1
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. mSphere 2025; 10:e0096224. [PMID: 40237445 PMCID: PMC12108088 DOI: 10.1128/msphere.00962-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitute the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased the MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full-length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.IMPORTANCESpatially organizing biosynthetic pathway enzymes is a promising strategy to increase pathway throughput and yield. Bacterial microcompartments (MCPs) are proteinaceous organelles that many bacteria natively use as a spatial organization strategy to encapsulate niche metabolic pathways, providing significant metabolic benefits. Encapsulating heterologous pathways of interest in MCPs could confer these benefits to industrially relevant pathways. Here, we investigate the role of signal sequences, short domains that target proteins for encapsulation in MCPs, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterize two novel signal sequences on structural proteins, constituting the first Pdu signal sequences found on structural proteins rather than enzymes, and perform knockout studies to compare the impacts of enzymatic and structural signal sequences on MCP assembly. Our results demonstrate that enzymatic and structural signal sequences play critical but distinct roles in Pdu MCP assembly and provide design rules for engineering MCPs while minimizing disruption to MCP assembly.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Grant A. Rybnicky
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Modjewski LD, Karavaeva V, Mrnjavac N, Knopp M, Martin WF, Sousa FL. Evidence for corrin biosynthesis in the last universal common ancestor. FEBS J 2025; 292:827-850. [PMID: 39708285 PMCID: PMC7617358 DOI: 10.1111/febs.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Corrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B12) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO2-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS). CoFeS occurs in H2-dependent archaeal methanogens, the oldest microbial lineage by measure of physiology and carbon isotope data, dating corrinoids to ca. 3.5 billion years. However, CoFeS and cobamides are also essential in the acetyl-CoA pathway of H2-dependent bacterial acetogens. To determine whether corrin biosynthesis was established before archaea and bacteria diverged, whether the pathways arose independently or whether cobamide biosynthesis was transferred from the archaeal to the bacterial lineage (or vice versa) during evolution, we investigated phylogenies and structural data for 26 enzymes of corrin ring and lower ligand biosynthesis. The data trace cobamide synthesis to the common ancestor of bacteria and archaea, placing it in the last universal common ancestor of all lifeforms (LUCA), while pterin-dependent methyl synthesis pathways likely arose independently post-LUCA in the lineages leading to bacteria and archaea. Enzymes of corrin biosynthesis were recruited from preexisting ancient pathways. Evolutionary forerunners of CoFeS function were likely Fe-, Ni- and Co-containing solid-state surfaces, which, in the laboratory, catalyze the reactions of the acetyl-CoA pathway from CO2 to pyruvate under serpentinizing hydrothermal conditions. The data suggest that enzymatic corrin biosynthesis replaced insoluble solid-state catalysts that tethered primordial CO2 assimilation to the Earth's crust, suggesting a role for corrin synthesis in the origin of free-living cells.
Collapse
Affiliation(s)
- Luca D. Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfGermany
| | - Val Karavaeva
- Department of Functional and Evolutionary EcologyUniversity of ViennaAustria
- Vienna Doctoral School of Ecology and EvolutionUniversity of ViennaAustria
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfGermany
| | - Michael Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfGermany
| | - William F. Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfGermany
| | - Filipa L. Sousa
- Department of Functional and Evolutionary EcologyUniversity of ViennaAustria
| |
Collapse
|
3
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615066. [PMID: 39386669 PMCID: PMC11463388 DOI: 10.1101/2024.09.25.615066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitutes the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn. E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Grant A Rybnicky
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
4
|
Elmendorf LD, Brunold TC. Electronic structure studies of free and enzyme-bound B 12 species by magnetic circular dichroism and complementary spectroscopic techniques. Methods Enzymol 2022; 669:333-365. [PMID: 35644179 DOI: 10.1016/bs.mie.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electronic absorption (Abs) and circular dichroism (CD) spectroscopic techniques have been used successfully for over half a century in studies of free and enzyme-bound B12 species. More recently, magnetic circular dichroism (MCD) spectroscopy and other complementary techniques have provided an increasingly detailed understanding of the electronic structure of cobalamins. While CD spectroscopy measures the difference in the absorption of left- and right-circularly polarized light, MCD spectroscopy adds the application of a magnetic field parallel to the direction of light propagation. Transitions that are formally forbidden according to the Abs and CD selection rules, such as ligand field (or d→d) transitions, can gain MCD intensity through spin-orbit coupling. As such, MCD spectroscopy provides a uniquely sensitive probe of the different binding modes, Co oxidation states, and axial ligand environments of B12 species in enzyme active sites, and thus the distinct reactivities displayed by these species. This chapter summarizes representative MCD studies of free and enzyme-bound B12 species, including those present in adenosyltransferases, isomerases, and reductive dehalogenases. Complementary spectroscopic and computational data are also presented and discussed where appropriate.
Collapse
Affiliation(s)
- Laura D Elmendorf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
5
|
Costa FG, Villa EA, Escalante-Semerena JC. A method for the efficient adenosylation of corrinoids. Methods Enzymol 2022; 668:87-108. [PMID: 35589203 DOI: 10.1016/bs.mie.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements. The formation of the Co-C bond is catalyzed by a family of enzymes known as ATP:Co(I)rrinoid adenosyltransferases (ACATs). ACATs adenosylate Cbas in two steps: (I) they generate a planar, Co(II) four-coordinate Cba to facilitate the reduction of Co(II) to Co(I), and (II) they transfer the adenosyl group from ATP to the Co(I) ion. To synthesize adenosylated corrinoids in vitro, it is imperative that anoxic conditions are maintained to avoid oxidation of Co(II) or Co(I) ions. Here we describe a method for the enzymatic synthesis and quantification of specific AdoCbas.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Elizabeth A Villa
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
6
|
Forny P, Plessl T, Frei C, Bürer C, Froese DS, Baumgartner MR. Spectrum and characterization of bi-allelic variants in MMAB causing cblB-type methylmalonic aciduria. Hum Genet 2021; 141:1253-1267. [PMID: 34796408 PMCID: PMC9262797 DOI: 10.1007/s00439-021-02398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
Pathogenic variants in MMAB cause cblB-type methylmalonic aciduria, an autosomal-recessive disorder of propionate metabolism. MMAB encodes ATP:cobalamin adenosyltransferase, using ATP and cob(I)alamin to create 5’-deoxyadenosylcobalamin (AdoCbl), the cofactor of methylmalonyl-CoA mutase (MMUT). We identified bi-allelic disease-causing variants in MMAB in 97 individuals with cblB-type methylmalonic aciduria, including 33 different and 16 novel variants. Missense changes accounted for the most frequent pathogenic alleles (p.(Arg186Trp), N = 57; p.(Arg191Trp), N = 19); while c.700C > T (p.(Arg234*)) was the most frequently identified truncating variant (N = 14). In fibroblasts from 76 affected individuals, the ratio of propionate incorporation in the presence and absence of hydroxocobalamin (PI ratio) was associated to clinical cobalamin responsiveness and later disease onset. We found p.(Arg234*) to be associated with cobalamin responsiveness in vitro, and clinically with later onset; p.(Arg186Trp) and p.(Arg191Trp) showed no clear cobalamin responsiveness and early onset. Mapping these and novel variants onto the MMAB structure revealed their potential to affect ATP and AdoCbl binding. Follow-up biochemical characterization of recombinant MMAB identified its three active sites to be equivalent for ATP binding, determined by fluorescence spectroscopy (Kd = 21 µM) and isothermal calorimetry (Kd = 14 µM), but function as two non-equivalent AdoCbl binding sites (Kd1 = 0.55 μM; Kd2 = 8.4 μM). Ejection of AdoCbl was activated by ATP (Ka = 24 µM), which was sensitized by the presence of MMUT (Ka = 13 µM). This study expands the landscape of pathogenic MMAB variants, provides association of in vitro and clinical responsiveness, and facilitates insight into MMAB function, enabling better disease understanding.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Tanja Plessl
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Caroline Frei
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Celine Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
7
|
Mobile loop dynamics in adenosyltransferase control binding and reactivity of coenzyme B 12. Proc Natl Acad Sci U S A 2020; 117:30412-30422. [PMID: 33199623 DOI: 10.1073/pnas.2007332117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cobalamin is a complex organometallic cofactor that is processed and targeted via a network of chaperones to its dependent enzymes. AdoCbl (5'-deoxyadenosylcobalamin) is synthesized from cob(II)alamin in a reductive adenosylation reaction catalyzed by adenosyltransferase (ATR), which also serves as an escort, delivering AdoCbl to methylmalonyl-CoA mutase (MCM). The mechanism by which ATR signals that its cofactor cargo is ready (AdoCbl) or not [cob(II)alamin] for transfer to MCM, is not known. In this study, we have obtained crystallographic snapshots that reveal ligand-induced ordering of the N terminus of Mycobacterium tuberculosis ATR, which organizes a dynamic cobalamin binding site and exerts exquisite control over coordination geometry, reactivity, and solvent accessibility. Cob(II)alamin binds with its dimethylbenzimidazole tail splayed into a side pocket and its corrin ring buried. The cosubstrate, ATP, enforces a four-coordinate cob(II)alamin geometry, facilitating the unfavorable reduction to cob(I)alamin. The binding mode for AdoCbl is notably different from that of cob(II)alamin, with the dimethylbenzimidazole tail tucked under the corrin ring, displacing the N terminus of ATR, which is disordered. In this solvent-exposed conformation, AdoCbl undergoes facile transfer to MCM. The importance of the tail in cofactor handover from ATR to MCM is revealed by the failure of 5'-deoxyadenosylcobinamide, lacking the tail, to transfer. In the absence of MCM, ATR induces a sacrificial cobalt-carbon bond homolysis reaction in an unusual reversal of the heterolytic chemistry that was deployed to make the same bond. The data support an important role for the dimethylbenzimidazole tail in moving the cobalamin cofactor between active sites.
Collapse
|
8
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
9
|
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human Health and Environmental Toxicology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E679. [PMID: 31973020 PMCID: PMC7037090 DOI: 10.3390/ijerph17030679] [Citation(s) in RCA: 570] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nickel is a transition element extensively distributed in the environment, air, water, and soil. It may derive from natural sources and anthropogenic activity. Although nickel is ubiquitous in the environment, its functional role as a trace element for animals and human beings has not been yet recognized. Environmental pollution from nickel may be due to industry, the use of liquid and solid fuels, as well as municipal and industrial waste. Nickel contact can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung and nasal cancer. Although the molecular mechanisms of nickel-induced toxicity are not yet clear, mitochondrial dysfunctions and oxidative stress are thought to have a primary and crucial role in the toxicity of this metal. Recently, researchers, trying to characterize the capability of nickel to induce cancer, have found out that epigenetic alterations induced by nickel exposure can perturb the genome. The purpose of this review is to describe the chemical features of nickel in human beings and the mechanisms of its toxicity. Furthermore, the attention is focused on strategies to remove nickel from the environment, such as phytoremediation and phytomining.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| |
Collapse
|
10
|
Nichols TM, Kennedy NW, Tullman-Ercek D. Cargo encapsulation in bacterial microcompartments: Methods and analysis. Methods Enzymol 2019; 617:155-186. [PMID: 30784401 PMCID: PMC6590060 DOI: 10.1016/bs.mie.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic engineers seek to produce high-value products from inexpensive starting materials in a sustainable and cost-effective manner by using microbes as cellular factories. However, pathway development and optimization can be arduous tasks, complicated by pathway bottlenecks and toxicity. Pathway organization has emerged as a potential solution to these issues, and the use of protein- or DNA-based scaffolds has successfully increased the production of several industrially relevant compounds. These efforts demonstrate the usefulness of pathway colocalization and spatial organization for metabolic engineering applications. In particular, scaffolding within an enclosed, subcellular compartment shows great promise for pathway optimization, offering benefits such as increased local enzyme and substrate concentrations, sequestration of toxic or volatile intermediates, and alleviation of cofactor and resource competition with the host. Here, we describe the 1,2-propanediol utilization (Pdu) bacterial microcompartment (MCP) as an enclosed scaffold for pathway sequestration and organization. We first describe methods for controlling Pdu MCP formation, expressing and encapsulating heterologous cargo, and tuning cargo loading levels. We further describe assays for analyzing Pdu MCPs and assessing encapsulation levels. These methods will enable the repurposing of MCPs as tunable nanobioreactors for heterologous pathway encapsulation.
Collapse
Affiliation(s)
- Taylor M Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States.
| |
Collapse
|
11
|
Costa FG, Escalante-Semerena JC. A New Class of EutT ATP:Co(I)rrinoid Adenosyltransferases Found in Listeria monocytogenes and Other Firmicutes Does Not Require a Metal Ion for Activity. Biochemistry 2018; 57:5076-5087. [PMID: 30071718 DOI: 10.1021/acs.biochem.8b00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP:Co(I)rrinoid adenosyltransferases (ACATs) are involved in de novo adenosylcobamide (AdoCba) biosynthesis and in salvaging complete and incomplete corrinoids from the environment. The ACAT enzyme family is comprised of three classes of structurally and evolutionarily distinct proteins (i.e., CobA, PduO, and EutT). The structure of EutT is unknown, and an understanding of its mechanism is incomplete. The Salmonella enterica EutT ( SeEutT) enzyme is the best-characterized member of its class and is known to be a ferroprotein. Here, we report the identification and initial biochemical characterization of an enzyme representative of a new class of EutTs that does not require a metal ion for activity. In vivo and in vitro evidence shows that the metal-free EutT homologue from Listeria monocytogenes ( LmEutT) has ACAT activity and that, unlike other ACATs, the biologically active form of LmEutT is a tetramer. In vitro studies revealed that LmEutT was more efficient than SeEutT and displayed positive cooperativity. LmEutT adenosylated cobalamin, but not cobinamide, showed specificity for ATP and 2'-deoxyATP and released a triphosphate byproduct. Bioinformatics analyses suggest that metal-free EutT ACATs are also present in other Firmicutes.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology , University of Georgia , 212C Biological Sciences Building, 120 Cedar Street , Athens , Georgia 30602 , United States
| | - Jorge C Escalante-Semerena
- Department of Microbiology , University of Georgia , 212C Biological Sciences Building, 120 Cedar Street , Athens , Georgia 30602 , United States
| |
Collapse
|
12
|
Ortiz de Orué Lucana D, Hickey N, Hensel M, Klare JP, Geremia S, Tiufiakova T, Torda AE. The Crystal Structure of the C-Terminal Domain of the Salmonella enterica PduO Protein: An Old Fold with a New Heme-Binding Mode. Front Microbiol 2016; 7:1010. [PMID: 27446048 PMCID: PMC4923194 DOI: 10.3389/fmicb.2016.01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 02/05/2023] Open
Abstract
The two-domain protein PduO, involved in 1,2-propanediol utilization in the pathogenic Gram-negative bacterium Salmonella enterica is an ATP:Cob(I)alamin adenosyltransferase, but this is a function of the N-terminal domain alone. The role of its C-terminal domain (PduOC) is, however, unknown. In this study, comparative growth assays with a set of Salmonella mutant strains showed that this domain is necessary for effective in vivo catabolism of 1,2-propanediol. It was also shown that isolated, recombinantly-expressed PduOC binds heme in vivo. The structure of PduOC co-crystallized with heme was solved (1.9 Å resolution) showing an octameric assembly with four heme moieities. The four heme groups are highly solvent-exposed and the heme iron is hexa-coordinated with bis-His ligation by histidines from different monomers. Static light scattering confirmed the octameric assembly in solution, but a mutation of the heme-coordinating histidine caused dissociation into dimers. Isothermal titration calorimetry using the PduOC apoprotein showed strong heme binding (K d = 1.6 × 10(-7) M). Biochemical experiments showed that the absence of the C-terminal domain in PduO did not affect adenosyltransferase activity in vitro. The evidence suggests that PduOC:heme plays an important role in the set of cobalamin transformations required for effective catabolism of 1,2-propanediol. Salmonella PduO is one of the rare proteins which binds the redox-active metabolites heme and cobalamin, and the heme-binding mode of the C-terminal domain differs from that in other members of this protein family.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of OsnabrückOsnabrück, Germany
| | - Neal Hickey
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of TriesteTrieste, Italy
| | - Michael Hensel
- Division of Microbiology, Department of Biology/Chemistry, University of OsnabrückOsnabrück, Germany
| | - Johann P. Klare
- Department of Physics, University of OsnabrückOsnabrück, Germany
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of TriesteTrieste, Italy
| | | | - Andrew E. Torda
- Centre for Bioinformatics, University of HamburgHamburg, Germany
| |
Collapse
|
13
|
Toraya T, Tanokuchi A, Yamasaki A, Nakamura T, Ogura K, Tobimatsu T. Diol Dehydratase-Reactivase Is Essential for Recycling of Coenzyme B12 in Diol Dehydratase. Biochemistry 2015; 55:69-78. [PMID: 26704729 DOI: 10.1021/acs.biochem.5b01023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holoenzymes of adenosylcobalamin-dependent diol and glycerol dehydratases undergo mechanism-based inactivation by glycerol and O2 inactivation in the absence of substrate, which accompanies irreversible cleavage of the coenzyme Co-C bond. The inactivated holodiol dehydratase and the inactive enzyme·cyanocobalamin complex were (re)activated by incubation with NADH, ATP, and Mg(2+) (or Mn(2+)) in crude extracts of Klebsiella oxytoca, suggesting the presence of a reactivating system in the extract. The reducing system with NADH could be replaced by FMNH2. When inactivated holoenzyme or the enzyme·cyanocobalamin complex, a model of inactivated holoenzyme, was incubated with purified recombinant diol dehydratase-reactivase (DD-R) and an ATP:cob(I)alamin adenosyltransferase in the presence of FMNH2, ATP, and Mg(2+), diol dehydratase activity was restored. Among the three adenosyltransferases (PduO, EutT, and CobA) of this bacterium, PduO and CobA were much more efficient for the reactivation than EutT, although PduO showed the lowest adenosyltransfease activity toward free cob(I)alamin. These results suggest that (1) diol dehydratase activity is maintained through coenzyme recycling by a reactivating system for diol dehydratase composed of DD-R, PduO adenosyltransferase, and a reducing system, (2) the releasing factor DD-R is essential for the recycling of adenosycobalamin, a tightly bound, prosthetic group-type coenzyme, and (3) PduO is a specific adenosylating enzyme for the DD reactivation, whereas CobA and EutT exert their effects through free synthesized coenzyme. Although FMNH2 was mainly used as a reductant in this study, a natural reducing system might consist of PduS cobalamin reductase and NADH.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Aya Tanokuchi
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ai Yamasaki
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takehiro Nakamura
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kenichi Ogura
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Moore TC, Escalante-Semerena JC. The EutQ and EutP proteins are novel acetate kinases involved in ethanolamine catabolism: physiological implications for the function of the ethanolamine metabolosome in Salmonella enterica. Mol Microbiol 2015; 99:497-511. [PMID: 26448059 DOI: 10.1111/mmi.13243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.
Collapse
Affiliation(s)
- Theodore C Moore
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | |
Collapse
|
15
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
16
|
Bobik TA, Lehman BP, Yeates TO. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol 2015; 98:193-207. [PMID: 26148529 PMCID: PMC4718714 DOI: 10.1111/mmi.13117] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 12/15/2022]
Abstract
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.
Collapse
Affiliation(s)
- Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Brent P. Lehman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Todd O. Yeates
- Molecular Biology Institute, University of California, Los Angeles
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
17
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
18
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic studies of the Salmonella enterica adenosyltransferase enzyme SeCobA: molecular-level insight into the mechanism of substrate Cob(II)alamin activation. Biochemistry 2014; 53:7969-82. [PMID: 25423616 PMCID: PMC4278676 DOI: 10.1021/bi5011877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CobA from Salmonella enterica (SeCobA) is a member of the family of ATP:Co(I)rrinoid adenosyltransferase (ACAT) enzymes that participate in the biosynthesis of adenosylcobalamin by catalyzing the transfer of the adenosyl group from an ATP molecule to a reactive Co(I)rrinoid species transiently generated in the enzyme active site. This reaction is thermodynamically challenging, as the reduction potential of the Co(II)rrinoid precursor in solution is far more negative than that of available reducing agents in the cell (e.g., flavodoxin), precluding nonenzymic reduction to the Co(I) oxidation state. However, in the active sites of ACATs, the Co(II)/Co(I) redox potential is increased by >250 mV via the formation of a unique four-coordinate (4c) Co(II)rrinoid species. In the case of the SeCobA ACAT, crystallographic and kinetic studies have revealed that the phenylalanine 91 (F91) and tryptophan 93 (W93) residues are critical for in vivo activity, presumably by blocking access to the lower axial ligand site of the Co(II)rrinoid substrate. To further assess the importance of the F91 and W93 residues with respect to enzymatic function, we have characterized various SeCobA active-site variants using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our data provide unprecedented insight into the mechanism by which SeCobA converts the Co(II)rrinoid substrate to 4c species, with the hydrophobicity, size, and ability to participate in offset π-stacking interactions of key active-site residues all being critical for activity. The structural changes that occur upon Co(II)rrinoid binding also appear to be crucial for properly orienting the transiently generated Co(I) "supernucleophile" for rapid reaction with cosubstrate ATP.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
19
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
20
|
the Eutt enzyme of Salmonella enterica is a unique ATP:Cob(I)alamin adenosyltransferase metalloprotein that requires ferrous ions for maximal activity. J Bacteriol 2013; 196:903-10. [PMID: 24336938 DOI: 10.1128/jb.01304-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP:co(I)rrinoid adenosyltransferase (ACAT) enzymes convert vitamin B12 to coenzyme B12. EutT is the least understood ACAT. We report the purification of EutT to homogeneity and show that, in vitro, free dihydroflavins drive the adenosylation of cob(II)alamin bound to EutT. Results of chromatography analyses indicate that EutT is dimeric in solution, and unlike other ACATs, EutT catalyzes the reaction with sigmoidal kinetics indicative of positive cooperativity for cob(II)alamin. Maximal EutT activity was obtained after metalation with ferrous ions. EutT/Fe(II) protein lost all activity upon exposure to air and H2O2, consistent with previously reported results indicating that EutT was an oxygen-labile metalloprotein containing a redox-active metal. Results of in vivo and in vitro analyses of single-amino-acid variants affecting a HX11CCXXC(83) motif conserved in EutT proteins showed that residues His67, Cys80, and Cys83 were required for EutT function in vivo, while Cys79 was not. Unlike that of other variants, the activity of the EutT(C80A) variant was undetectable in vitro, suggesting that Cys80 was critical to EutT function. Results of circular dichroism studies indicate that the presence or absence of a metal ion does not affect protein folding. EutT can now be purified in the presence of oxygen and reactivated with ferrous ions for maximal activity.
Collapse
|
21
|
Cheng S, Fan C, Sinha S, Bobik TA. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica. PLoS One 2012; 7:e47144. [PMID: 23077559 PMCID: PMC3471927 DOI: 10.1371/journal.pone.0047144] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/11/2012] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica uses a bacterial microcompartment (MCP) for coenzyme B(12)-dependent 1,2-propanediol (1,2-PD) utilization (Pdu). The Pdu MCP consists of a protein shell that encapsulates enzymes and cofactors required for metabolizing 1,2-PD as a carbon and energy source. Here we show that the PduQ protein of S. enterica is an iron-dependent alcohol dehydrogenase used for 1,2-PD catabolism. PduQ is also demonstrated to be a new component of the Pdu MCP. In addition, a series of in vivo and in vitro studies show that a primary function of PduQ is to recycle NADH to NAD(+) internally within the Pdu MCP in order to supply propionaldehyde dehydrogenase (PduP) with its required cofactor (NAD(+)). Genetic tests determined that a pduQ deletion mutant grew slower than wild-type Salmonella on 1,2-PD and that this phenotype was not complemented by a non-MCP associated Adh2 from Zymomonas that catalyzes the same reaction. This suggests that PduQ has a MCP-specific function. We also found that a pduQ deletion mutant had no growth defect in a genetic background having a second mutation that prevents MCP formation which further supports a MCP-specific role for PduQ. Moreover, studies with purified Pdu MCPs demonstrated that the PduQ enzyme can convert NADH to NAD(+) to supply the PduP reaction in vitro. Cumulatively, these studies show that the PduQ enzyme is used to recycle NADH to NAD(+) internally within the Pdu MCP. To our knowledge, this is the first report of internal recycling as a mechanism for cofactor homeostasis within a bacterial MCP.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chenguang Fan
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Sharmistha Sinha
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
22
|
Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli. Appl Environ Microbiol 2011; 77:6441-50. [PMID: 21803884 DOI: 10.1128/aem.05358-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.
Collapse
|
23
|
Lofgren M, Banerjee R. Loss of allostery and coenzyme B12 delivery by a pathogenic mutation in adenosyltransferase. Biochemistry 2011; 50:5790-8. [PMID: 21604717 PMCID: PMC3119721 DOI: 10.1021/bi2006306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP-dependent cob(I)alamin adenosyltransferase (ATR) is a bifunctional protein: an enzyme that catalyzes the adenosylation of cob(I)alamin and an escort that delivers the product, adenosylcobalamin (AdoCbl or coenzyme B(12)), to methylmalonyl-CoA mutase (MCM), resulting in holoenzyme formation. Failure to assemble holo-MCM leads to methylmalonic aciduria. We have previously demonstrated that only 2 equiv of AdoCbl bind per homotrimer of ATR and that binding of ATP to the vacant active site triggers ejection of 1 equiv of AdoCbl from an adjacent site. In this study, we have mimicked in the Methylobacterium extorquens ATR, a C-terminal truncation mutation, D180X, described in a patient with methylmalonic aciduria, and characterized the associated biochemical penalties. We demonstrate that while k(cat) and K(M)(Cob(I)) for D180X ATR are only modestly decreased (by 3- and 2-fold, respectively), affinity for the product, AdoCbl, is significantly diminished (400-fold), and the negative cooperativity associated with its binding is lost. We also demonstrate that the D180X mutation corrupts ATP-dependent cofactor ejection, which leads to transfer of AdoCbl from wild-type ATR to MCM. These results suggest that the pathogenicity of the corresponding human truncation mutant results from its inability to sequester AdoCbl for direct transfer to MCM. Instead, cofactor release into solution is predicted to reduce the capacity for holo-MCM formation, leading to disease.
Collapse
Affiliation(s)
- Michael Lofgren
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-0600
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109-0600
| |
Collapse
|
24
|
Mera PE, Escalante-Semerena JC. Multiple roles of ATP:cob(I)alamin adenosyltransferases in the conversion of B12 to coenzyme B12. Appl Microbiol Biotechnol 2010; 88:41-8. [PMID: 20677021 PMCID: PMC3034633 DOI: 10.1007/s00253-010-2773-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Our mechanistic understanding of the conversion of vitamin B(12) into coenzyme B(12) (a.k.a. adenosylcobalamin, AdoCbl) has been substantially advanced in recent years. Insights into the multiple roles played by ATP:cob(I)alamin adenosyltransferase (ACA) enzymes have emerged through the crystallographic, spectroscopic, biochemical, and mutational analyses of wild-type and variant proteins. ACA enzymes circumvent the thermodynamic barrier posed by the very low redox potential associated with the reduction of cob(II)alamin to cob(I)alamin by generating a unique four-coordinate cob(II)alamin intermediate that is readily converted to cob(I)alamin by physiological reductants. ACA enzymes not only synthesize AdoCbl but also they deliver it to the enzymes that use it, and in some cases, enzymes in which its function is needed to maintain the fidelity of the AdoCbl delivery process have been identified. Advances in our understanding of ACA enzyme function have provided valuable insights into the role of specific residues, and into why substitutions of these residues have profound negative effects on human health. From an applied science standpoint, a better understanding of the adenosylation reaction may lead to more efficient ways of synthesizing AdoCbl.
Collapse
Affiliation(s)
| | - Jorge C. Escalante-Semerena
- Corresponding author: Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI, 53706-1521, USA; Tel: 608-262-7379; Fax: 608-265-7909;
| |
Collapse
|
25
|
Characterization of the PduS cobalamin reductase of Salmonella enterica and its role in the Pdu microcompartment. J Bacteriol 2010; 192:5071-80. [PMID: 20656910 DOI: 10.1128/jb.00575-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Salmonella enterica degrades 1,2-propanediol (1,2-PD) in a coenzyme B12 (adenosylcobalamin, AdoCbl)-dependent fashion. Salmonella obtains AdoCbl by assimilation of complex precursors, such as vitamin B12 and hydroxocobalamin. Assimilation of these compounds requires reduction of their central cobalt atom from Co3+ to Co2+ to Co+, followed by adenosylation to AdoCbl. In this work, the His6-tagged PduS cobalamin reductase from S. enterica was produced at high levels in Escherichia coli, purified, and characterized. The anaerobically purified enzyme reduced cob(III)alamin to cob(II)alamin at a rate of 42.3±3.2 μmol min(-1) mg(-1), and it reduced cob(II)alamin to cob(I)alamin at a rate of 54.5±4.2 nmol min(-1) mg(-1) protein. The apparent Km values of PduS-His6 were 10.1±0.7 μM for NADH and 67.5±8.2 μM for hydroxocobalamin in cob(III)alamin reduction. The apparent Km values for cob(II)alamin reduction were 27.5±2.4 μM with NADH as the substrate and 72.4±9.5 μM with cob(II)alamin as the substrate. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) indicated that each monomer of PduS contained one molecule of noncovalently bound flavin mononucleotide (FMN). Genetic studies showed that a pduS deletion decreased the growth rate of Salmonella on 1,2-PD, supporting a role in cobalamin reduction in vivo. Further studies demonstrated that the PduS protein is a component of the Pdu microcompartments (MCPs) used for 1,2-PD degradation and that it interacts with the PduO adenosyltransferase, which catalyzes the terminal step of AdoCbl synthesis. These studies further characterize PduS, an unusual MCP-associated cobalamin reductase, and, in conjunction with prior results, indicate that the Pdu MCP encapsulates a complete cobalamin assimilation system.
Collapse
|
26
|
Gray MJ, Escalante-Semerena JC. The cobinamide amidohydrolase (cobyric acid-forming) CbiZ enzyme: a critical activity of the cobamide remodelling system of Rhodobacter sphaeroides. Mol Microbiol 2009; 74:1198-210. [PMID: 19889098 PMCID: PMC3062942 DOI: 10.1111/j.1365-2958.2009.06928.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical structures of cobamides [cobalamin (Cbl)-like compounds] are the same, except for the lower ligand, which in adenosylcobalamin (AdoCbl) is 5,6-dimethylbenzimidazole, and in adenosylpseudocobalamin (AdopseudoCbl) is adenine. Why the lower ligand of cobamides varies and what the mechanism of lower ligand replacement is are long-standing questions in the field of B(12) biosynthesis. Work reported here uncovers the strategy used by the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides to procure the cobamide it needs to grow on acetate as a carbon and energy source. On the basis of genetic and biochemical evidence we conclude that, in R. sphaeroides, the activity of the cobyric acid-producing amidohydrolase CbiZ enzyme is essential for the conversion of AdopseudoCbl into AdoCbl, the cobamide needed for the catabolism of acetate. The CbiZ enzyme uses AdopseudoCbl as a substrate, but not AdoCbl. Implications of these findings for cobamide remodelling in R. sphaeroides and in other CbiZ-containing microorganisms are discussed.
Collapse
Affiliation(s)
- Michael J. Gray
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | | |
Collapse
|
27
|
Mera PE, Escalante-Semerena JC. Dihydroflavin-driven adenosylation of 4-coordinate Co(II) corrinoids: are cobalamin reductases enzymes or electron transfer proteins? J Biol Chem 2009; 285:2911-7. [PMID: 19933577 DOI: 10.1074/jbc.m109.059485] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identity of the source of the biological reductant needed to convert cobalamin to its biologically active form adenosylcobalamin has remained elusive. Here we show that free or protein-bound dihydroflavins can serve as the reductant of Co(2+)Cbl bound in the active site of PduO-type ATP-dependent corrinoid adenosyltransferase enzymes. Free dihydroflavins (dihydroriboflavin, FMNH(2), and FADH(2)) effectively drove the adenosylation of Co(2+)Cbl by the human and bacterial PduO-type enzymes at very low concentrations (1 microm). These data show that adenosyltransferase enzymes lower the thermodynamic barrier of the Co(2+) --> Co(+) reduction needed for the formation of the unique organometalic Co-C bond of adenosylcobalamin. Collectively, our in vivo and in vitro data suggest that cobalamin reductases identified thus far are most likely electron transfer proteins, not enzymes.
Collapse
Affiliation(s)
- Paola E Mera
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53726-1521, USA
| | | |
Collapse
|
28
|
Heldt D, Frank S, Seyedarabi A, Ladikis D, Parsons JB, Warren MJ, Pickersgill RW. Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. Biochem J 2009; 423:199-207. [PMID: 19635047 DOI: 10.1042/bj20090780] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been suggested that ethanol metabolism in the strict anaerobe Clostridium kluyveri occurs within a metabolosome, a subcellular proteinaceous bacterial microcompartment. Two bacterial microcompartment shell proteins [EtuA (ethanol utilization shell protein A) and EtuB] are found encoded on the genome clustered with the genes for ethanol utilization. The function of the bacterial microcompartment is to facilitate fermentation by sequestering the enzymes, substrates and intermediates. Recent structural studies of bacterial microcompartment proteins have revealed both hexamers and pentamers that assemble to generate the pseudo-icosahedral bacterial microcompartment shell. Some of these shell proteins have pores on their symmetry axes. Here we report the structure of the trimeric bacterial microcompartment protein EtuB, which has a tandem structural repeat within the subunit and pseudo-hexagonal symmetry. The pores in the EtuB trimer are within the subunits rather than between symmetry related subunits. We suggest that the evolutionary advantage of this is that it releases the pore from the rotational symmetry constraint allowing more precise control of the fluxes of asymmetric molecules, such as ethanol, across the pore. We also model EtuA and demonstrate that the two proteins have the potential to interact to generate the casing for a metabolosome.
Collapse
Affiliation(s)
- Dana Heldt
- Centre for Molecular Processing, School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Padovani D, Banerjee R. A rotary mechanism for coenzyme B(12) synthesis by adenosyltransferase. Biochemistry 2009; 48:5350-7. [PMID: 19413290 DOI: 10.1021/bi900454s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosyltransferases (ATRs) catalyze the synthesis of the reactive cobalt-carbon bond found in coenzyme B(12) or 5'-deoxyadenosylcobalamin (AdoCbl), which serves as a cofactor for a number of isomerases. The reaction involves a reductive adenosylation of cob(II)alamin in which an electron delivered by a reductase reduces cob(II)alamin to cob(I)alamin, which attacks the 5'-carbon of ATP to form AdoCbl and inorganic triphosphate. Of the three classes of ATRs found in nature, the PduO type, which is also the only one found in mammals, is the most extensively studied. The crystal structures of a number of PduO-type ATRs are available and reveal a trimeric organization with the active sites located at the subunit interfaces. We have previously demonstrated that the ATR from Methylobacterium extorquens, which supports methylmalonyl-CoA mutase activity, serves dual functions; i.e., it tailors the active AdoCbl form of the cofactor and then transfers it directly to the dependent mutase (Padovani et al. (2008) Nat. Chem. Biol. 4, 194). Only two of the three active sites in ATR are simultaneously occupied by AdoCbl. In this study, we demonstrate that binding of the substrate ATP to ATR that is fully loaded with AdoCbl leads to the ejection of 1 equivalent of the cofactor into solution. In the presence of methylmalonyl-CoA mutase and ATP, AdoCbl is transferred from ATR to the acceptor protein in a process that exhibits an approximately 3.5-fold lower K(act) for ATP compared to the one in which cofactor is released into solution. Furthermore, ATP favorably influences cofactor transfer in the forward direction by reducing the ratio of apo-methylmalonyl-CoA mutase/holo-ATR required for delivery of 1 equivalent of AdoCbl, from 4 to 1. These results lead us to propose a rotary mechanism for ATR function in which, at any given time, only two of its active sites are used for AdoCbl synthesis and where binding of ATP to the vacant site leads to the transfer of the high value AdoCbl product to the acceptor mutase.
Collapse
Affiliation(s)
- Dominique Padovani
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-5606, USA
| | | |
Collapse
|
30
|
Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA. Bacterial microcompartments: their properties and paradoxes. Bioessays 2008; 30:1084-95. [PMID: 18937343 PMCID: PMC3272490 DOI: 10.1002/bies.20830] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many bacteria conditionally express proteinaceous organelles referred to here as microcompartments (Fig. 1). These microcompartments are thought to be involved in a least seven different metabolic processes and the number is growing. Microcompartments are very large and structurally sophisticated. They are usually about 100-150 nm in cross section and consist of 10,000-20,000 polypeptides of 10-20 types. Their unifying feature is a solid shell constructed from proteins having bacterial microcompartment (BMC) domains. In the examples that have been studied, the microcompartment shell encases sequentially acting metabolic enzymes that catalyze a reaction sequence having a toxic or volatile intermediate product. It is thought that the shell of the microcompartment confines such intermediates, thereby enhancing metabolic efficiency and/or protecting cytoplasmic components. Mechanistically, however, this creates a paradox. How do microcompartments allow enzyme substrates, products and cofactors to pass while confining metabolic intermediates in the absence of a selectively permeable membrane? We suggest that the answer to this paradox may have broad implications with respect to our understanding of the fundamental properties of biological protein sheets including microcompartment shells, S-layers and viral capsids.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | - Yu Liu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | | | | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
31
|
Crowley CS, Sawaya MR, Bobik TA, Yeates TO. Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Structure 2008; 16:1324-32. [PMID: 18786396 PMCID: PMC5878062 DOI: 10.1016/j.str.2008.05.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 01/07/2023]
Abstract
The Pdu microcompartment is a proteinaceous, subcellular structure that serves as an organelle for the metabolism of 1,2-propanediol in Salmonella enterica. It encapsulates several related enzymes within a shell composed of a few thousand protein subunits. Recent structural studies on the carboxysome, a related microcompartment involved in CO(2) fixation, have concluded that the major shell proteins from that microcompartment form hexamers that pack into layers comprising the facets of the shell. Here we report the crystal structure of PduU, a protein from the Pdu microcompartment, representing the first structure of a shell protein from a noncarboxysome microcompartment. Though PduU is a hexamer like other characterized shell proteins, it has undergone a circular permutation leading to dramatic differences in the hexamer pore. In view of the hypothesis that microcompartment metabolites diffuse across the outer shell through these pores, the unique structure of PduU suggests the possibility of a special functional role.
Collapse
Affiliation(s)
- Christopher S. Crowley
- UCLA Molecular Biology Institute; University of California, Los Angeles (UCLA); Los Angeles, CA, 90095; USA
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics; UCLA; Los Angeles, CA, 90095; USA
| | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology; Iowa State University; Ames, IA, 50011; USA
| | - Todd O. Yeates
- UCLA Molecular Biology Institute; University of California, Los Angeles (UCLA); Los Angeles, CA, 90095; USA
- UCLA-DOE Institute for Genomics and Proteomics; UCLA; Los Angeles, CA, 90095; USA
- UCLA Department of Chemistry and Biochemistry; UCLA; Los Angeles, CA, 90095; USA
| |
Collapse
|
32
|
St Maurice M, Mera P, Park K, Brunold TC, Escalante-Semerena JC, Rayment I. Structural characterization of a human-type corrinoid adenosyltransferase confirms that coenzyme B12 is synthesized through a four-coordinate intermediate. Biochemistry 2008; 47:5755-66. [PMID: 18452306 DOI: 10.1021/bi800132d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP:cob(I)alamin adenosyltransferases (ACAs) catalyze the transfer of the 5'-deoxyadenosyl moiety from ATP to the upper axial ligand position of cobalamin in the synthesis of coenzyme B 12. For the ACA-catalyzed reaction to proceed, cob(II)alamin must be reduced to cob(I)alamin in the enzyme active site. This reduction is facilitated through the generation of a four-coordinate cob(II)alamin intermediate on the enzyme. We have determined the high-resolution crystal structure of a human-type ACA from Lactobacillus reuteri with a four-coordinate cob(II)alamin bound in the enzyme active site and with the product, adenosylcobalamin, partially occupied in the active site. The assembled structures represent snapshots of the steps in the ACA-catalyzed formation of the cobalt-carbon bond of coenzyme B 12. The structures define the corrinoid binding site and provide visual evidence for a base-off, four-coordinate cob(II)alamin intermediate. The complete structural description of ACA-mediated catalysis reveals the molecular features of four-coordinate cob(II)alamin stabilization and provides additional insights into the molecular basis for dysfunction in human patients suffering from methylmalonic aciduria.
Collapse
Affiliation(s)
- Martin St Maurice
- Departments of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fan C, Bobik TA. Functional characterization and mutation analysis of human ATP:Cob(I)alamin adenosyltransferase. Biochemistry 2008; 47:2806-13. [PMID: 18251506 DOI: 10.1021/bi800084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP:cob(I)alamin adenosyltransferase catalyzes the final step in the conversion of vitamin B 12 into the active coenzyme, adenosylcobalamin. Inherited defects in the gene for the human adenosyltransferase (hATR) result in methylmalonyl aciduria (MMA), a rare but life-threatening illness. In this study, we conducted a random mutagenesis of the hATR coding sequence. An ATR-deficient strain of Salmonella was used as a surrogate host to screen for mutations that impaired hATR activity in vivo. Fifty-seven missense mutations were isolated. These mapped to 30 positions of the hATR, 25 of which had not previously been shown to impair enzyme activity. Kinetic analysis and in vivo tests for enzyme activity were performed on the hATR variants, and mutations were mapped onto a hATR structural model. These studies functionally defined the hATR active site and tentatively implicated three amino acid residues in facilitating the reduction of cob(II)alamin to cob(I)alamin which is a prerequisite to adenosylation.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
34
|
Syntheses and characterization of vitamin B12-Pt(II) conjugates and their adenosylation in an enzymatic assay. J Biol Inorg Chem 2007; 13:335-47. [PMID: 18060564 DOI: 10.1007/s00775-007-0329-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
Aiming at the use of vitamin B12 as a drug delivery carrier for cytotoxic agents, we have reacted vitamin B12 with trans-[PtCl(NH3)2(H2O)]+, [PtCl3(NH3)](-) and [PtCl4](2-). These Pt(II) precursors coordinated directly to the Co(III)-bound cyanide, giving the conjugates [(Co)-CN-(trans-PtCl(NH3)2)]+ (5), [(Co)-CN-(trans-PtCl2(NH3))] (6), [(Co)-CN-(cis-PtCl2(NH3))] (7) and [(Co)-CN-(PtCl3)](-) (8) in good yields. Spectroscopic analyses for all compounds and X-ray structure elucidation for 5 and 7 confirmed their authenticity and the presence of the central "Co-CN-Pt" motif. Applicability of these heterodinuclear conjugates depends primarily on serum stability. Whereas 6 and 8 transmetallated rapidly to bovine serum albumin proteins, compounds 5 and 7 were reasonably stable. Around 20% of cyanocobalamin could be detected after 48 h, while the remaining 80% was still the respective vitamin B12 conjugates. Release of the platinum complexes from vitamin B12 is driven by intracellular reduction of Co(III) to Co(II) to Co(I) and subsequent adenosylation by the adenosyltransferase CobA. Despite bearing a rather large metal complex on the beta-axial position, the cobamides in 5 and 7 are recognized by the corrinoid adenosyltransferase enzyme that catalyzes the formation of the organometallic C-Co bond present in adenosylcobalamin after release of the Pt(II) complexes. Thus, vitamin B12 can potentially be used for delivering metal-containing compounds into cells.
Collapse
|
35
|
Tanaka Y, Sasaki T, Kumagai I, Yasutake Y, Yao M, Tanaka I, Tsumoto K. Molecular properties of two proteins homologous to PduO-type ATP:cob(I)alamin adenosyltransferase from Sulfolobus tokodaii. Proteins 2007; 68:446-57. [PMID: 17492665 DOI: 10.1002/prot.21303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the thermophilic archaeon Sulfolobus tokodaii, there are two genes homologous to PduO-type ATP:cob(I)alamin adenosyltransferase, ST1454 and ST2180. To address the structure and function of these two sequence-related proteins from one organism, we prepared them by using the Escherichia coli expression system and analyzed them by immunoblotting, matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy, circular dichroism spectrometry, ATP:cobalamin adenosyltransferase assay, and X-ray crystallography. Immunoblotting and matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy analyses showed that both these proteins are expressed in S. tokodaii cells as soluble proteins and are spontaneously digested at the N-terminal region. ATP:cob(I)alamin adenosyltransferase activity was detected for ST1454 but not for ST2180. ST2180 reduced the concentration of cob(I)alamin, suggesting that ST2180 might recognize cob(I)alamin as a ligand. The secondary structure of ST1454 was retained even in 7 M guanidine hydrochroride, whereas that of ST2180 was melted in 4.5 M guanidine hydrochloride. The X-ray crystal structural analysis revealed that the proteins shared a common structure: a trimer of five-helix bundles with a clockwise kink. There is a pocket surrounded by highly conserved residues, in which a polypropylene glycol 400 in the crystal structure of ST1454 was captured, suggesting that it is an active site. Structural comparison between these two proteins showed the difference in the number of ion pairs around the proposed active site. On the basis of these results, we propose that ST1454 and ST2180 have related but distinct functions.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Escalante-Semerena JC. Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol 2007; 189:4555-60. [PMID: 17483216 PMCID: PMC1913469 DOI: 10.1128/jb.00503-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
St. Maurice M, Mera PE, Taranto MP, Sesma F, Escalante-Semerena JC, Rayment I. Structural characterization of the active site of the PduO-type ATP:Co(I)rrinoid adenosyltransferase from Lactobacillus reuteri. J Biol Chem 2006; 282:2596-605. [PMID: 17121823 PMCID: PMC6574208 DOI: 10.1074/jbc.m609557200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional crystal structure of the PduO-type corrinoid adenosyltransferase from Lactobacillus reuteri (LrPduO) has been solved to 1.68-A resolution. The functional assignment of LrPduO as a corrinoid adenosyltransferase was confirmed by in vivo and in vitro evidence. The enzyme has an apparent Km(ATP) of 2.2 microM and Km(Cobalamin) of 0.13 microM and a kcat of 0.025 s(-1). Co-crystallization of the enzyme with Mg-ATP resulted in well-defined electron density for an N-terminal loop that had been disordered in other PduO-type enzyme structures. This newly defined N-terminal loop makes up the lower portion of the enzyme active site with the other half being contributed from an adjacent subunit. These results provide the first detailed description of the enzyme active site for a PduO-type adenosyltransferase and identify a unique ATP binding motif at the protein N terminus. The molecular architecture at the active site offers valuable new insight into the role of various residues responsible for the human disease methylmalonic aciduria.
Collapse
Affiliation(s)
- Martin St. Maurice
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paola E. Mera
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | - Jorge C. Escalante-Semerena
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- To whom correspondence may be addressed.
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- To whom correspondence may be addressed: Dept. of Biochemistry, 433 Babcock Dr., Madison, WI 53706. Tel.: 608-262-0437; Fax: 608-262-1319;
| |
Collapse
|
38
|
Buan NR, Rehfeld K, Escalante-Semerena JC. Studies of the CobA-type ATP:Co(I)rrinoid adenosyltransferase enzyme of Methanosarcina mazei strain Go1. J Bacteriol 2006; 188:3543-50. [PMID: 16672609 PMCID: PMC1482872 DOI: 10.1128/jb.188.10.3543-3550.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although methanogenic archaea use B(12) extensively as a methyl carrier for methanogenesis, little is known about B(12) metabolism in these prokaryotes or any other archaea. To improve our understanding of how B(12) metabolism differs between bacteria and archaea, the gene encoding the ATP:co(I)rrinoid adenosyltransferase in Methanosarcina mazei strain Gö1 (open reading frame MM3138, referred to as cobA(Mm) here) was cloned and used to restore coenzyme B(12) synthesis in a Salmonella enterica strain lacking the housekeeping CobA enzyme. cobA(Mm) protein was purified and its initial biochemical analysis performed. In vitro, the activity is enhanced 2.5-fold by the addition of Ca(2+) ions, but the activity was not enhanced by Mg(2+) and, unlike the S. enterica CobA enzyme, it was >50% inhibited by Mn(2+). The CobA(Mm) enzyme had a K(m)(ATP) of 3 microM and a K(m)(HOCbl) of 1 microM. Unlike the S. enterica enzyme, CobA(Mm) used cobalamin (Cbl) as a substrate better than cobinamide (Cbi; a Cbl precursor); the beta phosphate of ATP was required for binding to the enzyme. A striking difference between CobA(Se) and CobA(Mm) was the use of ADP as a substrate by CobA(Mm), suggesting an important role for the gamma phosphate of ATP in binding. The results from (31)P-nuclear magnetic resonance spectroscopy experiments showed that triphosphate (PPP(i)) is the reaction by-product; no cleavage of PPP(i) was observed, and the enzyme was only slightly inhibited by pyrophosphate (PP(i)). The data suggested substantial variations in ATP binding and probably corrinoid binding between CobA(Se) and CobA(Mm) enzymes.
Collapse
Affiliation(s)
- Nicole R Buan
- Department of Bacteriology, University of Wisconsin-Madison, 53726, USA
| | | | | |
Collapse
|
39
|
Buan NR, Escalante-Semerena JC. Purification and initial biochemical characterization of ATP:Cob(I)alamin adenosyltransferase (EutT) enzyme of Salmonella enterica. J Biol Chem 2006; 281:16971-16977. [PMID: 16636051 DOI: 10.1074/jbc.m603069200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP:cob(I)alamin adenosyltransferase (EutT) of Salmonella enterica was overproduced and enriched to approximately 70% homogeneity, and its basic kinetic parameters were determined. Abundant amounts of EutT protein were produced, but all of it remained insoluble. Soluble active EutT protein (approximately 70% homogeneous) was obtained after treatment with detergent. Under conditions in which cobalamin (Cbl) was saturating, Km(ATP) = 10 microm, kcat = 0.03 s(-1), and Vmax = 54.5 nm min(-1). Similarly, under conditions in which MgATP was saturating, Km(Cbl) = 4.1 microm, kcat = 0.06 s(-1), and Vmax = 105 nm min(-1). Unlike other ATP:co(I)rrinoid adenosyltransferases in the cell (i.e. CobA and PduO), EutT activity was > or =50-fold higher with ATP versus GTP, and EutT retained 80% of its activity with ADP substituted for ATP and was completely inactive with AMP as substrate, indicating that the enzyme requires the beta-phosphate group of the nucleotide substrate. The data suggest that the amino group of adenine might play a role in nucleotide recognition and/or binding. Unlike the housekeeping CobA enzyme, EutT was not inhibited by inorganic tripolyphosphate (PPPi). Results from 31P NMR spectroscopy studies identified PPi and Pi as by-products of the EutT reaction. In the absence of Cbl, EutT cleaved ATP into adenosine and PPPi, suggesting that PPPi is broken down into PPi and Pi. Electron transfer protein partners for EutT were not encoded by the eut operon. EutT-dependent activity was detected in cell-free extracts of cobA strains enriched for EutT when FMN and NADH were used to reduce cob(III)alamin to cob(I)alamin.
Collapse
Affiliation(s)
- Nicole R Buan
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53726-4087
| | | |
Collapse
|
40
|
Bobik TA. Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 2006; 70:517-25. [PMID: 16525780 DOI: 10.1007/s00253-005-0295-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 11/29/2022]
Abstract
Bacterial polyhedral organelles are extremely large macromolecular complexes consisting of metabolic enzymes encased within a multiprotein shell that is somewhat reminiscent of a viral capsid. Recent investigations suggest that polyhedral organelles are widely used by bacteria for optimizing metabolic processes. The distribution and diversity of these unique structures has been underestimated because many are not formed during growth on standard laboratory media and because electron microscopy is required for their observation. However, recent physiological studies and genomic analyses tentatively indicate seven functionally distinct organelles distributed among over 40 genera of bacteria. Functional studies conducted thus far are consistent with the idea that polyhedral organelles act as microcompartments that enhance metabolic processes by selectively concentrating specific metabolites. Relatively little is known about how this is achieved at the molecular level. Possible mechanisms include regulation of enzyme activity or efficiency, substrate channeling, a selectively permeable protein shell, and/or differential solubility of metabolites within the organelle. Given their complexity and distinctive structure, it would not be surprising if aspects of their biochemical mechanism are unique. Therefore, the unusual structure of polyhedral organelles raises intriguing questions about their assembly, turnover, and molecular evolution, very little of which is understood.
Collapse
Affiliation(s)
- Thomas A Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
41
|
Buan NR, Escalante-Semerena JC. Computer-assisted docking of flavodoxin with the ATP:Co(I)rrinoid adenosyltransferase (CobA) enzyme reveals residues critical for protein-protein interactions but not for catalysis. J Biol Chem 2005; 280:40948-56. [PMID: 16207720 DOI: 10.1074/jbc.m506713200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the housekeeping ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica sv. Typhimurium is required to adenosylate de novo biosynthetic intermediates of adenosylcobalamin and to salvage incomplete and complete corrinoids from the environment of this bacterium. In vitro, reduced flavodoxin (FldA) provides an electron to generate the co(I)rrinoid substrate in the CobA active site. To understand how CobA and FldA interact, a computer model of a CobA.FldA complex was generated. This model was used to guide the introduction of mutations into CobA using site-directed mutagenesis and the synthesis of a peptide mimic of FldA. Residues Arg-9 and Arg-165 of CobA were critical for FldA-dependent adenosylation but were catalytically as competent as the wild-type protein when cob(I)alamin was provided as substrate. These results indicate that Arg-9 and Arg-165 are important for CobA.FldA docking but not to catalysis. A truncation of the 9-amino acid N-terminal helix of CobA reduced its FldA-dependent cobalamin adenosyltransferase activity by 97.4%. The same protein, however, had a 4-fold higher specific activity than the native enzyme when cob(I)alamin was generated chemically in situ.
Collapse
Affiliation(s)
- Nicole R Buan
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53726, USA
| | | |
Collapse
|