O production from hydroxylamine oxidoreductase in ammonia-oxidizing bacteria? Proc Natl Acad Sci U S A 2016; 113:14474-14476. [PMID: 27965392 DOI: 10.1073/pnas.1617953114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc Natl Acad Sci U S A 2016; 113:14704-14709. [PMID: 27856762 DOI: 10.1073/pnas.1611051113] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ammonia oxidizing bacteria (AOB) are major contributors to the emission of nitrous oxide (N2O). It has been proposed that N2O is produced by reduction of NO. Here, we report that the enzyme cytochrome (cyt) P460 from the AOB Nitrosomonas europaea converts hydroxylamine (NH2OH) quantitatively to N2O under anaerobic conditions. Previous literature reported that this enzyme oxidizes NH2OH to nitrite ([Formula: see text]) under aerobic conditions. Although we observe [Formula: see text] formation under aerobic conditions, its concentration is not stoichiometric with the NH2OH concentration. By contrast, under anaerobic conditions, the enzyme uses 4 oxidizing equivalents (eq) to convert 2 eq of NH2OH to N2O. Enzyme kinetics coupled to UV/visible absorption and electron paramagnetic resonance (EPR) spectroscopies support a mechanism in which an FeIII-NH2OH adduct of cyt P460 is oxidized to an {FeNO}6 unit. This species subsequently undergoes nucleophilic attack by a second equivalent of NH2OH, forming the N-N bond of N2O during a bimolecular, rate-determining step. We propose that [Formula: see text] results when nitric oxide (NO) dissociates from the {FeNO}6 intermediate and reacts with dioxygen. Thus, [Formula: see text] is not a direct product of cyt P460 activity. We hypothesize that the cyt P460 oxidation of NH2OH contributes to NO and N2O emissions from nitrifying microorganisms.
Collapse
|
17
|
Kozlowski JA, Kits KD, Stein LY. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria. Front Microbiol 2016; 7:1090. [PMID: 27462312 PMCID: PMC4940428 DOI: 10.3389/fmicb.2016.01090] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity.
Collapse
Affiliation(s)
- Jessica A Kozlowski
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, AB Canada
| | - K Dimitri Kits
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, AB Canada
| | - Lisa Y Stein
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
18
|
Steady-State Growth under Inorganic Carbon Limitation Conditions Increases Energy Consumption for Maintenance and Enhances Nitrous Oxide Production in Nitrosomonas europaea. Appl Environ Microbiol 2016; 82:3310-3318. [PMID: 27016565 DOI: 10.1128/aem.00294-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia-oxidizing microorganisms and nitrite-oxidizing bacteria. Most nitrifiers are chemolithoautotrophs that fix inorganic carbon (CO2) for growth. Here, we investigate how inorganic carbon limitation modifies the physiology and transcriptome of Nitrosomonas europaea, a model ammonia-oxidizing bacterium, and report on increased production of N2O, a potent greenhouse gas. This study, along with previous work, suggests that inorganic carbon limitation may be an important factor in controlling N2O emissions from nitrification in soils and wastewater treatment.
Collapse
|
19
|
Liu M, Yang Q, Peng Y, Liu T, Xiao H, Wang S. Treatment performance and N2O emission in the UASB-A/O shortcut biological nitrogen removal system for landfill leachate at different salinity. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns. Appl Microbiol Biotechnol 2015; 100:1843-1852. [DOI: 10.1007/s00253-015-7095-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
|
21
|
Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FAO, Drew JC, Farmerie WG, Daroub SH, Triplett EW. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 2014; 9:e101648. [PMID: 24999826 PMCID: PMC4084955 DOI: 10.1371/journal.pone.0101648] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.
Collapse
Affiliation(s)
- Kateryna V. Zhalnina
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raquel Dias
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Michael T. Leonard
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | | | - Flavio A. O. Camargo
- Soil Science Department, Federal Unviersity of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jennifer C. Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - William G. Farmerie
- Genome Sequencing Services Laboratory, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Samira H. Daroub
- Everglades Research and Education Center, University of Florida, Belle Glade, Florida, United States of America
| | - Eric W. Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
22
|
Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718. Appl Environ Microbiol 2014; 80:4930-5. [PMID: 24907318 DOI: 10.1128/aem.01061-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2 (-)) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2 (-) reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes.
Collapse
|
23
|
Liu M, Liu T, Peng Y, Wang S, Xiao H. Effect of salinity on N2O production during shortcut biological nitrogen removal from landfill leachate. J Biosci Bioeng 2014; 117:582-90. [DOI: 10.1016/j.jbiosc.2013.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022]
|
24
|
Gabarró J, Hernández-Del Amo E, Gich F, Ruscalleda M, Balaguer MD, Colprim J. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate. WATER RESEARCH 2013; 47:7066-7077. [PMID: 24183561 DOI: 10.1016/j.watres.2013.07.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/10/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O.
Collapse
Affiliation(s)
- J Gabarró
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea. Antonie Van Leeuwenhoek 2013; 104:645-55. [PMID: 23881243 DOI: 10.1007/s10482-013-9973-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.
Collapse
|
26
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
27
|
Schreiber F, Wunderlin P, Udert KM, Wells GF. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 2012; 3:372. [PMID: 23109930 PMCID: PMC3478589 DOI: 10.3389/fmicb.2012.00372] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022] Open
Abstract
Nitrous oxide (N(2)O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N(2)O is formed biologically from the oxidation of hydroxylamine (NH(2)OH) or the reduction of nitrite (NO(-) (2)) to NO and further to N(2)O. Our review of the biological pathways for N(2)O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO(-) (2) to NO and the further reduction of NO to N(2)O, while N(2)O formation from NH(2)OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N(2)O formation due to the reactivity of NO(-) (2), NH(2)OH, and nitroxyl (HNO). Moreover, biological N(2)O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N(2)O build-up are key to understand mechanisms of N(2)O release. Here, we discuss novel technologies that allow experiments on NO and N(2)O formation at high temporal resolution, namely NO and N(2)O microelectrodes and the dynamic analysis of the isotopic signature of N(2)O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N(2)O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N(2)O build-up.
Collapse
Affiliation(s)
- Frank Schreiber
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Dübendorf, Switzerland ; Department of Environmental Systems Sciences, Eidgenössische Technische Hochschule Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
Law Y, Ni BJ, Lant P, Yuan Z. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. WATER RESEARCH 2012; 46:3409-3419. [PMID: 22520859 DOI: 10.1016/j.watres.2012.03.043] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/13/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
The relationship between the ammonia oxidation rate (AOR) and nitrous oxide production rate (N(2)OR) of an enriched ammonia-oxidising bacteria (AOB) culture was investigated. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The AOR was controlled by adjusting the dissolved oxygen (DO) and pH levels and also by varying the initial ammonium (NH(4)(+)) concentration in batch experiments. Tests were also performed directly on the parent reactor where a stepwise decrease/increase in DO was implemented to alter AOR. The experimental data indicated a clear exponential relationship between the biomass specific N(2)OR and AOR. Four metabolic models were used to analyse the experimental data. The metabolic model formulated based on aerobic N(2)O production from the decomposition of nitrosyl radical (NOH) predicted the exponential correlation observed experimentally. The experimental data could not be reproduced by models developed on the basis of N(2)O production through nitrite (NO(2)(-)) and nitric oxide (NO) reduction by AOB.
Collapse
Affiliation(s)
- Yingyu Law
- Advanced Water Management Centre, The University of Queensland, St Lucia 4072, Australia
| | | | | | | |
Collapse
|
29
|
Glass JB, Orphan VJ. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 2012; 3:61. [PMID: 22363333 PMCID: PMC3282944 DOI: 10.3389/fmicb.2012.00061] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/05/2012] [Indexed: 01/15/2023] Open
Abstract
Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO(2) cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH(4)), and nitrous oxide (N(2)O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH(4) and N(2)O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH(4) oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N(2)O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N(2)O reductase, the only known enzyme capable of microbial N(2)O conversion to N(2), have only been found in classical denitrifiers. Accumulation of N(2)O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N(2)O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging.
Collapse
Affiliation(s)
- Jennifer B. Glass
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
30
|
Cua LS, Stein LY. Effects of nitrite on ammonia-oxidizing activity and gene regulation in three ammonia-oxidizing bacteria. FEMS Microbiol Lett 2011; 319:169-75. [PMID: 21470297 DOI: 10.1111/j.1574-6968.2011.02277.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nitrite is the highly toxic end product of ammonia oxidation that accumulates in the absence of a nitrite-consuming process and is inhibitory to nitrifying and other bacteria. The effects of nitrite on ammonia oxidation rates and regulation of a common gene set were compared in three ammonia-oxidizing bacteria (AOB) to determine whether responses to this toxic metabolite were uniform. Mid-exponential-phase cells of Nitrosomonas europaea ATCC 19718, Nitrosospira multiformis ATCC 25196, and Nitrosomonas eutropha C-91 were incubated for 6 h in mineral medium supplemented with 0, 10, or 20 mM NaNO(2) . The rates of ammonia oxidation (nitrite production) decreased significantly only in NaNO(2) -supplemented incubations of N. eutropha; no significant effect on the rates was observed for N. europaea or N. multiformis. The levels of norB (nitric oxide reductases), cytL (cytochrome P460), and cytS (cytochrome c'-β) mRNA were unaffected by nitrite in all strains. The levels of nirK (nitrite reductase) mRNA increased only in N. europaea in response to nitrite (10 and 20 mM). Nitrite (20 mM) significantly reduced the mRNA levels of amoA (ammonia monooxygenase) in N. multiformis and norS (nitric oxide reductase) in the two Nitrosomonas spp. Differences in response to nitrite indicated nonuniform adaptive and regulatory strategies of AOB, even between closely related species.
Collapse
Affiliation(s)
- Lynnie S Cua
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| | | |
Collapse
|
31
|
Rassamee V, Sattayatewa C, Pagilla K, Chandran K. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. Biotechnol Bioeng 2011; 108:2036-45. [DOI: 10.1002/bit.23147] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/07/2022]
|
32
|
Ahn JH, Kwan T, Chandran K. Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: microbial ecology through nitrous oxide production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2734-40. [PMID: 21388173 DOI: 10.1021/es103534g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The goal of this study was to compare the microbial ecology, gene expression, biokinetics, and N2O emissions from a lab-scale bioreactor operated sequentially in full-nitrification and partial-nitrification modes. Based on sequencing of 16S rRNA and ammonia monooxygenase subunit A (amoA) genes, ammonia oxidizing bacteria (AOB) populations during full- and partial-nitrification modes were distinct from one another. The concentrations of AOB (XAOB) and their respiration rates during full- and partial-nitrification modes were statistically similar, whereas the concentrations of nitrite oxidizing bacteria (XNOB) and their respiration rates declined significantly after the switch from full- to partial-nitrification. The transition from full-nitrification to partial nitrification resulted in a protracted transient spike of nitrous oxide (N2O) and nitric oxide (NO) emissions, which later stabilized. The trends in N2O and NO emissions correlated well with trends in the expression of nirK and norB genes that code for the production of these gases in AOB. Both the transient and stabilized N2O and NO emissions during partial nitrification were statistically higher than those during steady-state full-nitrification. Based on these results, partial nitrification strategies for biological nitrogen removal, although attractive for their reduced operating costs and energy demand, may need to be optimized against the higher carbon foot-print attributed to their N2O emissions.
Collapse
Affiliation(s)
- Joon Ho Ahn
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | | | | |
Collapse
|
33
|
Huang YJ, Nelson CE, Brodie EL, DeSantis TZ, Baek MS, Liu J, Woyke T, Allgaier M, Bristow J, Wiener-Kronish JP, Sutherland ER, King TS, Icitovic N, Martin RJ, Calhoun WJ, Castro M, Denlinger LC, DiMango E, Kraft M, Peters SP, Wasserman SI, Wechsler ME, Boushey HA, Lynch SV. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 2011; 127:372-381.e1-3. [PMID: 21194740 PMCID: PMC3037020 DOI: 10.1016/j.jaci.2010.10.048] [Citation(s) in RCA: 531] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/08/2010] [Accepted: 10/27/2010] [Indexed: 02/01/2023]
Abstract
BACKGROUND Improvement in lung function after macrolide antibiotic therapy has been attributed to reduction in bronchial infection by specific bacteria. However, the airway might be populated by a more diverse microbiota, and clinical features of asthma might be associated with characteristics of the airway microbiota present. OBJECTIVE We sought to determine whether relationships exist between the composition of the airway bacterial microbiota and clinical features of asthma using culture-independent tools capable of detecting the presence and relative abundance of most known bacteria. METHODS In this pilot study bronchial epithelial brushings were collected from 65 adults with suboptimally controlled asthma participating in a multicenter study of the effects of clarithromycin on asthma control and 10 healthy control subjects. A combination of high-density 16S ribosomal RNA microarray and parallel clone library-sequencing analysis was used to profile the microbiota and examine relationships with clinical measurements. RESULTS Compared with control subjects, 16S ribosomal RNA amplicon concentrations (a proxy for bacterial burden) and bacterial diversity were significantly higher among asthmatic patients. In multivariate analyses airway microbiota composition and diversity were significantly correlated with bronchial hyperresponsiveness. Specifically, the relative abundance of particular phylotypes, including members of the Comamonadaceae, Sphingomonadaceae, Oxalobacteraceae, and other bacterial families were highly correlated with the degree of bronchial hyperresponsiveness. CONCLUSION The composition of bronchial airway microbiota is associated with the degree of bronchial hyperresponsiveness among patients with suboptimally controlled asthma. These findings support the need for further functional studies to examine the potential contribution of members of the airway microbiota in asthma pathogenesis.
Collapse
Affiliation(s)
- Yvonne J. Huang
- Division of Pulmonary and Critical Care Medicine; Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Craig E. Nelson
- Marine Science Institute, University of California, Santa Barbara, CA
| | - Eoin L. Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Todd Z. DeSantis
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Marshall S. Baek
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Jane Liu
- Division of Pulmonary and Critical Care Medicine; Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA
| | - Martin Allgaier
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Jim Bristow
- Department of Energy, Joint Genome Institute, Walnut Creek, CA
| | | | | | - Tonya S. King
- Division of Biostatistics, Department of Public Health Sciences, Pennsylvania State University, Hershey, PA
| | - Nikolina Icitovic
- Division of Biostatistics, Department of Public Health Sciences, Pennsylvania State University, Hershey, PA
| | | | | | | | - Loren C. Denlinger
- University of Wisconsin Schools of Medicine and Public Health, Madison, WI
| | - Emily DiMango
- Columbia University College of Physicians and Surgeons, New York, NY
| | | | | | | | | | - Homer A. Boushey
- Division of Pulmonary and Critical Care Medicine; Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
Collaborators
E Israel, M E Wechsler, R J Martin, R M Cherniack, S J Szefler, E R Sutherland, R F Lemanske, C A Sorkness, N N Jarjour, L Denlinger, H A Boushey, J V Fahy, S C Lazarus, E DiMango, M C Kraft, W J Calhoun, B T Ameredes, M Castro, M Walter, J Ramsdell, S I Wasserman, E Bleecker, D Meyers, S P Peters, W C Moore, R Pascual, V M Chinchilli, T J Craig, N Icitovic, T S King,
Collapse
|
34
|
|
35
|
Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. N2O emissions from activated sludge processes, 2008-2009: results of a national monitoring survey in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4505-11. [PMID: 20465250 DOI: 10.1021/es903845y] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite recognition of the possible role of biological nitrogen removal (BNR) processes in nitrous oxide (N(2)O) emission, a measured database of N(2)O emissions from these processes at the national scale does not currently exist. This study focused on the quantification of N(2)O emissions at 12 wastewater treatment plants (WWTPs) across the United States using a newly developed U.S. Environmental Protection Agency (USEPA) reviewed protocol. A high degree of variability in field-scale measurements of N(2)O was observed, both across the WWTPs sampled and within each WWTP. Additionally, aerobic zones, which have hitherto not been considered in the USEPA approach of estimating N(2)O emissions, generally contributed more to N(2)O fluxes than anoxic zones from BNR reactors. These results severely qualify the conventional use of a single emission factor to "estimate" N(2)O emissions from BNR processes, solely by virtue of denitrification. Upon subjecting the nationwide data set to multivariate regression data mining, high nitrite, ammonium, and dissolved oxygen concentrations were positively correlated with N(2)O emissions from aerobic zones of activated sludge reactors. On the other hand, high nitrite and dissolved oxygen concentrations were positively correlated with N(2)O emissions from anoxic zones. Based on these results, it can be argued that activated sludge processes that minimize transient or permanent build up of ammonium or nitrite, especially in the presence of dissolved oxygen, are expected to have low N(2)O emissions.
Collapse
Affiliation(s)
- Joon Ho Ahn
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
36
|
Yu R, Chandran K. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiol 2010; 10:70. [PMID: 20202220 PMCID: PMC2844404 DOI: 10.1186/1471-2180-10-70] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitrosomonas europaea is a widely studied chemolithoautotrophic ammonia oxidizing bacterium. While significant work exists on the ammonia oxidation pathway of N. europaea, its responses to factors such as dissolved oxygen limitation or sufficiency or exposure to high nitrite concentrations, particularly at the functional gene transcription level are relatively sparse. The principal goal of this study was to investigate responses at the whole-cell activity and gene transcript levels in N. europaea 19718 batch cultures, which were cultivated at different dissolved oxygen and nitrite concentrations. Transcription of genes coding for principal metabolic pathways including ammonia oxidation (amoA), hydroxylamine oxidation (hao), nitrite reduction (nirK) and nitric oxide reduction (norB) were quantitatively measured during batch growth, at a range of DO concentrations (0.5, 1.5 and 3.0 mg O2/L). Measurements were also conducted during growth at 1.5 mg O2/L in the presence of 280 mg-N/L of externally added nitrite. RESULTS Several wide ranging responses to DO limitation and nitrite toxicity were observed in N. europaea batch cultures. In contrast to our initial hypothesis, exponential phase mRNA concentrations of both amoA and hao increased with decreasing DO concentrations, suggesting a mechanism to metabolize ammonia and hydroxylamine more effectively under DO limitation. Batch growth in the presence of 280 mg nitrite-N/L resulted in elevated exponential phase nirK and norB mRNA concentrations, potentially to promote utilization of nitrite as an electron acceptor and to detoxify nitrite. This response was in keeping with our initial hypothesis and congruent with similar responses in heterotrophic denitrifying bacteria. Stationary phase responses were distinct from exponential phase responses in most cases, suggesting a strong impact of ammonia availability and metabolism on responses to DO limitation and nitrite toxicity. In general, whole-cell responses to DO limitation or nitrite toxicity, such as sOUR or nitrite reduction to nitric oxide (NO) did not parallel the corresponding mRNA (nirK) profiles, suggesting differences between the gene transcription and enzyme translation or activity levels. CONCLUSIONS The results of this study show that N. europaea possesses specific mechanisms to cope with growth under low DO concentrations and high nitrite concentrations. These mechanisms are additionally influenced by the physiological growth state of N. europaea cultures and are possibly geared to enable more efficient substrate utilization or nitrite detoxification.
Collapse
Affiliation(s)
- Ran Yu
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
37
|
Yu R, Kampschreur MJ, van Loosdrecht MCM, Chandran K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:1313-1319. [PMID: 20104886 DOI: 10.1021/es902794a] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The overall goal of this study was to determine the molecular and metabolic responses of chemostat cultures of model nitrifying bacteria to imposition of and recovery from transient anoxic conditions. Based on the study, a specific directionality in nitrous oxide (N(2)O) and nitric oxide (NO) production was demonstrated. N(2)O production was only observed during recovery to aerobic conditions after a period of anoxia and correlated positively with the degree of ammonia accumulation during anoxia. NO, on the other hand, was emitted mainly under anoxia. The production of NO was linked to a major imbalance in the expression of the nitrite reductase gene, which was overexpressed during transient anoxia. In contrast, genes coding for ammonia and hydroxylamine oxidation and nitric oxide reduction were generally under-expressed during transient anoxia. These results are different from the observed parallel expression and activity of nitrite and nitric oxide reductase in heterotrophic bacteria subjected to transient oxygen cycling. Unlike NO, the production of N(2)O could not be solely correlated to gene expression patterns and likely involved responses at the enzyme activity or metabolic levels. Based on experimental data, the propensity of the nitrifying cultures for N(2)O production is related to a shift in their metabolism from a low specific activity (q < q(max)) toward the maximum specific activity (q(max)).
Collapse
Affiliation(s)
- Ran Yu
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
38
|
Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. ISME JOURNAL 2009; 3:1301-13. [PMID: 19516281 DOI: 10.1038/ismej.2009.55] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO) and nitrous oxide (N(2)O) are formed during N-cycling in complex microbial communities in response to fluctuating molecular oxygen (O(2)) and nitrite (NO(2)(-)) concentrations. Until now, the formation of NO and N(2)O in microbial communities has been measured with low spatial and temporal resolution, which hampered elucidation of the turnover pathways and their regulation. In this study, we combined microsensor measurements with metabolic modeling to investigate the functional response of a complex biofilm with nitrifying and denitrifying activity to variations in O(2) and NO(2)(-). In steady state, NO and N(2)O formation was detected if ammonium (NH(4)(+)) was present under oxic conditions and if NO(2)(-) was present under anoxic conditions. Thus, NO and N(2)O are produced by ammonia-oxidizing bacteria (AOB) under oxic conditions and by heterotrophic denitrifiers under anoxic conditions. NO and N(2)O formation by AOB occurred at fully oxic conditions if NO(2)(-) concentrations were high. Modeling showed that steady-state NO concentrations are controlled by the affinity of NO-consuming processes to NO. Transient accumulation of NO and N(2)O occurred upon O(2) removal from, or NO(2)(-) addition to, the medium only if NH(4)(+) was present under oxic conditions or if NO(2)(-) was already present under anoxic conditions. This showed that AOB and heterotrophic denitrifiers need to be metabolically active to respond with instantaneous NO and N(2)O production upon perturbations. Transiently accumulated NO and N(2)O decreased rapidly after their formation, indicating a direct effect of NO on the metabolism. By fitting model results to measurements, the kinetic relationships in the model were extended with dynamic parameters to predict transient NO release from perturbed ecosystems.
Collapse
|
39
|
Schmidt I. Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 2009; 59:130-8. [PMID: 19452213 DOI: 10.1007/s00284-009-9409-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
The ammonia oxidizers Nitrosomonas europaea and Nitrosomonas eutropha are able to grow chemoorganotrophically under anoxic conditions with pyruvate, lactate, acetate, serine, succinate, alpha-ketoglutarate, or fructose as substrate and nitrite as terminal electron acceptor. The growth yield of both bacteria is about 3.5 mg protein (mmol pyruvate)(-1) and the maximum growth rates of N. europaea and N. eutropha are 0.094 d(-1) and 0.175 d(-1), respectively. In the presence of pyruvate and CO2 about 80% of the incorporated carbon derives from pyruvate and about 20% from CO2. Pyruvate is used as energy and only carbon source in the absence of CO2 (chemoorganoheterotrophic growth). CO2 stimulates the chemoorganotrophic growth of both ammonia oxidizers and the expression of ribulose bisphosphate carboxylase/oxygenase is down-regulated at increasing CO2 concentration. Ammonium, although required as nitrogen source, is inhibitory for the chemoorganotrophic metabolism of N. europaea and N. eutropha. In the presence of ammonium pyruvate consumption and the expression of the genes aceE, ppc, gltA, odhA, and ppsA (energy conservation) as well as nirK, norB, and nsc (denitrification) are reduced.
Collapse
Affiliation(s)
- Ingo Schmidt
- Department Microbiology, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
40
|
Nitric Oxide: Interaction with the Ammonia Monooxygenase and Regulation of Metabolic Activities in Ammonia Oxidizers. Methods Enzymol 2008; 440:121-35. [DOI: 10.1016/s0076-6879(07)00807-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Abstract
Advances in technology have tremendously increased high throughput whole genome-sequencing efforts, many of which have included prokaryotes that facilitate processes in the extant nitrogen cycle. Molecular genetic and evolutionary analyses of these genomes paired with advances in postgenomics, biochemical and physiological experimentation have enabled scientists to reevaluate existing geochemical and oceanographic data for improved characterization of the extant nitrogen cycle as well as its evolution since the primordial era of planet Earth. Based on the literature and extensive new data relevant to aerobic and anaerobic ammonia oxidation (ANAMMOX), the natural history of the nitrogen-cycle has been redrawn with emphasis on the early roles of incomplete denitrification and ammonification as driving forces for emergence of ANAMMOX as the foundation for a complete nitrogen cycle, and concluding with emergence of nitrification in the oxic era.
Collapse
Affiliation(s)
- Martin G Klotz
- Evolutionary and Genomic Microbiology Laboratory, Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | | |
Collapse
|
42
|
Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Sinninghe Damsté JS. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 2007; 9:1001-16. [PMID: 17359272 DOI: 10.1111/j.1462-2920.2006.01227.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Within the upper 400 m at western, central and eastern stations in the world's largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alpha-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 microM including layers where previously anammox bacteria were described. Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared with the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 microM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared with the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.
Collapse
Affiliation(s)
- Marco J L Coolen
- Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, PO Box 59, 1790 AB Den Burg, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Overton TW, Whitehead R, Li Y, Snyder LAS, Saunders NJ, Smith H, Cole JA. Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J Biol Chem 2006; 281:33115-26. [PMID: 16954205 DOI: 10.1074/jbc.m607056200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neisseria gonorrhoeae survives anaerobically by reducing nitrite to nitrous oxide catalyzed by the nitrite and nitric oxide reductases, AniA and NorB. P(aniA) is activated by FNR (regulator of fumarate and nitrate reduction), the two-component regulatory system NarQ-NarP, and induced by nitrite; P(norB) is induced by NO independently of FNR by an uncharacterized mechanism. We report the results of microarray analysis, bioinformatic analysis, and chromatin immunoprecipitation, which revealed that only five genes with readily identified NarP-binding sites are differentially expressed in narP(+) and narP strains. These include three genes implicated in the truncated gonococcal denitrification pathway: aniA, norB, and narQ. We also report that (i) nitrite induces aniA transcription in a narP mutant; (ii) nitrite induction involves indirect inactivation by nitric oxide of a gonococcal repressor, NsrR, identified from a multigenome bioinformatic study; (iii) in an nsrR mutant, aniA, norB, and dnrN (encoding a putative reactive nitrogen species response protein) were expressed constitutively in the absence of nitrite, suggesting that NsrR is the only NO-sensing transcription factor in N. gonorrhoeae; and (iv) NO rather than nitrite is the ligand to which NsrR responds. When expressed in Escherichia coli, gonococcal NarQ and chimaeras of E. coli and gonococcal NarQ are ligand-insensitive and constitutively active: a "locked-on" phenotype. We conclude that genes involved in the truncated denitrification pathway of N. gonorrhoeae are key components of the small NarQP regulon, that NarP indirectly regulates P(norB) by stimulating NO production by AniA, and that NsrR plays a critical role in enabling gonococci to evade NO generated as a host defense mechanism.
Collapse
Affiliation(s)
- Tim W Overton
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Cho CMH, Yan T, Liu X, Wu L, Zhou J, Stein LY. Transcriptome of a Nitrosomonas europaea mutant with a disrupted nitrite reductase gene (nirK). Appl Environ Microbiol 2006; 72:4450-4. [PMID: 16751567 PMCID: PMC1489665 DOI: 10.1128/aem.02958-05] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Global gene expression was compared between the Nitrosomonas europaea wild type and a nitrite reductase-deficient mutant using a genomic microarray. Forty-one genes were differentially regulated between the wild type and the nirK mutant, including the nirK operon, genes for cytochrome c oxidase, and seven iron uptake genes. Relationships of differentially regulated genes to the nirK mutant phenotype are discussed.
Collapse
Affiliation(s)
- Catherine Mee-Hie Cho
- Department of Environmental Sciences, Geology 2207, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
45
|
Upadhyay AK, Hooper AB, Hendrich MP. NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea. J Am Chem Soc 2006; 128:4330-7. [PMID: 16569009 PMCID: PMC2806813 DOI: 10.1021/ja055183+] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetraheme cytochrome c(554) (cyt c(554)) from Nitrosomonas europaea is believed to function as an electron-transfer protein from hydroxylamine oxidoreductase (HAO). We show here that cyt c(554) also has significant NO reductase activity. The protein contains one high-spin and three low-spin c-type hemes. HAO catalyzed reduction of the cyt c(554), ligand binding, intermolecular electron transfer, and kinetics of NO reduction by cyt c(554) have been investigated. We detect the formation of a NO-bound ferrous heme species in cyt c(554) by EPR and Mössbauer spectroscopies during the HAO catalyzed oxidation of hydroxylamine, indicating that N-oxide intermediates produced from HAO readily bind to cyt c(554). In the half-reduced state of cyt c(554), we detect a spin interaction between the [FeNO](7) state of heme 2 and the low-spin ferric state of heme 4. We find that ferrous cyt c(554) will reduce NO at a rate greater than 16 s(-1), which is comparable to rates of other known NO reductases. Carbon monoxide or nitrite are shown not to bind to the reduced protein, and previous results indicate the reactions with O(2) are slow and that a variety of ligands will not bind in the oxidized state. Thus, the enzymatic site is highly selective for NO. The NO reductase activity of cyt c(554) may be important during ammonia oxidation in N. europaea at low oxygen concentrations to detoxify NO produced by reduction of nitrite or incomplete oxidation of hydroxylamine.
Collapse
Affiliation(s)
- Anup K. Upadhyay
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Alan B. Hooper
- Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael P. Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
46
|
Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 2006; 4:e95. [PMID: 16533068 PMCID: PMC1403158 DOI: 10.1371/journal.pbio.0040095] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/25/2006] [Indexed: 11/19/2022] Open
Abstract
Marine
Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic
Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote,
Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore,
C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of
Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.
Sequence data reveal the presence of key genes from pathways for carbon assimilation and ammonia oxidation in marine microbiota, supporting their importance in regulating the biogeochemistry of marine ecosystems.
Collapse
Affiliation(s)
- Steven J Hallam
- 1Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tracy J Mincer
- 1Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Christina M Preston
- 3Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Katie Roberts
- 4Department of Geological & Environmental Sciences, Stanford University, Stanford, California, United States of America
| | - Paul M Richardson
- 5Joint Genome Institute, Walnut Creek, California, United States of America
| | - Edward F DeLong
- 1Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
47
|
Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 2006; 8:214-22. [PMID: 16423010 DOI: 10.1111/j.1462-2920.2005.00882.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrous oxide (N(2)O) emission from soils is a major contributor to the atmospheric loading of this potent greenhouse gas. It is thought that autotrophic ammonia oxidizing bacteria (AOB) are a significant source of soil-derived N(2)O and a denitrification pathway (i.e. reduction of NO(2) (-) to NO and N(2)O), so-called nitrifier denitrification, has been demonstrated as a N(2)O production mechanism in Nitrosomonas europaea. It is thought that Nitrosospira spp. are the dominant AOB in soil, but little information is available on their ability to produce N(2)O or on the existence of a nitrifier denitrification pathway in this lineage. This study aims to characterize N(2)O production and nitrifier denitrification in seven strains of AOB representative of clusters 0, 2 and 3 in the cultured Nitrosospira lineage. Nitrosomonas europaea ATCC 19718 and ATCC 25978 were analysed for comparison. The aerobically incubated test strains produced significant (P < 0.001) amounts of N(2)O and total N(2)O production rates ranged from 2.0 amol cell(-1) h(-1), in Nitrosospira tenuis strain NV12, to 58.0 amol cell(-1) h(-1), in N. europaea ATCC 19718. Nitrosomonas europaea ATCC 19718 was atypical in that it produced four times more N(2)O than the next highest producing strain. All AOB tested were able to carry out nitrifier denitrification under aerobic conditions, as determined by production of (15)N-N(2)O from applied (15)N-NO(2) (-). Up to 13.5% of the N(2)O produced was derived from the exogenously applied (15)N-NO(2) (-). The results suggest that nitrifier denitrification could be a universal trait in the betaproteobacterial AOB and its potential ecological significance is discussed.
Collapse
Affiliation(s)
- Liz J Shaw
- Imperial College London, Wye Campus, Department of Agricultural Sciences, Wye, Kent, UK
| | | | | | | | | | | |
Collapse
|
48
|
Beaumont HJE, Lens SI, Westerhoff HV, van Spanning RJM. Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite. J Bacteriol 2005; 187:6849-51. [PMID: 16166549 PMCID: PMC1251594 DOI: 10.1128/jb.187.19.6849-6851.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrite reductase (NirK) of Nitrosomonas europaea confers tolerance to nitrite (NO2-). The nirK gene is clustered with three genes of unknown physiological function: ncgABC. At present, this organization is unique to nitrifying bacteria. Here we report that the ncgABC gene products facilitate NirK-dependent NO2- tolerance by reversing the negative physiological effect that is associated with the activity of NirK in their absence. We hypothesize that the ncg gene products are involved in the detoxification of nitric oxide that is produced by NirK.
Collapse
Affiliation(s)
- Hubertus J E Beaumont
- Evolutionary Genetics and Microbial Ecology Laboratory, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
49
|
Büsch A, Pohlmann A, Friedrich B, Cramm R. A DNA region recognized by the nitric oxide-responsive transcriptional activator NorR is conserved in beta- and gamma-proteobacteria. J Bacteriol 2004; 186:7980-7. [PMID: 15547270 PMCID: PMC529094 DOI: 10.1128/jb.186.23.7980-7987.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(54)-dependent regulator NorR activates transcription of target genes in response to nitric oxide (NO) or NO-generating agents. In Ralstonia eutropha H16, NorR activates transcription of the dicistronic norAB operon that encodes NorA, a protein of unknown function, and NorB, a nitric oxide reductase. A constitutively activating NorR derivative (NorR'), in which the N-terminal signaling domain was replaced by MalE, specifically bound to the norAB upstream region as revealed by gel retardation analysis. Within a 73-bp DNA segment protected by MalE-NorR' in a DNase I footprint assay, three conserved inverted repeats, GGT-(N(7))-ACC (where N is any base), that we consider to be NorR-binding boxes were identified. Mutations altering the spacing or the base sequence of these repeats resulted in an 80 to 90% decrease of transcriptional activation by wild-type NorR. Genome database analyses demonstrate that the GT-(N(7))-AC core of the inverted repeat is found in several proteobacteria upstream of gene loci encoding proteins of nitric oxide metabolism, including nitric oxide reductase (NorB), flavorubredoxin (NorV), NO dioxygenase (Hmp), and hybrid cluster protein (Hcp).
Collapse
Affiliation(s)
- Andrea Büsch
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Beaumont HJE, Lens SI, Reijnders WNM, Westerhoff HV, van Spanning RJM. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Mol Microbiol 2004; 54:148-58. [PMID: 15458412 DOI: 10.1111/j.1365-2958.2004.04248.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Production of nitric oxide (NO) and nitrous oxide (N(2)O) by ammonia (NH(3))-oxidizing bacteria in natural and man-made habitats is thought to contribute to the undesirable emission of NO and N(2)O into the earth's atmosphere. The NH(3)-oxidizing bacterium Nitrosomonas europaea expresses nitrite reductase (NirK), an enzyme that has so far been studied predominantly in heterotrophic denitrifying bacteria where it is involved in the production of these nitrogenous gases. The finding of nirK homologues in other NH(3)-oxidizing bacteria suggests that NirK is widespread among this group; however, its role in these nitrifying bacteria remains unresolved. We identified a gene, nsrR, which encodes a novel nitrite (NO(2) (-))-sensitive transcription repressor that plays a pivotal role in the regulation of NirK expression in N. europaea. NsrR is a member of the Rrf2 family of putative transcription regulators. NirK was expressed aerobically in response to increasing concentrations of NO(2) (-) and decreasing pH. Disruption of nsrR resulted in the constitutive expression of NirK. NsrR repressed transcription from the nirK gene cluster promoter (P(nir)), the activity of which correlated with NirK expression. Reconstruction of the NsrR-P(nir) system in Escherichia coli revealed that repression by NsrR was reversed by NO(2) (-) in a pH-dependent manner. The findings are consistent with the hypothesis that N. europaea expresses NirK as a defence against the toxic NO(2) (-) that is produced during nitrification.
Collapse
Affiliation(s)
- Hubertus J E Beaumont
- BioCentrum Amsterdam, Department of Molecular Cell Physiology, Vrije Universiteit, de Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|