1
|
Welikala MU, Butterworth LJ, Behrmann MS, Trakselis MA. Tau-mediated coupling between Pol III synthesis and DnaB helicase unwinding helps maintain genomic stability. J Biol Chem 2024; 300:107726. [PMID: 39214305 PMCID: PMC11470591 DOI: 10.1016/j.jbc.2024.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The τ-subunit of the clamp loader complex physically interacts with both the DnaB helicase and the polymerase III (Pol III) core α-subunit through domains IV and V, respectively. This interaction is proposed to help maintain rapid and efficient DNA synthesis rates with high genomic fidelity and plasticity, facilitating enzymatic coupling within the replisome. To test this hypothesis, CRISPR-Cas9 editing was used to create site-directed genomic mutations within the dnaX gene at the C terminus of τ predicted to interact with the α-subunit of Pol III. Perturbation of the α-τ binding interaction in vivo resulted in cellular and genomic stress markers that included reduced growth rates, fitness, and viabilities. Specifically, dnaX:mut strains showed increased cell filamentation, mutagenesis frequencies, and activated SOS. In situ fluorescence flow cytometry and microscopy quantified large increases in the amount of ssDNA gaps present. Removal of the C terminus of τ (I618X) still maintained its interactions with DnaB and stimulated unwinding but lost its interaction with Pol III, resulting in significantly reduced rolling circle DNA synthesis. Intriguingly, dnaX:L635P/D636G had the largest induction of SOS, high mutagenesis, and the most prominent ssDNA gaps, which can be explained by an impaired ability to regulate the unwinding speed of DnaB resulting in a faster rate of in vitro rolling circle DNA replication, inducing replisome decoupling. Therefore, τ-stimulated DnaB unwinding and physical coupling with Pol III acts to enforce replisome plasticity to maintain an efficient rate of synthesis and prevent genomic instability.
Collapse
Affiliation(s)
- Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | | | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA.
| |
Collapse
|
2
|
McKnight BM, Kang S, Le TH, Fang M, Carbonel G, Rodriguez E, Govindarajan S, Albocher-Kedem N, Tran AL, Duncan NR, Amster-Choder O, Golden SS, Cohen SE. Roles for the Synechococcus elongatus RNA-Binding Protein Rbp2 in Regulating the Circadian Clock. J Biol Rhythms 2023; 38:447-460. [PMID: 37515350 PMCID: PMC10528358 DOI: 10.1177/07487304231188761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night. Here, we report that the CI domain of KaiC, when in a hexameric state, is sufficient to target KaiC to the pole. Moreover, increased ATPase activity of KaiC correlates with enhanced polar localization. We identified proteins associated with KaiC in either a localized or diffuse state. We found that loss of Rbp2, found to be associated with localized KaiC, results in decreased incidence of KaiC localization and long-period circadian phenotypes. Rbp2 is an RNA-binding protein, and it appears that RNA-binding activity of Rbp2 is required to execute clock functions. These findings uncover previously unrecognized roles for Rbp2 in regulating the circadian clock and suggest that the proper localization of KaiC is required for a fully functional clock in vivo.
Collapse
Affiliation(s)
- Briana M. McKnight
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Shannon Kang
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Tam H. Le
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Genelyn Carbonel
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Esbeydi Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Sutharsan Govindarajan
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
- Department of Biological Sciences, SRM University AP, Amaravati, India
| | - Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Amanda L. Tran
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Nicholas R. Duncan
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Susan S. Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Susan E. Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| |
Collapse
|
3
|
Dong M, Yang S, Yang X, Xu M, Hu W, Wang B, Huang Y, Xu J, Lu H, Yang Y, Chen X, Huang H, Sun G. Water quality drives the distribution of freshwater cable bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156468. [PMID: 35660596 DOI: 10.1016/j.scitotenv.2022.156468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Cable bacteria are a group of recently found filamentous sulfide-oxidizing Desulfobulbaceae that significantly impact biogeochemical cycling. However, the limited understanding of cable bacteria distribution patterns and the driving force hindered our abilities to evaluate and maximize their contribution to environmental health. We evaluated cable bacteria assemblages from ten river sediments in the Pearl River Delta, China. The results revealed a clear biogeographic distribution pattern of cable bacteria, and their communities were deterministically assembled through water quality-driven selection. Cable bacteria are diverse in the river sediments with a few generalists and many specialists, and the water quality IV and V environments are the "hot spot." We then provided evidence on their morphology, function, and genome to demonstrate how water quality might shape the cable bacteria assemblages. Reduced cell width, inhibited function, and water quality-related adaptive genomic traits were detected in sulfide-limited water quality III and contaminant-stressed water quality VI environments. Specifically, those genomic traits were contributed to carbon and sulfur metabolism in the water quality III environment and stress resistance in the water quality VI environment. Overall, these findings provided a helpful baseline in evaluating the contribution of cable bacteria in the freshwater ecosystem and suggested that their high diversity and flexibility in phylogeny, morphology, and genome allowed them to adapt and contribute to various environmental conditions.
Collapse
Affiliation(s)
- Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jiarou Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Huibin Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Haobin Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
4
|
Scotland MK, Homiski C, Sutton MD. During Translesion Synthesis, Escherichia coli DinB89 (T120P) Alters Interactions of DinB (Pol IV) with Pol III Subunit Assemblies and SSB, but Not with the β Clamp. J Bacteriol 2022; 204:e0061121. [PMID: 35285726 PMCID: PMC9017331 DOI: 10.1128/jb.00611-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Translesion synthesis (TLS) by specialized DNA polymerases (Pols) is an evolutionarily conserved mechanism for tolerating replication-blocking DNA lesions. Using the Escherichia coli dinB-encoded Pol IV as a model to understand how TLS is coordinated with the actions of the high-fidelity Pol III replicase, we previously described a novel Pol IV mutant containing a threonine 120-to-proline mutation (Pol IV-T120P) that failed to exchange places with Pol III at the replication fork in vitro as part of a Pol III-Pol IV switch. This in vitro defect correlated with the inability of Pol IV-T120P to support TLS in vivo, suggesting Pol IV gains access to the DNA, at least in part, via a Pol III-Pol IV switch. Interaction of Pol IV with the β sliding clamp and the single-stranded DNA binding protein (SSB) significantly stimulates Pol IV replication and facilitates its access to the DNA. In this work, we demonstrate that Pol IV interacts physically with Pol III. We further show that Pol IV-T120P interacts normally with the β clamp, but is impaired in interactions with the α catalytic and εθ proofreading subunits of Pol III, as well as SSB. Taken together with published work, these results provide strong support for the model in which Pol IV-Pol III and Pol IV-SSB interactions help to regulate the access of Pol IV to the DNA. Finally, we describe several additional E. coli Pol-Pol interactions, suggesting Pol-Pol interactions play fundamental roles in coordinating bacterial DNA replication, DNA repair, and TLS. IMPORTANCE Specialized DNA polymerases (Pols) capable of catalyzing translesion synthesis (TLS) generate mutations that contribute to bacterial virulence, pathoadaptation, and antimicrobial resistance. One mechanism by which the bacterial TLS Pol IV gains access to the DNA to generate mutations is by exchanging places with the bacterial Pol III replicase via a Pol III-Pol IV switch. Here, we describe multiple Pol III-Pol IV interactions and discuss evidence that these interactions are required for the Pol III-Pol IV switch. Furthermore, we describe several additional E. coli Pol-Pol interactions that may play fundamental roles in managing the actions of the different bacterial Pols in DNA replication, DNA repair, and TLS.
Collapse
Affiliation(s)
- Michelle K. Scotland
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Caleb Homiski
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Mark D. Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
5
|
Elevated Levels of the Escherichia coli nrdAB-Encoded Ribonucleotide Reductase Counteract the Toxicity Caused by an Increased Abundance of the β Clamp. J Bacteriol 2021; 203:e0030421. [PMID: 34543109 DOI: 10.1128/jb.00304-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the Escherichia coli dnaN-encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (βE202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaNE202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB, that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the β clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaNE202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the βE202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB-encoded RNR relieved the growth defect caused by elevated levels of the β clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated β clamp levels to impede growth and suggest either that multiple effects stemming from the dnaNE202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the β clamp-Hda complex. The dnaNE202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaNE202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and βE202K clamp proteins support equivalent levels of Hda activity in vitro. Taken together, these results suggest that βE202K-Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed.
Collapse
|
6
|
The Mutant β E202K Sliding Clamp Protein Impairs DNA Polymerase III Replication Activity. J Bacteriol 2021; 203:e0030321. [PMID: 34543108 DOI: 10.1128/jb.00303-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Expression of the Escherichia coli dnaN-encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. We hypothesized that the excess β clamp sequesters the replicative DNA polymerase III (Pol III) to inhibit replication. As a test of this hypothesis, we obtained eight mutant clamps with an inability to impede growth and measured their ability to stimulate Pol III replication in vitro. Compared with the wild-type clamp, seven of the mutants were defective, consistent with their elevated cellular levels failing to sequester Pol III. However, the βE202K mutant that bears a glutamic acid-to-lysine substitution at residue 202 displayed an increased affinity for Pol IIIα and Pol III core (Pol IIIαεθ), suggesting that it could still sequester Pol III effectively. Of interest, βE202K supported in vitro DNA replication by Pol II and Pol IV but was defective with Pol III. Genetic experiments indicated that the dnaNE202K strain remained proficient in DNA damage-induced mutagenesis but was induced modestly for SOS and displayed sensitivity to UV light and methyl methanesulfonate. These results correlate an impaired ability of the mutant βE202K clamp to support Pol III replication in vivo with its in vitro defect in DNA replication. Taken together, our results (i) support the model that sequestration of Pol III contributes to growth inhibition, (ii) argue for the existence of an additional mechanism that contributes to lethality, and (iii) suggest that physical and functional interactions of the β clamp with Pol III are more extensive than appreciated currently. IMPORTANCE The β clamp plays critically important roles in managing the actions of multiple proteins at the replication fork. However, we lack a molecular understanding of both how the clamp interacts with these different partners and the mechanisms by which it manages their respective actions. We previously exploited the finding that an elevated cellular level of the β clamp impedes Escherichia coli growth by interfering with DNA replication. Using a genetic selection method, we obtained novel mutant β clamps that fail to inhibit growth. Their analysis revealed that βE202K is unique among them. Our work offers new insights into how the β clamp interacts with and manages the actions of E. coli DNA polymerases II, III, and IV.
Collapse
|
7
|
Almawi AW, Scotland MK, Randall JR, Liu L, Martin HK, Sacre L, Shen Y, Pillon MC, Simmons LA, Sutton MD, Guarné A. Binding of the regulatory domain of MutL to the sliding β-clamp is species specific. Nucleic Acids Res 2019; 47:4831-4842. [PMID: 30916336 PMCID: PMC6511837 DOI: 10.1093/nar/gkz115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 11/15/2022] Open
Abstract
The β-clamp is a protein hub central to DNA replication and fork management. Proteins interacting with the β-clamp harbor a conserved clamp-binding motif that is often found in extended regions. Therefore, clamp interactions have -almost exclusively- been studied using short peptides recapitulating the binding motif. This approach has revealed the molecular determinants that mediate the binding but cannot describe how proteins with clamp-binding motifs embedded in structured domains are recognized. The mismatch repair protein MutL has an internal clamp-binding motif, but its interaction with the β-clamp has different roles depending on the organism. In Bacillus subtilis, the interaction stimulates the endonuclease activity of MutL and it is critical for DNA mismatch repair. Conversely, disrupting the interaction between Escherichia coli MutL and the β-clamp only causes a mild mutator phenotype. Here, we determined the structures of the regulatory domains of E. coli and B. subtilis MutL bound to their respective β-clamps. The structures reveal different binding modes consistent with the binding to the β-clamp being a two-step process. Functional characterization indicates that, within the regulatory domain, only the clamp binding motif is required for the interaction between the two proteins. However, additional motifs beyond the regulatory domain may stabilize the interaction. We propose a model for the activation of the endonuclease activity of MutL in organisms lacking methyl-directed mismatch repair.
Collapse
Affiliation(s)
- Ahmad W Almawi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michelle K Scotland
- Department of Biochemistry, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Justin R Randall
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Linda Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Heather K Martin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lauralicia Sacre
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Yao Shen
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mark D Sutton
- Department of Biochemistry, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Genetics, Genomics and Bioinformatics Program, The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Du GF, Zheng YD, Chen J, He QY, Sun X. Novel Mechanistic Insights into Bacterial Fluoroquinolone Resistance. J Proteome Res 2019; 18:3955-3966. [DOI: 10.1021/acs.jproteome.9b00410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gao-Fei Du
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yun-Dan Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Patoli AA, Patoli BB. The N-Terminal 6×His Tag on β-Clamp Processivity Factor Occludes Gly66 and Affects the Growth of Escherichia coli B834 (DE3) Cells. Mol Biol 2019. [DOI: 10.1134/s0026893319010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Babu VMP, Itsko M, Baxter JC, Schaaper RM, Sutton MD. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Δhda E. coli strain. Mol Microbiol 2017; 104:377-399. [PMID: 28130843 DOI: 10.1111/mmi.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
The ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C. Strains impaired for the other regulators of initiation (i.e., ΔseqA or ΔdatA) fail to exhibit cold sensitivity. The goal of this study was to gain insight into why loss of hda function impedes growth. We used a genetic approach to isolate 9 suppressors of Δhda cold sensitivity, and characterized the mechanistic basis by which these suppressors alleviated Δhda cold sensitivity. Taken together, our results provide strong support for the view that the fundamental defect associated with Δhda is diminished levels of DNA precursors, particularly dGTP and dATP. We discuss possible mechanisms by which the suppressors identified here may regulate dNTP pool size, as well as similarities in phenotypes between the Δhda strain and hda+ strains exposed to the ribonucleotide reductase inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Itsko
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jamie C Baxter
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Identification of β Clamp-DNA Interaction Regions That Impair the Ability of E. coli to Tolerate Specific Classes of DNA Damage. PLoS One 2016; 11:e0163643. [PMID: 27685804 PMCID: PMC5042465 DOI: 10.1371/journal.pone.0163643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The E. coli dnaN-encoded β sliding clamp protein plays a pivotal role in managing the actions on DNA of the 5 bacterial DNA polymerases, proteins involved in mismatch repair, as well as several additional proteins involved in DNA replication. Results of in vitro experiments indicate that the loading of β clamp onto DNA relies on both the DnaX clamp loader complex as well as several discrete sliding clamp-DNA interactions. However, the importance of these DNA interactions to E. coli viability, as well as the ability of the β clamp to support the actions of its numerous partner proteins, have not yet been examined. To determine the contribution of β clamp-DNA interactions to the ability of E. coli to cope with different classes of DNA damage, we used alanine scanning to mutate 22 separate residues mapping to 3 distinct β clamp surfaces known or nearby those known to contact the DNA template, including residues P20-L27 (referred to here as loop I), H148-Y154 (loop II) and 7 different residues lining the central pore of the β clamp through which the DNA template threads. Twenty of these 22 dnaN mutants supported bacterial growth. While none of these 20 conferred sensitivity to hydrogen peroxide or ultra violet light, 12 were sensitized to NFZ, 5 were sensitized to MMS, 8 displayed modestly altered frequencies of DNA damage-induced mutagenesis, and 2 may be impaired for supporting hda function. Taken together, these results demonstrate that discrete β clamp-DNA interaction regions contribute to the ability of E. coli to tolerate specific classes of DNA damage.
Collapse
|
12
|
A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis. PLoS Genet 2015; 11:e1005507. [PMID: 26352807 PMCID: PMC4564189 DOI: 10.1371/journal.pgen.1005507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA. Bacterial DNA polymerase IV (Pol IV) is capable of replicating damaged DNA via a process termed translesion DNA synthesis (TLS). Pol IV-mediated TLS can be accurate or error-prone, depending on the type of DNA damage. Errors made by Pol IV contribute to antibiotic resistance and adaptation of bacterial pathogens. In addition to catalyzing TLS, overproduction of Escherichia coli Pol IV impedes growth. In the current work, we demonstrate that both of these functions rely on the ability of Pol IV to bind the β sliding processivity clamp and switch places on DNA with the replicative Pol, Pol III. This switch requires that Pol IV contact both Pol III as well as two discrete sites on the β clamp protein. Taken together, these results provide a deeper understanding of how E. coli manages the actions of Pol III and Pol IV to coordinate high fidelity replication with potentially error-prone TLS.
Collapse
|
13
|
Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr 2014; 2:1-15. [PMID: 25705573 DOI: 10.1128/microbiolspec.plas-0016-2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.
Collapse
|
14
|
Babu VMP, Sutton MD. A dnaN plasmid shuffle strain for rapid in vivo analysis of mutant Escherichia coli β clamps provides insight into the role of clamp in umuDC-mediated cold sensitivity. PLoS One 2014; 9:e98791. [PMID: 24896652 PMCID: PMC4045847 DOI: 10.1371/journal.pone.0098791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/07/2014] [Indexed: 12/05/2022] Open
Abstract
The E. coli umuDC gene products participate in two temporally distinct roles: UmuD2C acts in a DNA damage checkpoint control, while UmuD'2C, also known as DNA polymerase V (Pol V), catalyzes replication past DNA lesions via a process termed translesion DNA synthesis. These different roles of the umuDC gene products are managed in part by the dnaN-encoded β sliding clamp protein. Co-overexpression of the β clamp and Pol V severely blocked E. coli growth at 30°C. We previously used a genetic assay that was independent of the ability of β clamp to support E. coli viability to isolate 8 mutant clamp proteins (βQ61K, βS107L, βD150N, βG157S, βV170M, βE202K, βM204K and βP363S) that failed to block growth at 30°C when co-overexpressed with Pol V. It was unknown whether these mutant clamps were capable of supporting E. coli viability and normal umuDC functions in vivo. The goals of this study were to answer these questions. To this end, we developed a novel dnaN plasmid shuffle assay. Using this assay, βD150N and βP363S were unable to support E. coli viability. The remaining 6 mutant clamps, each of which supported viability, were indistinguishable from β+ with respect to umuDC functions in vivo. In light of these findings, we analyzed phenotypes of strains overexpressing either β clamp or Pol V alone. The strain overexpressing β+, but not those expressing mutant β clamps, displayed slowed growth irrespective of the incubation temperature. Moreover, growth of the Pol V-expressing strain was modestly slowed at 30°, but not 42°C. Taken together, these results suggest the mutant clamps were identified due to their inability to slow growth rather than an inability to interact with Pol V. They further suggest that cold sensitivity is due, at least in part, to the combination of their individual effects on growth at 30°C.
Collapse
Affiliation(s)
- Vignesh M. P. Babu
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Mark D. Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Specificity in suppression of SOS expression by recA4162 and uvrD303. DNA Repair (Amst) 2013; 12:1072-80. [PMID: 24084169 DOI: 10.1016/j.dnarep.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023]
Abstract
Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap).
Collapse
|
16
|
Kjelstrup S, Hansen PMP, Thomsen LE, Hansen PR, Løbner-Olesen A. Cyclic peptide inhibitors of the β-sliding clamp in Staphylococcus aureus. PLoS One 2013; 8:e72273. [PMID: 24023733 PMCID: PMC3762901 DOI: 10.1371/journal.pone.0072273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/12/2013] [Indexed: 12/01/2022] Open
Abstract
Interaction between pairs of Staphylococcus aureus replication proteins was detected in an Escherichia coli based two-hybrid analysis. A reverse two-hybrid system was constructed for selection of compounds that hindered interaction between interacting protein pairs. A number of cyclic peptides, from a library generated by the split intein-mediated circular ligation of peptides and proteins technology, were found to interfere with dimerization of the β-sliding clamp of the replisome. Two 8-mer peptides were analyzed in more detail. Both inhibited DNA replication, led to SOS induction, altered cell morphology and cell death. The peptides were active when added to bacterial cultures indicating that they could traverse the bacterial membrane to find their intracellular target. Peptide specificity was confirmed by overproduction of the putative target (DnaN) which resulted in resistance. The minimum inhibitory concentration was ∼50 μg/ml for S. aureus cells. These compounds may serve as lead candidates for future development into novel classes of antibiotics as well as provide information on the function of the S. aureus replication process.
Collapse
Affiliation(s)
- Susanne Kjelstrup
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Line E. Thomsen
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
17
|
Fate of the replisome following arrest by UV-induced DNA damage in Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:11421-6. [PMID: 23801750 DOI: 10.1073/pnas.1300624110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate replication in the presence of DNA damage is essential to genome stability and viability in all cells. In Escherichia coli, DNA replication forks blocked by UV-induced damage undergo a partial resection and RecF-catalyzed regression before synthesis resumes. These processing events generate distinct structural intermediates on the DNA that can be visualized in vivo using 2D agarose gels. However, the fate and behavior of the stalled replisome remains a central uncharacterized question. Here, we use thermosensitive mutants to show that the replisome's polymerases uncouple and transiently dissociate from the DNA in vivo. Inactivation of α, β, or τ subunits within the replisome is sufficient to signal and induce the RecF-mediated processing events observed following UV damage. By contrast, the helicase-primase complex (DnaB and DnaG) remains critically associated with the fork, leading to a loss of fork integrity, degradation, and aberrant intermediates when disrupted. The results reveal a dynamic replisome, capable of partial disassembly to allow access to the obstruction, while retaining subunits that maintain fork licensing and direct reassembly to the appropriate location after processing has occurred.
Collapse
|
18
|
Rosenberg SM, Shee C, Frisch RL, Hastings PJ. Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays 2012; 34:885-92. [PMID: 22911060 PMCID: PMC3533179 DOI: 10.1002/bies.201200050] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer.
Collapse
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | |
Collapse
|
19
|
Baxter JC, Sutton MD. Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. Mol Microbiol 2012; 85:648-68. [PMID: 22716942 DOI: 10.1111/j.1365-2958.2012.08129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ATP-bound form of the Escherichia coli DnaA protein binds 'DnaA boxes' present in the origin of replication (oriC) and operator sites of several genes, including dnaA, to co-ordinate their transcription with initiation of replication. The Hda protein, together with the β sliding clamp, stimulates the ATPase activity of DnaA via a process termed regulatory inactivation of DnaA (RIDA), to regulate the activity of DnaA in DNA replication. Here, we used the mutant dnaN159 strain, which expresses the β159 clamp protein, to gain insight into how the actions of Hda are co-ordinated with replication. Elevated expression of Hda impeded growth of the dnaN159 strain in a Pol II- and Pol IV-dependent manner, suggesting a role for Hda managing the actions of these Pols. In a wild-type strain, elevated levels of Hda conferred sensitivity to nitrofurazone, and suppressed the frequency of -1 frameshift mutations characteristic of Pol IV, while loss of hda conferred cold sensitivity. Using the dnaN159 strain, we identified 24 novel hda alleles, four of which supported E. coli viability despite their RIDA defect. Taken together, these findings suggest that although one or more Hda functions are essential for cell viability, RIDA may be dispensable.
Collapse
Affiliation(s)
- Jamie C Baxter
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
20
|
Cellular characterization of the primosome and rep helicase in processing and restoration of replication following arrest by UV-induced DNA damage in Escherichia coli. J Bacteriol 2012; 194:3977-86. [PMID: 22636770 DOI: 10.1128/jb.00290-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Following arrest by UV-induced DNA damage, replication is restored through a sequence of steps that involve partial resection of the nascent DNA by RecJ and RecQ, branch migration and processing of the fork DNA surrounding the lesion by RecA and RecF-O-R, and resumption of DNA synthesis once the blocking lesion has been repaired or bypassed. In vitro, the primosomal proteins (PriA, PriB, and PriC) and Rep are capable of initiating replication from synthetic DNA fork structures, and they have been proposed to catalyze these events when replication is disrupted by certain impediments in vivo. Here, we characterized the role that PriA, PriB, PriC, and Rep have in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that the partial degradation and processing of the arrested replication fork occurs normally in both rep and primosome mutants. In each mutant, the nascent degradation ceases and DNA synthesis initially resumes in a timely manner, but the recovery then stalls in the absence of PriA, PriB, or Rep. The results demonstrate a role for the primosome and Rep helicase in overcoming replication forks arrested by UV-induced damage in vivo and suggest that these proteins are required for the stability and efficiency of the replisome when DNA synthesis resumes but not to initiate de novo replication downstream of the lesion.
Collapse
|
21
|
Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase. J Bacteriol 2012; 194:3589-600. [PMID: 22544274 DOI: 10.1128/jb.00520-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dnaN159 allele encodes a temperature-sensitive mutant form of the β sliding clamp (β159). SOS-induced levels of DNA polymerase IV (Pol IV) confer UV sensitivity upon the dnaN159 strain, while levels of Pol IV ∼4-fold higher than those induced by the SOS response severely impede its growth. Here, we used mutations in Pol IV that disrupted specific interactions with the β clamp to test our hypothesis that these phenotypes were the result of Pol IV gaining inappropriate access to the replication fork via a Pol III*-Pol IV switch relying on both the rim and cleft of the clamp. Our results clearly demonstrate that Pol IV relied on both the clamp rim and cleft interactions for these phenotypes. In contrast to the case for Pol IV, elevated levels of the other Pols, including Pol II, which was expressed at levels ∼8-fold higher than the normal SOS-induced levels, failed to impede growth of the dnaN159 strain. These findings suggest that the mechanism used by Pol IV to switch with Pol III* is distinct from those used by the other Pols. Results of experiments utilizing purified components to reconstitute the Pol III*-Pol II switch in vitro indicated that Pol II switched equally well with both a stalled and an actively replicating Pol III* in a manner that was independent of the rim contact required by Pol IV. These results provide compelling support for the Pol III*-Pol IV two-step switch model and demonstrate important mechanistic differences in how Pol IV and Pol II switch with Pol III*.
Collapse
|
22
|
Sutton MD, Duzen JM, Scouten Ponticelli SK. A single hydrophobic cleft in the Escherichia coli processivity clamp is sufficient to support cell viability and DNA damage-induced mutagenesis in vivo. BMC Mol Biol 2010; 11:102. [PMID: 21190558 PMCID: PMC3022782 DOI: 10.1186/1471-2199-11-102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/29/2010] [Indexed: 11/24/2022] Open
Abstract
Background The ubiquitous family of DnaN sliding processivity clamp proteins plays essential roles in DNA replication, DNA repair, and cell cycle progression, in part by managing the actions of the different proteins involved in these processes. Interactions of the homodimeric Escherichia coli β clamp with its known partners involves multiple surfaces, including a hydrophobic cleft located near the C-terminus of each clamp protomer. Results A mutant E. coli β clamp protein lacking a functional hydrophobic cleft (βC) complemented the temperature sensitive growth phenotype of a strain bearing the dnaN159 allele, which encodes a thermolabile mutant clamp protein (β159). Complementation was conferred by a βC/β159 heterodimer, and was observed only in the absence of the dinB gene, which encodes DNA polymerase IV (Pol IV). Furthermore, the complemented strain was proficient for umuDC (Pol V) -dependent ultraviolet light (UV) -induced mutagenesis. Conclusions Our results suggest that a single cleft in the homodimeric E. coli β sliding clamp protein is sufficient to support both cell viability, as well as Pol III, Pol IV, and Pol V function in vivo. These findings provide further support for a model in which different Pols switch places with each other on DNA using a single cleft in the clamp.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, and Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
23
|
Hastings PJ, Hersh MN, Thornton PC, Fonville NC, Slack A, Frisch RL, Ray MP, Harris RS, Leal SM, Rosenberg SM. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS One 2010; 5:e10862. [PMID: 20523737 PMCID: PMC2877720 DOI: 10.1371/journal.pone.0010862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair. J Bacteriol 2010; 192:3452-63. [PMID: 20453097 DOI: 10.1128/jb.01435-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The beta clamp is an essential replication sliding clamp required for processive DNA synthesis. The beta clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of beta clamp containing the G73R substitution. Cells with the dnaN5 allele are temperature sensitive for growth due to a defect in DNA replication at 49 degrees C, and they show an increase in mutation frequency caused by a partial defect in MMR at permissive temperatures. We selected for intragenic suppressors of dnaN5 that rescued viability at 49 degrees C to determine if the DNA replication defect could be separated from the MMR defect. We isolated three intragenic suppressors of dnaN5 that restored growth at the nonpermissive temperature while maintaining an increase in mutation frequency. All three dnaN alleles encoded the G73R substitution along with one of three novel missense mutations. The missense mutations isolated were S22P, S181G, and E346K. Of these, S181G and E346K are located near the hydrophobic cleft of the beta clamp, a common site occupied by proteins that bind the beta clamp. Using several methods, we show that the increase in mutation frequency resulting from each dnaN allele is linked to a defect in MMR. Moreover, we found that S181G and E346K allowed growth at elevated temperatures and did not have an appreciable effect on mutation frequency when separated from G73R. Thus, we found that specific residue changes in the B. subtilis beta clamp separate the role of the beta clamp in DNA replication from its role in MMR.
Collapse
|
25
|
Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska IJ. Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol 2009; 74:1114-27. [PMID: 19843230 DOI: 10.1111/j.1365-2958.2009.06921.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'-->5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 2009; 138:685-95. [PMID: 19703395 DOI: 10.1016/j.cell.2009.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 03/23/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
The bacterial transposon Tn7 directs transposition into actively replicating DNA by a mechanism involving the transposon-encoded protein TnsE. Here we show that TnsE physically and functionally interacts with the processivity factor of the DNA replication machinery in vivo and in vitro. Our work establishes an in vitro TnsABC+E transposition reaction reconstituted from purified proteins and target DNA structures. Using the in vitro reaction we confirm that the processivity factor specifically reorders TnsE-mediated transposition events on target DNAs in a way that matches the bias with active DNA replication in vivo. The TnsE interaction with an essential and conserved component of the replication machinery, and a DNA structure reveals a mechanism by which Tn7, and probably other elements, selects target sites associated with DNA replication.
Collapse
Affiliation(s)
- Adam R Parks
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc Natl Acad Sci U S A 2009; 106:12664-9. [PMID: 19617571 DOI: 10.1073/pnas.0903460106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actions of Escherichia coli DNA Polymerase IV (Pol IV) in mutagenesis are managed by its interaction with the beta sliding clamp. In the structure reported by Bunting et al. [EMBO J (2003) 22:5883-5892], the C-tail of Pol IV contacts a hydrophobic cleft on the clamp, while residues V303-P305 reach over the dimer interface to contact the rim of the adjacent clamp protomer. Using mutant forms of these proteins impaired for either the rim or the cleft contacts, we determined that the rim contact was dispensable for Pol IV replication in vitro, while the cleft contact was absolutely required. Using an in vitro assay to monitor Pol III*-Pol IV switching, we determined that a single cleft on the clamp was sufficient to support the switch, and that both the rim and cleft contacts were required. Results from genetic experiments support a role for the cleft and rim contacts in Pol IV function in vivo. Taken together, our findings challenge the toolbelt model and suggest instead that Pol IV contacts the rim of the clamp adjacent to the cleft that is bound by Pol III* before gaining control of the same cleft that is bound by Pol III*.
Collapse
|
28
|
Coordinating DNA polymerase traffic during high and low fidelity synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1167-79. [PMID: 19540941 DOI: 10.1016/j.bbapap.2009.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 02/08/2023]
Abstract
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS.
Collapse
|
29
|
Heltzel J, Scouten Ponticelli SK, Sanders LH, Duzen JM, Cody V, Pace J, Snell E, Sutton MD. Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli. J Mol Biol 2009; 387:74-91. [PMID: 19361435 PMCID: PMC2670953 DOI: 10.1016/j.jmb.2009.01.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 01/20/2009] [Indexed: 11/29/2022]
Abstract
Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli beta clamp interact physically with the DNA that it topologically encircles. We utilized mutant beta clamp proteins bearing G66E and G174A substitutions (beta159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 (beta(148-152)), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of beta(148-152), which verified that the poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both beta159 and beta(148-152) were impaired for loading and retention on a linear primed DNA in vitro. In the case of beta(148-152), this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired beta(148-152)-DNA interactions. Once loaded, beta(148-152) was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, beta(148-152) was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, beta(148-152) was unable to support viability of E. coli. Nevertheless, physiological levels of beta(148-152) expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing beta159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA, clamp-partner, and partner-DNA interactions serve to manage the actions of the different E. coli Pols in vivo.
Collapse
Affiliation(s)
- Justin Heltzel
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | | | - Laurie H. Sanders
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Jill M. Duzen
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Vivian Cody
- Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203
| | - James Pace
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203
| | - Edward Snell
- Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203
| | - Mark D. Sutton
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214
| |
Collapse
|
30
|
Curti E, McDonald JP, Mead S, Woodgate R. DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2008; 71:315-31. [PMID: 19019142 PMCID: PMC2680738 DOI: 10.1111/j.1365-2958.2008.06526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA(Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.
Collapse
Affiliation(s)
- Elena Curti
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | |
Collapse
|
31
|
Oneal MJ, Schafer ER, Madsen ML, Minion FC. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. MICROBIOLOGY-SGM 2008; 154:2581-2588. [PMID: 18757792 DOI: 10.1099/mic.0.2008/020230-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae, a component of the porcine respiratory disease complex, colonizes the respiratory tract of swine by binding to the cilia of the bronchial epithelial cells. Mechanisms of pathogenesis are poorly understood for M. hyopneumoniae, but previous work has indicated that it responds to the environmental stressors heat shock, iron deprivation and oxidative compounds. For successful infection, M. hyopneumoniae must effectively resist host responses to the colonization of the respiratory tract. Among these are changes in hormonal levels in the mucosal secretions. Recent work in the stress responses of other bacteria has included the response to the catecholamine norepinephrine. The idea that M. hyopneumoniae can respond to a host hormone, however, is novel and has not previously been demonstrated. To test this, organisms in the early exponential phase of growth were exposed to 100 muM norepinephrine for 4 h, and RNA samples from these cultures were collected and compared to RNA samples from control cultures using two-colour PCR-based M. hyopneumoniae microarrays. The M. hyopneumoniae response included slowed growth and changes in mRNA transcript levels of 84 genes, 53 of which were upregulated in response to norepinephrine. A larger proportion of the genes upregulated than those downregulated were involved with transcription and translation. The downregulated genes were mostly involved with metabolism, which correlated with the reduction in growth of the mycoplasma. Approximately 51 % of the genes were hypothetical with no known function. Thus, in response to norepinephrine, M. hyopneumoniae appears to upregulate protein expression while downregulating general metabolism.
Collapse
Affiliation(s)
- Michael J Oneal
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Erin R Schafer
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
32
|
Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O'Donnell M. Structure of a sliding clamp on DNA. Cell 2008; 132:43-54. [PMID: 18191219 DOI: 10.1016/j.cell.2007.11.045] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the beta ring. The pronounced 22 degrees angle of DNA through beta may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.
Collapse
Affiliation(s)
- Roxana E Georgescu
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, Box 228, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
34
|
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 2007; 190:1730-42. [PMID: 18156258 DOI: 10.1128/jb.01463-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.
Collapse
|
35
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
36
|
Maul RW, Sanders LH, Lim JB, Benitez R, Sutton MD. Role of Escherichia coli DNA polymerase I in conferring viability upon the dnaN159 mutant strain. J Bacteriol 2007; 189:4688-95. [PMID: 17449610 PMCID: PMC1913439 DOI: 10.1128/jb.00476-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Escherichia coli dnaN159 allele encodes a mutant form of the beta-sliding clamp (beta159) that is impaired for interaction with the replicative DNA polymerase (Pol), Pol III. In addition, strains bearing the dnaN159 allele require functional Pol I for viability. We have utilized a combination of genetic and biochemical approaches to characterize the role(s) played by Pol I in the dnaN159 strain. Our findings indicate that elevated levels of Pol I partially suppress the temperature-sensitive growth phenotype of the dnaN159 strain. In addition, we demonstrate that the beta clamp stimulates the processivity of Pol I in vitro and that beta159 is impaired for this activity. The reduced ability of beta159 to stimulate Pol I in vitro correlates with our finding that single-stranded DNA (ssDNA) gap repair is impaired in the dnaN159 strain. Taken together, these results suggest that (i) the beta clamp-Pol I interaction may be important for proper Pol I function in vivo and (ii) in the absence of Pol I, ssDNA gaps may persist in the dnaN159 strain, leading to lethality of the dnaN159 DeltapolA strain.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
37
|
Belley A, Callejo M, Arhin F, Dehbi M, Fadhil I, Liu J, McKay G, Srikumar R, Bauda P, Bergeron D, Ha N, Dubow M, Gros P, Pelletier J, Moeck G. Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Mol Microbiol 2006; 62:1132-43. [PMID: 17010157 DOI: 10.1111/j.1365-2958.2006.05427.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophages have evolved specific mechanisms that redirect bacterial metabolic pathways to the bacteriophage reproduction cycle. In this study, we characterized the bactericidal mechanism of two polypeptides from bacteriophages Twort and G1 that target the DNA sliding clamp of Staphylococcus aureus. The DNA sliding clamp, which tethers DNA polymerase to its template and thereby confers processivity upon the enzyme, was found to be essential for the viability of S. aureus. Expression of polypeptides TwortORF168 and G1ORF240 in S. aureus selectively inhibited DNA replication which in turn resulted in cell death. Both polypeptides specifically inhibited the S. aureus DNA replicase that was reconstituted in vitro but not the corresponding replicase of Streptococcus pyogenes. We demonstrated that inhibition of DNA synthesis is multifaceted and occurs via binding the DNA sliding clamp: TwortORF168 and G1ORF240 bound tightly to the DNA sliding clamp and prevented both its loading onto DNA and its interaction with DNA polymerase C. These results elucidate the impact of bacteriophage polypeptide expression upon DNA replication in the growing cell.
Collapse
Affiliation(s)
- Adam Belley
- Targanta Therapeutics, St-Laurent, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kongsuwan K, Josh P, Picault MJ, Wijffels G, Dalrymple B. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA. J Bacteriol 2006; 188:5501-9. [PMID: 16855240 PMCID: PMC1540049 DOI: 10.1128/jb.00231-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad-host-range plasmid RK2 is capable of replication and stable maintenance within a wide range of gram-negative bacterial hosts. It encodes the essential replication initiation protein TrfA, which binds to the host initiation protein, DnaA, at the plasmid origin of replication (oriV). There are two versions of the TrfA protein, 44 and 33 kDa, resulting from alternate in-frame translational starts. We have shown that the smaller protein, TrfA-33, and its 64-residue amino-terminal peptide (designated T1) physically interact with the Escherichia coli beta sliding clamp (beta(2)). This interaction appears to be mediated through a QLSLF peptide motif located near the amino-terminal end of TrfA-33 and T1, which is identical to the previously described eubacterial clamp-binding consensus motif. T1 forms a stable complex with beta(2) and was found to inhibit plasmid RK2 replication in vitro. This specific interaction between T1 and beta(2) and the ability of T1 to block DNA replication have implications for the previously reported cell lethality caused by overproduction of T1. The toxicity of T1 was suppressed when wild-type T1 was replaced with mutant T1, carrying an LF deletion in the beta-binding motif. Previously, T1 toxicity has been shown to be suppressed by Hda, an intermediate regulatory protein which helps prevent over-initiation in E. coli through its interaction with the initiator protein, DnaA, and beta(2). Our results support a model in which T1 toxicity is caused by T1 binding to beta(2), especially when T1 is overexpressed, preventing beta(2) from interacting with host replication proteins such as Hda during the early events of chromosome replication.
Collapse
Affiliation(s)
- Kritaya Kongsuwan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067, Australia.
| | | | | | | | | |
Collapse
|
39
|
Delmas S, Matic I. Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. Proc Natl Acad Sci U S A 2006; 103:4564-9. [PMID: 16537389 PMCID: PMC1450211 DOI: 10.1073/pnas.0509012103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) and translesion synthesis (TLS) are two pathways involved in the tolerance of lesions that block the replicative DNA polymerase. However, whereas TLS is frequently error-prone and, therefore, can be deleterious, HR is generally error-free. Furthermore, because the recombination enzymes and alternative DNA polymerases that perform TLS may use the same substrate, their coordination might be important to assure cell fitness and survival. This study aimed to determine whether and how these pathways are coordinated in Escherichia coli cells by using conjugational replication and recombination as a model system. The role of the three alternative DNA polymerases that are regulated by the SOS system was tested in DNA polymerase III holoenzyme-proficient and -deficient mutants. When PolIII is inactive, the alternative DNA polymerases copy DNA in the following order: PolII, PolIV, and PolV. The observed hierarchy corresponds to the selective constraints imposed on the genes coding for alternative DNA polymerases observed in natural populations of E. coli, suggesting that this hierarchy depends on the frequency of specific damages encountered during the evolutionary history of E. coli. We also found that DNA replication and HR are in competition and that they can precede each other. Our results suggest that there is probably not an active choice of which pathway to use, but, rather, the nature and concentration of lesions that lead to formation of ssDNA and the level of SOS induction that they engender might determine the outcome of the competition between HR and alternative DNA polymerases.
Collapse
Affiliation(s)
- Stéphane Delmas
- Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médecine “Necker-Enfants Malades” Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Ivan Matic
- Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médecine “Necker-Enfants Malades” Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Sutton MD, Duzen JM. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. DNA Repair (Amst) 2005; 5:312-23. [PMID: 16338175 DOI: 10.1016/j.dnarep.2005.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | |
Collapse
|
41
|
Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 2005; 187:7607-18. [PMID: 16267285 PMCID: PMC1280315 DOI: 10.1128/jb.187.22.7607-7618.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
42
|
Calmann MA, Marinus M. Differential effects of cisplatin and MNNG on dna mutants of Escherichia coli. Mutat Res 2005; 578:406-16. [PMID: 16144703 PMCID: PMC2927670 DOI: 10.1016/j.mrfmmm.2005.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 02/08/2023]
Abstract
DNA mismatch repair (MMR) in mammalian cells or Escherichia coli dam mutants increases the cytotoxic effects of cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We found that, unlike wildtype, the dnaE486 (alpha catalytic subunit of DNA polymerase III holoenzyme) mutant, and a DnaX (clamp loader subunits) over-producer, are sensitive to cisplatin but resistant to MNNG at the permissive temperature for growth. Survival of dam-13 dnaN159 (beta sliding clamp) bacteria to cisplatin was significantly less than dam cells, suggesting decreased MMR, which may be due to reduced MutS-beta clamp interaction. We also found an elevated spontaneous mutant frequency to rifampicin resistance in dnaE486 (10-fold), dnaN159 (35-fold) and dnaX36 (10-fold) strains. The mutation spectrum in the dnaN159 strain was consistent with increased SOS induction and not indicative of MMR deficiency.
Collapse
Affiliation(s)
| | - M.G. Marinus
- Corresponding author: Dr M.G. Marinus, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605, Tel 508 856 3330, Fax 508 856 2003,
| |
Collapse
|
43
|
Abstract
The inactivation of a replication protein causes the disassembly of the replication machinery and creates a need for replication reactivation. In several replication mutants, restart occurs after the fork has been isomerized into a four-armed junction, a reaction called replication fork reversal. The repair helicase UvrD is essential for replication fork reversal upon inactivation of the polymerase (DnaE) or the beta-clamp (DnaN) subunits of the Escherichia coli polymerase III, and for the viability of dnaEts and dnaNts mutants at semi-permissive temperature. We show here that the inactivation of recA, recFOR, recJ or recQ recombination genes suppresses the requirement for UvrD for replication fork reversal and suppresses the lethality conferred by uvrD inactivation to Pol IIIts mutants at semi-permissive temperature. We propose that RecA binds inappropriately to blocked replication forks in the dnaEts and dnaNts mutants in a RecQ- RecJ- RecFOR-dependent way and that UvrD acts by removing RecA or a RecA-made structure, allowing replication fork reversal. This work thus reveals the existence of a futile reaction of RecA binding to blocked replication forks, that requires the action of UvrD for fork-clearing and proper replication restart.
Collapse
Affiliation(s)
- Maria-José Florés
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
44
|
Sutton MD, Duzen JM, Maul RW. Mutant forms of theEscherichia coliβ sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol Microbiol 2005; 55:1751-66. [PMID: 15752198 DOI: 10.1111/j.1365-2958.2005.04500.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia colibeta sliding clamp is proposed to play an important role in regulating DNA polymerase traffic at the replication fork. As part of an ongoing effort to understand how organisms manage the actions of their multiple DNA polymerases, we examined the ability of several mutant forms of the beta clamp to function in DNA polymerase V- (pol V-) dependent translesion DNA synthesis (TLS) in vivo. Our results indicate that a dnaN159 strain, which expresses a temperature sensitive form of the beta clamp, was impaired for pol V-dependent TLS at the permissive temperature of 37 degrees C. This defect was complemented by a plasmid that expressed near-physiological levels of the wild-type clamp. Using a dnaN159 mutant strain, together with various plasmids expressing mutant forms of the clamp, we determined that residues H148 through R152, which comprise a portion of a solvent exposed loop, as well as position P363, which is located in the C-terminal tail of the beta clamp, are critically important for pol V-dependent TLS in vivo. In contrast, these same residues appear to be less critical for pol III-dependent replication. Taken together, these findings indicate that: (i) the beta clamp plays an essential role in pol V-dependent TLS in vivo and (ii) pol III and pol V interact with non-identical surfaces of the beta clamp.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|