1
|
Kanda T, Sekijima T, Miyakoshi M. Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in Escherichia coli. Microbiol Spectr 2025; 13:e0203524. [PMID: 39868872 PMCID: PMC11878033 DOI: 10.1128/spectrum.02035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Escherichia coli synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. E. coli also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in E. coli, but the full extent of GcvB regulon is still underestimated. This study examined all genes involved in AAA biosynthesis and transport using translation reporter assay and qRT-PCR analysis. In addition to previously verified targets, aroC, aroP, and trpE, we identified new target genes that were significantly repressed by GcvB primarily via the R1 seed region. Exceptionally, GcvB strongly inhibits the expression of aroG, which encodes the major isozyme of the first reaction in the common pathway, through direct base pairing between the aroG translation initiation region and the GcvB R3 seed sequence. RNase E mediates the degradation of target mRNAs except aroC and aroP via its C-terminal domain. GcvB overexpression prolongs the lag phase and reduces the growth rate in minimal media supplemented with AAAs and confers resistance to an antibiotic compound, azaserine, by repressing AAA transporters.IMPORTANCEE. coli strains have been genetically modified in relevant transcription factors and biosynthetic enzymes for industrial use in the fermentative production of aromatic amino acids (AAAs) and their derivative compounds. This study focuses on GcvB small RNA, a global regulator of amino acid metabolism in E. coli, and identifies new GcvB targets involved in AAA biosynthesis and uptake. GcvB represses the expression of the first and last enzymes of the common pathway and the first enzymes of Trp and Phe terminal pathways. GcvB also limits import of AAAs. This paper documents the impact of RNA-mediated regulation on AAA metabolism in E. coli.
Collapse
Affiliation(s)
- Takeshi Kanda
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Toshiko Sekijima
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of Tsukuba, Ibaraki, Japan
| | - Masatoshi Miyakoshi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Nguyen TV, Kim NK, Lee SH, Trinh HP, Park HD. Gene abundance and microbial syntrophy as key drivers of anaerobic digestion revealed through 16S rRNA gene and metagenomic analysis. CHEMOSPHERE 2025; 370:144028. [PMID: 39730090 DOI: 10.1016/j.chemosphere.2024.144028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis. Our results revealed that FWDs exhibited a higher abundance of key genes in the metabolic steps, despite having significantly lower microbial diversity compared to MWDs. Pathways and genes associated with syntrophic oxidation of acetate (SAO) and butyrate (SBO) were more present in FWDs. SAO potentially used both the conventional reversed Wood-Ljungdahl pathway and its integration with the glycine cleavage system in FWDs, which complements pathways for acetate oxidation under ammonia stress conditions. Similarly, genes associated with SBO (atoB and croR) were notably more prevalent in FWDs compared to MWDs with an 8.4-fold and 108-fold increase, respectively, indicating the adaptation of SBO bacteria to convert butyrate into acetate. The higher abundance of key genes in FWDs was driven by microbes adapting to the feedstock compositions with higher levels of substrate content, volatile fatty acids, and ammonia. This study quantified the genes central to AD metabolism and uncovered the contributions of microbial diversity, gene abundance, syntrophy, and feedstock characteristics to the functionality of AD processes. These findings enhance understanding of the microbial ecology in AD and provide a foundation for developing innovative strategies to enhance biogas production and waste management.
Collapse
Affiliation(s)
- Thi Vinh Nguyen
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Na-Kyung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hoang Phuc Trinh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
3
|
Ren X, Wei Y, Zhao H, Shao J, Zeng F, Wang Z, Li L. A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Front Bioeng Biotechnol 2023; 11:1261832. [PMID: 38116200 PMCID: PMC10729320 DOI: 10.3389/fbioe.2023.1261832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
L-tryptophan and its derivatives are widely used in the chemical, pharmaceutical, food, and feed industries. Microbial fermentation is the most commonly used method to produce L-tryptophan, which calls for an effective cell factory. The mechanism of L-tryptophan biosynthesis in Escherichia coli, the widely used producer of L-tryptophan, is well understood. Saccharomyces cerevisiae also plays a significant role in the industrial production of biochemicals. Because of its robustness and safety, S. cerevisiae is favored for producing pharmaceuticals and food-grade biochemicals. However, the biosynthesis of L-tryptophan in S. cerevisiae has been rarely summarized. The synthetic pathways and engineering strategies of L-tryptophan in E. coli and S. cerevisiae have been reviewed and compared in this review. Furthermore, the information presented in this review pertains to the existing understanding of how L-tryptophan affects S. cerevisiae's stress fitness, which could aid in developing a novel plan to produce more resilient industrial yeast and E. coli cell factories.
Collapse
Affiliation(s)
- Xinru Ren
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yue Wei
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Honglu Zhao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Li Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
4
|
Vargová Z, Olejníková P, Kuzderová G, Rendošová M, Havlíčková J, Gyepes R, Vilková M. Silver(I) complexes with amino acid and dipeptide ligands - Chemical and antimicrobial relevant comparison (mini review). Bioorg Chem 2023; 141:106907. [PMID: 37844541 DOI: 10.1016/j.bioorg.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Diseases caused by various microorganisms accompany humans (as well as animals) throughout their whole lives. After germs penetration to the body, the incubation period and infection developing, an infection can cause mild or severe symptoms, not infrequently even death. The immune system naturally defends itself against pathogens with various mechanisms. One of them is the synthesis of antimicrobial peptides. In the case of serious and severe infections, it is currently possible to help the natural immunity by administration of antimicrobial drugs (AMB) with good success since their discovery at the beginning of the last century. However, their excessive use leads to the development of pathogenic microorganisms' resistance to AMB drugs. Based on this, it is necessary to constantly develop new classes of AMB drugs that will be effective against pathogens, even resistant ones. The field of bioinorganic chemistry, similarly to other biological, chemical, or pharmaceutical sciences, discovers various options and approaches for antimicrobial treatment, from the development of new drugs to drug delivery systems. One of the approaches is the design and preparation of potential drugs based on metal ions and antimicrobial peptides. Various metal ions and amino acid or peptide ligands are used for this purpose. In this mini review, we focused on a reliable comparison of the chemical structure and biological properties of selected silver(I) complexes based on amino acids and dipeptides.
Collapse
Affiliation(s)
- Zuzana Vargová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia.
| | - Petra Olejníková
- Department of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Gabriela Kuzderová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Michaela Rendošová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Jana Havlíčková
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Róbert Gyepes
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Mária Vilková
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| |
Collapse
|
5
|
Khozov AA, Bubnov DM, Plisov ED, Vybornaya TV, Yuzbashev TV, Agrimi G, Messina E, Stepanova AA, Kudina MD, Alekseeva NV, Netrusov AI, Sineoky SP. A study on L-threonine and L-serine uptake in Escherichia coli K-12. Front Microbiol 2023; 14:1151716. [PMID: 37025642 PMCID: PMC10070963 DOI: 10.3389/fmicb.2023.1151716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
In the current study, we report the identification and characterization of the yifK gene product as a novel amino acid carrier in E. coli K-12 cells. Both phenotypic and biochemical analyses showed that YifK acts as a permease specific to L-threonine and, to a lesser extent, L-serine. An assay of the effect of uncouplers and composition of the reaction medium on the transport activity indicates that YifK utilizes a proton motive force to energize substrate uptake. To identify the remaining threonine carriers, we screened a genomic library prepared from the yifK-mutant strain and found that brnQ acts as a multicopy suppressor of the threonine transport defect caused by yifK disruption. Our results indicate that BrnQ is directly involved in threonine uptake as a low-affinity but high-flux transporter, which forms the main entry point when the threonine concentration in the external environment reaches a toxic level. By abolishing YifK and BrnQ activity, we unmasked and quantified the threonine transport activity of the LIV-I branched chain amino acid transport system and demonstrated that LIV-I contributes significantly to total threonine uptake. However, this contribution is likely smaller than that of YifK. We also observed the serine transport activity of LIV-I, which was much lower compared with that of the dedicated SdaC carrier, indicating that LIV-I plays a minor role in the serine uptake. Overall, these findings allow us to propose a comprehensive model of the threonine/serine uptake subsystem in E. coli cells.
Collapse
Affiliation(s)
- Andrey A. Khozov
- Kurchatov Complex of Genetic Research, NRC “Kurchatov Institute”, Moscow, Russia
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitrii M. Bubnov
- Kurchatov Complex of Genetic Research, NRC “Kurchatov Institute”, Moscow, Russia
| | - Eugeny D. Plisov
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V. Vybornaya
- Kurchatov Complex of Genetic Research, NRC “Kurchatov Institute”, Moscow, Russia
| | - Tigran V. Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Agnessa A. Stepanova
- Kurchatov Complex of Genetic Research, NRC “Kurchatov Institute”, Moscow, Russia
- Mendeleev University of Chemical Technology, Moscow, Russia
| | - Maxim D. Kudina
- Kurchatov Complex of Genetic Research, NRC “Kurchatov Institute”, Moscow, Russia
| | - Natalia V. Alekseeva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey P. Sineoky
- Kurchatov Complex of Genetic Research, NRC “Kurchatov Institute”, Moscow, Russia
| |
Collapse
|
6
|
Alkim C, Farias D, Fredonnet J, Serrano-Bataille H, Herviou P, Picot M, Slama N, Dejean S, Morin N, Enjalbert B, François JM. Toxic effect and inability of L-homoserine to be a nitrogen source for growth of Escherichia coli resolved by a combination of in vivo evolution engineering and omics analyses. Front Microbiol 2022; 13:1051425. [PMID: 36583047 PMCID: PMC9792984 DOI: 10.3389/fmicb.2022.1051425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
L-homoserine is a pivotal intermediate in the carbon and nitrogen metabolism of E. coli. However, this non-canonical amino acid cannot be used as a nitrogen source for growth. Furthermore, growth of this bacterium in a synthetic media is potently inhibited by L-homoserine. To understand this dual effect, an adapted laboratory evolution (ALE) was applied, which allowed the isolation of a strain able to grow with L-homoserine as the nitrogen source and was, at the same time, desensitized to growth inhibition by this amino acid. Sequencing of this evolved strain identified only four genomic modifications, including a 49 bp truncation starting from the stop codon of thrL. This mutation resulted in a modified thrL locus carrying a thrL* allele encoding a polypeptide 9 amino acids longer than the thrL encoded leader peptide. Remarkably, the replacement of thrL with thrL* in the original strain MG1655 alleviated L-homoserine inhibition to the same extent as strain 4E, but did not allow growth with this amino acid as a nitrogen source. The loss of L-homoserine toxic effect could be explained by the rapid conversion of L-homoserine into threonine via the thrL*-dependent transcriptional activation of the threonine operon thrABC. On the other hand, the growth of E. coli on a mineral medium with L-homoserine required an activation of the threonine degradation pathway II and glycine cleavage system, resulting in the release of ammonium ions that were likely recaptured by NAD(P)-dependent glutamate dehydrogenase. To infer about the direct molecular targets of L-homoserine toxicity, a transcriptomic analysis of wild-type MG1655 in the presence of 10 mM L-homoserine was performed, which notably identified a potent repression of locomotion-motility-chemotaxis process and of branched-chain amino acids synthesis. Since the magnitude of these effects was lower in a ΔthrL mutant, concomitant with a twofold lower sensitivity of this mutant to L-homoserine, it could be argued that growth inhibition by L-homoserine is due to the repression of these biological processes. In addition, L-homoserine induced a strong upregulation of genes in the sulfate reductive assimilation pathway, including those encoding its transport. How this non-canonical amino acid triggers these transcriptomic changes is discussed.
Collapse
Affiliation(s)
- Ceren Alkim
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Daniele Farias
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Fredonnet
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Pauline Herviou
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Marc Picot
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Nawel Slama
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | | | - Nicolas Morin
- Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France
| | - Brice Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France,Toulouse White Biotechnology Center (TWB), UMS-INSA-INRA-CNRS, Toulouse, France,*Correspondence: Jean M. François,
| |
Collapse
|
7
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
8
|
Wang Y, Ma F, Yang J, Guo H, Su D, Yu L. Adaption and Degradation Strategies of Methylotrophic 1,4-Dioxane Degrading Strain Xanthobacter sp. YN2 Revealed by Transcriptome-Scale Analysis. Int J Mol Sci 2021; 22:ijms221910435. [PMID: 34638775 PMCID: PMC8508750 DOI: 10.3390/ijms221910435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl-CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.
Collapse
Affiliation(s)
- Yingning Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
- Correspondence:
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056107, China;
| | - Delin Su
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| | - Lan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (J.Y.); (D.S.); (L.Y.)
| |
Collapse
|
9
|
He Y, Chen R, Qi Y, Salazar JK, Zhang S, Tortorello ML, Deng X, Zhang W. Survival and transcriptomic response of Salmonella enterica on fresh-cut fruits. Int J Food Microbiol 2021; 348:109201. [PMID: 33930836 DOI: 10.1016/j.ijfoodmicro.2021.109201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/21/2023]
Abstract
Salmonella enterica is frequently implicated in foodborne disease outbreaks associated with fresh-cut fruits. In the U.S., more than one third of fruit-related outbreaks have been linked to two S. enterica serotypes Newport and Typhimurium. Approximately 80% of fruit-related human salmonellosis cases were associated with tomatoes, cantaloupes and cucumbers. In this study, we investigated the population dynamics of S. Newport and S. Typhimurium on fresh-cut tomato, cantaloupe, cucumber and apple under short-term storage conditions. We further compared the transcriptomic profiles of a S. Newport strain on fresh-cut tomato and cantaloupe using high-throughput RNA-seq. We demonstrated that both S. enterica Newport and Typhimurium survived well on various fresh-cut fruit items under refrigeration storage conditions, independent of inoculation levels. However, S. enterica displayed variable survival behaviors on different types of fruits. For example, at 7 d storage, the population of S. enterica reduced less than 0.2 log (p > 0.05) on fresh-cut tomato and cantaloupe, in contrast to ~0.5 log (p < 0.05) on cucumber and apple. RNA-seq analysis suggested that S. enterica mediates its survival on fresh-cut fruits through differentially regulating genes involved in specific carbon utilization and metabolic pathways. Several known bacterial virulence factors (e.g., pag gene) were found to be differentially regulated on fresh-cut tomato and cantaloupe, suggesting a link between the events of food contamination and subsequent human infection. Findings from this study contribute to a better understanding of S. enterica survival mechanisms on fresh-cut produce.
Collapse
Affiliation(s)
- Yingshu He
- Department of Food Science and Nutrition & Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA; Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, USA.
| | - Ruixi Chen
- Department of Food Science and Nutrition & Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Yan Qi
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Joelle K Salazar
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Shimei Zhang
- Department of Food Science and Nutrition & Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Mary Lou Tortorello
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Xiangyu Deng
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Wei Zhang
- Department of Food Science and Nutrition & Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| |
Collapse
|
10
|
Focht D, Neumann C, Lyons J, Eguskiza Bilbao A, Blunck R, Malinauskaite L, Schwarz IO, Javitch JA, Quick M, Nissen P. A non-helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates substrate recognition. EMBO J 2021; 40:e105164. [PMID: 33155685 PMCID: PMC7780149 DOI: 10.15252/embj.2020105164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
MhsT of Bacillus halodurans is a transporter of hydrophobic amino acids and a homologue of the eukaryotic SLC6 family of Na+ -dependent symporters for amino acids, neurotransmitters, osmolytes, or creatine. The broad range of transported amino acids by MhsT prompted the investigation of the substrate recognition mechanism. Here, we report six new substrate-bound structures of MhsT, which, in conjunction with functional studies, reveal how the flexibility of a Gly-Met-Gly (GMG) motif in the unwound region of transmembrane segment 6 (TM6) is central for the recognition of substrates of different size by tailoring the binding site shape and volume. MhsT mutants, harboring substitutions within the unwound GMG loop and substrate binding pocket that mimick the binding sites of eukaryotic SLC6A18/B0AT3 and SLC6A19/B0AT1 transporters of neutral amino acids, exhibited impaired transport of aromatic amino acids that require a large binding site volume. Conservation of a general (G/A/C)ΦG motif among eukaryotic members of SLC6 family suggests a role for this loop in a common mechanism for substrate recognition and translocation by SLC6 transporters of broad substrate specificity.
Collapse
Affiliation(s)
- Dorota Focht
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Caroline Neumann
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Joseph Lyons
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Ander Eguskiza Bilbao
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Rickard Blunck
- Department of PhysicsUniversité de MontréalMontréalQCCanada
| | - Lina Malinauskaite
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Ilona O Schwarz
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Jonathan A Javitch
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Center for Molecular RecognitionColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Department of PharmacologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNYUSA
| | - Matthias Quick
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Center for Molecular RecognitionColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNYUSA
| | - Poul Nissen
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| |
Collapse
|
11
|
Zhou Y, Imlay JA. Escherichia coli K-12 Lacks a High-Affinity Assimilatory Cysteine Importer. mBio 2020; 11:e01073-20. [PMID: 32518189 PMCID: PMC7373191 DOI: 10.1128/mbio.01073-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023] Open
Abstract
The most direct route by which microbes might assimilate sulfur would be by importing cysteine. However, alone among the amino acids, cysteine does not have well-characterized importers. We determined that Escherichia coli can rapidly import cysteine, but in our experiments, it did so primarily through the LIV ATP-driven system that is dedicated to branched-chain amino acids. The affinity of this system for cysteine is far lower than for Leu, Ile, and Val, and so in their presence, cysteine is excluded. Thus, this transport is unlikely to be relevant in natural environments. Growth studies, transcriptomics, and transport assays failed to detect any high-affinity importer that is dedicated to cysteine assimilation. Enteric bacteria do not contain the putative cysteine importer that was identified in Campylobacter jejuni This situation is surprising, because E. coli deploys ion- and/or ATP-driven transporters that import cystine, the oxidized form of cysteine, with high affinity and specificity. We conjecture that in oxic environments, molecular oxygen oxidizes environmental cysteine to cystine, which E. coli imports. In anoxic environments where cysteine is stable, the cell chooses to assimilate hydrogen sulfide instead. Calculations suggest that this alternative is almost as economical, and it avoids the toxic effects that can result when excess cysteine enters the cell.IMPORTANCE This investigation discovered that Escherichia coli lacks a transporter dedicated to the assimilation of cysteine, an outcome that is in striking contrast to the many transporters devoted to the other 19 amino acids. We ascribe the lack of a high-affinity cysteine importer to two considerations. First, the chemical reactivity of this amino acid is unique, and its poorly controlled import can have adverse consequences for the cell. Second, our analysis suggests that the economics of biosynthesis depend sharply upon whether the cell is respiring or fermenting. In the anoxic habitats in which cysteine might be found, the value of import versus biosynthesis is strongly reduced compared to that in oxic habitats. These studies may explain why bacteria choose to synthesize rather than to import other useful biomolecules as well.
Collapse
Affiliation(s)
- Yidan Zhou
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
12
|
Khan MF, Machuca MA, Rahman MM, Koç C, Norton RS, Smith BJ, Roujeinikova A. Structure-Activity Relationship Study Reveals the Molecular Basis for Specific Sensing of Hydrophobic Amino Acids by the Campylobacter jejuni Chemoreceptor Tlp3. Biomolecules 2020; 10:biom10050744. [PMID: 32403336 PMCID: PMC7277094 DOI: 10.3390/biom10050744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotaxis is an important virulence factor of the foodborne pathogen Campylobacter jejuni. Inactivation of chemoreceptor Tlp3 reduces the ability of C. jejuni to invade human and chicken cells and to colonise the jejunal mucosa of mice. Knowledge of the structure of the ligand-binding domain (LBD) of Tlp3 in complex with its ligands is essential for a full understanding of the molecular recognition underpinning chemotaxis. To date, the only structure in complex with a signal molecule is Tlp3 LBD bound to isoleucine. Here, we used in vitro and in silico screening to identify eight additional small molecules that signal through Tlp3 as attractants by directly binding to its LBD, and determined the crystal structures of their complexes. All new ligands (leucine, valine, α-amino-N-valeric acid, 4-methylisoleucine, β-methylnorleucine, 3-methylisoleucine, alanine, and phenylalanine) are nonpolar amino acids chemically and structurally similar to isoleucine. X-ray crystallographic analysis revealed the hydrophobic side-chain binding pocket and conserved protein residues that interact with the ammonium and carboxylate groups of the ligands determine the specificity of this chemoreceptor. The uptake of hydrophobic amino acids plays an important role in intestinal colonisation by C. jejuni, and our study suggests that C. jejuni seeks out hydrophobic amino acids using chemotaxis.
Collapse
Affiliation(s)
- Mohammad F. Khan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia; (M.F.K.); (M.A.M.); (M.M.R.); (C.K.)
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mayra A. Machuca
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia; (M.F.K.); (M.A.M.); (M.M.R.); (C.K.)
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mohammad M. Rahman
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia; (M.F.K.); (M.A.M.); (M.M.R.); (C.K.)
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Cengiz Koç
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia; (M.F.K.); (M.A.M.); (M.M.R.); (C.K.)
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia;
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia;
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia; (M.F.K.); (M.A.M.); (M.M.R.); (C.K.)
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Correspondence: ; Tel.: +61-399029294
| |
Collapse
|
13
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
Whole-cell biocatalytic production of variously substituted β-aryl- and β-heteroaryl-β-amino acids. J Biotechnol 2016; 217:12-21. [DOI: 10.1016/j.jbiotec.2015.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/23/2015] [Accepted: 10/12/2015] [Indexed: 01/28/2023]
|
15
|
Doroshenko VG, Livshits VA, Airich LG, Shmagina IS, Savrasova EA, Ovsienko MV, Mashko SV. Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815070017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
17
|
Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat Commun 2015; 6:8142. [PMID: 26356302 PMCID: PMC4647861 DOI: 10.1038/ncomms9142] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022] Open
Abstract
In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network.
Collapse
|
18
|
Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl Microbiol Biotechnol 2013; 97:7587-96. [PMID: 23775271 DOI: 10.1007/s00253-013-5026-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/08/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Reducing the accumulation of acetate in Escherichia coli cultures can decrease carbon efflux as by-products and reduce acetate toxicity, and therefore enable high cell density cultivation. The concentration of intracellular amino acids can be decreased by genetic modifications of the corresponding amino acid transport systems. This can increase the levels of amino acids in the fermentation broth by decreasing the feedback inhibition on the corresponding biosynthetic pathways. Here, the effects of genetic manipulation of phosphate acetyltransferase (pta), high affinity tryptophan transporter (mtr) and aromatic amino acid exporter (yddG) on L-tryptophan production were investigated. The pta mutants accumulated less acetate and showed higher capacity for producing L-tryptophan as compared with the parental strain. The strains lacking mtr, or overexpressed yddG, or with the both mtr knockout and yddG overexpression, accumulated lower concentrations of intracellular tryptophan but higher production of extracellular L-tryptophan. In the L-tryptohan fed-batch fermentation of an E. coli derived from TRTH0709/pMEL03 having deletion of pta-mtr and overexpression of yddG in a 30-L fermentor, the maximum concentration of L-tryptophan (48.68 g/L) was obtained, which represented a 15.96 % increase as compared with the parental strain. Acetate accumulated to a concentration of 0.95 g/L. The intracellular concentration of L-tryptophan was low, and the glucose conversion rate reached a high level of 21.87 %, which was increased by 15.53 % as compared with the parent strain.
Collapse
Affiliation(s)
- Jian Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
19
|
Stuecker TN, Hodge KM, Escalante-Semerena JC. The missing link in coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5 acetyltransferase homologue triggers aspartate decarboxylase (PanD) maturation in Salmonella enterica. Mol Microbiol 2012; 84:608-19. [PMID: 22497218 PMCID: PMC3345047 DOI: 10.1111/j.1365-2958.2012.08046.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coenzyme A (CoA) is an essential cofactor for all forms of life. The biochemistry underpinning the assembly of CoA in Escherichia coli and other enterobacteria is well understood, except for the events leading to maturation of the L-aspartate-α-decarboxylase (PanD) enzyme that converts pantothenate to β-alanine. PanD is synthesized as pro-PanD, which undergoes an auto-proteolytic cleavage at residue Ser25 to yield the catalytic pyruvoyl moiety of the enzyme. Since 1990, it has been known that E. coli yhhK strains are pantothenate auxotrophs, but the role of YhhK in pantothenate biosynthesis remained an enigma. Here we show that Salmonella enterica yhhK strains are also pantothenate auxotrophs. In vivo and in vitro evidence shows that YhhK interacts directly with PanD, and that such interactions accelerate pro-PanD maturation. We also show that S. enterica yhhK strains accumulate pro-PanD, and that not all pro-PanD proteins require YhhK for maturation. For example, the Corynebacterium glutamicum panD(+) gene corrected the pantothenate auxotrophy of a S. enterica yhhK strain, supporting in vitro evidence obtained by others that some pro-PanD proteins autocleave at faster rates. We propose the name PanM for YhhK to reflect its role as a trigger of pro-PanD maturation by stabilizing pro-PanD in an autocleavage-prone conformation.
Collapse
Affiliation(s)
- Tara N. Stuecker
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706-1521 USA
| | - Kelsey M. Hodge
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706-1521 USA
| | | |
Collapse
|
20
|
Selective utilization of exogenous amino acids by Dehalococcoides ethenogenes strain 195 and its effects on growth and dechlorination activity. Appl Environ Microbiol 2011; 77:7797-803. [PMID: 21890673 DOI: 10.1128/aem.05676-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Dehalococcoides are important members of bioremediation communities because of their ability to detoxify chloroethenes to the benign end product ethene. Genome-enabled studies conducted with Dehalococcoides ethenogenes 195 have revealed that two ATP-binding cassette (ABC)-type amino acid transporters are expressed during its exponential growth stages. In light of previous findings that Casamino Acids enhanced its dechlorination activity, we hypothesized that strain 195 is capable of importing amino acids from its environment to facilitate dechlorination and growth. To test this hypothesis, we applied isotopomer-based dilution analysis with (13)C-labeled acetate to differentiate the amino acids that were taken up by strain 195 from those synthesized de novo and to determine the physiological changes caused by the significantly incorporated amino acids. Our results showed that glutamate/glutamine and aspartate/asparagine were almost exclusively synthesized by strain 195, even when provided in excess in the medium. In contrast, phenylalanine, isoleucine, leucine, and methionine were identified as the four most highly incorporated amino acids, at levels >30% of respective proteinogenic amino acids. When either phenylalanine or all four highly incorporated amino acids were added to the defined mineral medium, the growth rates, dechlorination activities, and yields of strain 195 were enhanced to levels similar to those observed with supplementation with 20 amino acids. However, genes for the putative ABC-type amino acids transporters and phenylalanine biosynthesis exhibited insignificant regulation in response to the imported amino acids. This study also demonstrates that using isotopomer-based metabolite analysis can be an efficient strategy for optimizing nutritional conditions for slow-growing microorganisms.
Collapse
|
21
|
Schneider E, Eckey V, Weidlich D, Wiesemann N, Vahedi-Faridi A, Thaben P, Saenger W. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes. Eur J Cell Biol 2011; 91:311-7. [PMID: 21561685 DOI: 10.1016/j.ejcb.2011.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Erwin Schneider
- Institut für Biologie, AG Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ. The ncgl1108 (PheP
Cg) gene encodes a new l-Phe transporter in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 90:2005-13. [DOI: 10.1007/s00253-011-3245-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/05/2011] [Accepted: 03/06/2011] [Indexed: 10/18/2022]
|
23
|
Kurihara S, Suzuki H, Oshida M, Benno Y. A novel putrescine importer required for type 1 pili-driven surface motility induced by extracellular putrescine in Escherichia coli K-12. J Biol Chem 2011; 286:10185-92. [PMID: 21266585 DOI: 10.1074/jbc.m110.176032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, many studies have reported that polyamines play a role in bacterial cell-to-cell signaling processes. The present study describes a novel putrescine importer required for induction of type 1 pili-driven surface motility. The surface motility of the Escherichia coli ΔspeAB ΔspeC ΔpotABCD strain, which cannot produce putrescine and cannot import spermidine from the medium, was induced by extracellular putrescine. Introduction of the gene deletions for known polyamine importers (ΔpotE, ΔpotFGHI, and ΔpuuP) or a putative polyamine importer (ΔydcSTUV) into the ΔspeAB ΔspeC ΔpotABCD strain did not affect putrescine-induced surface motility. The deletion of yeeF, an annotated putative putrescine importer, in the ΔspeAB ΔspeC ΔpotABCD ΔydcSTUV strain abolished surface motility in putrescine-supplemented medium. Complementation of yeeF by a plasmid vector restored surface motility. The surface motility observed in the present study was abolished by the deletion of fimA, suggesting that the surface motility is type 1 pili-driven. A transport assay using the yeeF(+) or ΔyeeF strains revealed that YeeF is a novel putrescine importer. The K(m) of YeeF (155 μM) is 40 to 300 times higher than that of other importers reported previously. On the other hand, the V(max) of YeeF (9.3 nmol/min/mg) is comparable to that of PotABCD, PotFGHI, and PuuP. The low affinity of YeeF for putrescine may allow E. coli to sense the cell density depending on the concentration of extracellular putrescine.
Collapse
Affiliation(s)
- Shin Kurihara
- Benno Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
24
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Bartoccioni P, Del Rio C, Ratera M, Kowalczyk L, Baldwin JM, Zorzano A, Quick M, Baldwin SA, Vázquez-Ibar JL, Palacín M. Role of transmembrane domain 8 in substrate selectivity and translocation of SteT, a member of the L-amino acid transporter (LAT) family. J Biol Chem 2010; 285:28764-76. [PMID: 20610400 DOI: 10.1074/jbc.m110.116632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same alpha-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC(50) similar to the apparent K(M) of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.
Collapse
|
26
|
Chalova VI, Sirsat SA, O'Bryan CA, Crandall PG, Ricke SC. Escherichia coli, an Intestinal Microorganism, as a Biosensor for Quantification of Amino Acid Bioavailability. SENSORS 2009; 9:7038-57. [PMID: 22399985 PMCID: PMC3290505 DOI: 10.3390/s90907038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 01/06/2023]
Abstract
In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological l-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.
Collapse
Affiliation(s)
- Vesela I Chalova
- Center for Food Safety-IFSE, and Departments of Food and Poultry Sciences, University of Arkansas, Fayetteville, AR 72704, USA; E-Mails: (V.C.); (S.S.)
| | | | | | | | | |
Collapse
|
27
|
Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS. Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci U S A 2009; 106:12477-82. [PMID: 19597156 PMCID: PMC2718340 DOI: 10.1073/pnas.0903653106] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 11/18/2022] Open
Abstract
One of the largest contributions to biologically available nitrogen comes from the reduction of N(2) to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in return they receive ammonia. However, metabolic exchange must be more complex, because effective N(2) fixation by Rhizobium leguminosarum bv viciae bacteroids requires either one of two broad-specificity amino acid ABC transporters (Aap and Bra). It was proposed that amino acids cycle between plant and bacteroids, but the model was unconstrained because of the broad solute specificity of Aap and Bra. Here, we constrain the specificity of Bra and ectopically express heterologous transporters to demonstrate that branched-chain amino acid (LIV) transport is essential for effective N(2) fixation. This dependence of bacteroids on the plant for LIV is not due to their known down-regulation of glutamate synthesis, because ectopic expression of glutamate dehydrogenase did not rescue effective N(2) fixation. Instead, the effect is specific to LIV and is accompanied by a major reduction in transcription and activity of LIV biosynthetic enzymes. Bacteroids become symbiotic auxotrophs for LIV and depend on the plant for their supply. Bacteroids with aap bra null mutations are reduced in number, smaller, and have a lower DNA content than wild type. Plants control LIV supply to bacteroids, regulating their development and persistence. This makes it a critical control point for regulation of symbiosis.
Collapse
Affiliation(s)
- J. Prell
- John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - J. P. White
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - A. Bourdes
- John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - S. Bunnewell
- John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - R. J. Bongaerts
- Institute of Food Research, Colney Lane, Norwich NR4 7UA, United Kingdom
| | - P. S. Poole
- John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
28
|
Abstract
The Puu pathway is a putrescine utilization pathway involving gamma-glutamyl intermediates. The genes encoding the enzymes of the Puu pathway form a gene cluster, the puu gene cluster, and puuP is one of the genes in this cluster. In Escherichia coli, three putrescine importers, PotFGHI, PotABCD, and PotE, were discovered in the 1990s and have been studied; however, PuuP had not been discovered previously. This paper shows that PuuP is a novel putrescine importer whose kinetic parameters are equivalent to those of the polyamine importers discovered previously. A puuP(+) strain absorbed up to 5 mM putrescine from the medium, but a DeltapuuP strain did not. E. coli strain MA261 has been used in previous studies of polyamine transporters, but PuuP had not been identified previously. It was revealed that the puuP gene of MA261 was inactivated by a point mutation. When E. coli was grown on minimal medium supplemented with putrescine as the sole carbon or nitrogen source, only PuuP among the polyamine importers was required. puuP was expressed strongly when putrescine was added to the medium or when the puuR gene, which encodes a putative repressor, was deleted. When E. coli was grown in M9-tryptone medium, PuuP was expressed mainly in the exponential growth phase, and PotFGHI was expressed independently of the growth phase.
Collapse
|
29
|
Giuliani SE, Frank AM, Collart FR. Functional assignment of solute-binding proteins of ABC transporters using a fluorescence-based thermal shift assay. Biochemistry 2009; 47:13974-84. [PMID: 19063603 DOI: 10.1021/bi801648r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity and to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families.
Collapse
Affiliation(s)
- Sarah E Giuliani
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | | |
Collapse
|
30
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
31
|
Supplementation of 2nd break mushroom compost with isoleucine, leucine, valine, phenylalanine, Fermenten® and SoyPlus®. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9703-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Picossi S, Montesinos ML, Pernil R, Lichtlé C, Herrero A, Flores E. ABC-type neutral amino acid permease N-I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120. Mol Microbiol 2005; 57:1582-92. [PMID: 16135226 DOI: 10.1111/j.1365-2958.2005.04791.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts. The products of Anabaena open reading frames (ORFs) all1046, all1047, all1284, alr1834 and all2912 were identified as putative elements of a neutral amino acid permease. Anabaena mutants of these ORFs were strongly affected (1-12% of the wild-type activity) in the transport of Pro, Phe, Leu and Gly and also impaired (17-30% of the wild-type activity) in the transport of Ala and Ser. These results identified those ORFs as the nat genes encoding the N-I neutral amino acid permease. According to amino acid sequence homologies, natA (all1046) and natE (all2912) encode ATPases, natC (all1047) and natD (all1284) encode transmembrane proteins, and natB (alr1834) encodes a periplasmic substrate-binding protein of an ABC-type uptake transporter. The natA, natC, natD and natE mutants showed defects in Gln and His uptake that were not observed in the natB mutant suggesting that NatB is not a binding protein for Gln or His. The nat mutants released hydrophobic amino acids to the medium, and amino acid release took place at higher levels in cultures incubated in the absence of combined N than in the presence of nitrate. Alanine was the amino acid released at highest levels, and its release was impaired in a mutant unable to develop heterocysts. The nat mutants were also impaired in diazotrophic growth, with natA, natC, natD and natE mutants showing more severe defects than the natB mutant. Expression of natA and natC, which constitute an operon, natCA, as well as of natB was studied and found to take place in vegetative cells but not in the heterocysts. These results indicate that the N-I permease is necessary for normal growth of Anabaena sp. strain PCC 7120 on N2, and that this permease has a role in the diazotrophic filament specifically in the vegetative cells.
Collapse
Affiliation(s)
- Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H. The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol 2005; 187:5861-7. [PMID: 16109926 PMCID: PMC1196167 DOI: 10.1128/jb.187.17.5861-5867.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutathione protects cells and organisms from oxygen species and peroxides and is indispensable for aerobically living organisms. Moreover, it acts against xenobiotics and drugs by the formation and excretion of glutathione S conjugates. In this study, we show that the yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a glutathione transporter with the ATP-binding cassette. The transporter imports extracellular glutathione into the cytoplasm in an ATP-dependent manner. This transporter, along with gamma-glutamyltranspeptidase, has an important role in E. coli growth with glutathione as a sole sulfur source.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
34
|
Tuite NL, Fraser KR, O'Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol 2005; 187:4362-71. [PMID: 15968045 PMCID: PMC1151774 DOI: 10.1128/jb.187.13.4362-4371.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, alpha-keto-beta-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.
Collapse
Affiliation(s)
- Nina L. Tuite
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Katy R. Fraser
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Conor P. O'Byrne
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
- Corresponding author. Mailing address: Department of Microbiology, National University of Ireland-Galway, Galway, Ireland. Phone: (353) 91-512342. Fax: (353) 91-525700. E-mail:
| |
Collapse
|
35
|
Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF. The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 2005; 115:221-37. [PMID: 15639085 DOI: 10.1016/j.jbiotec.2004.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/29/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to TyrR-mediated regulation. The addition of 5g l(-1) phenylalanine reduced the growth rate by half and elicited a great number of likely indirect effects on genes regulated in response to changed pH, nitrogen or carbon availability. Consistent with the observed gene expression changes, supplementation with shikimate, tyrosine and tryptophan relieved growth inhibition by phenylalanine. In contrast to the wild-type, a tyrR disruption strain showed increased expression of pckA and of tktB in the presence of phenylalanine, but its growth was not affected by phenylalanine at the concentrations tested. The absence of growth inhibition by phenylalanine suggested that at high phenylalanine concentrations TyrR-defective strains might perform better in phenylalanine production.
Collapse
Affiliation(s)
- T Polen
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
36
|
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 2004; 280:4602-8. [PMID: 15590624 DOI: 10.1074/jbc.m411114200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel bacterial putrescine utilization pathway was discovered. Seven genes, the functions of whose products were not known, are involved in this novel pathway. Five of them encode enzymes that catabolize putrescine; one encodes a putrescine importer, and the other encodes a transcriptional regulator. This novel pathway involves six sequential steps as follows: 1) import of putrescine; 2) ATP-dependent gamma-glutamylation of putrescine; 3) oxidization of gamma-glutamylputrescine; 4) dehydrogenation of gamma-glutamyl-gamma-aminobutyraldehyde; 5) hydrolysis of the gamma-glutamyl linkage of gamma-glutamyl-gamma-aminobutyrate; and 6) transamination of gamma-aminobutyrate to form the final product of this pathway, succinate semialdehyde, which is the precursor of succinate.
Collapse
Affiliation(s)
- Shin Kurihara
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. The LIV-I/LS system as a determinant of azaserine sensitivity of Escherichia coliK-12. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09680.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|