1
|
Chen J, Goerdeler F, Jaroentomeechai T, Hernandez FXS, Wang X, Clausen H, Narimatsu Y, Satchell KJF. Vibrio MARTX toxin binding of biantennary N-glycans at host cell surfaces. SCIENCE ADVANCES 2025; 11:eadt0063. [PMID: 40203092 PMCID: PMC11980833 DOI: 10.1126/sciadv.adt0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a diverse effector delivery platform of many Gram-negative bacteria that infect mammals, insects, and aquatic animal hosts. The mechanisms by which these toxins recognize host cell surfaces have remained elusive. Here, we map a surface interaction domain of a MARTX toxin from the highly lethal foodborne pathogen Vibrio vulnificus. This domain corresponds to a 273-amino acid sequence with predicted symmetrical immunoglobulin-like folds. We demonstrate that this domain binds internal N-acetylglucosamine on complex biantennary N-glycans with select preference for L1CAM and other N-glycoproteins with multiple N-glycans on host cell surfaces. This domain is also essential for V. vulnificus pathogenesis during intestinal infection. The identification of a highly conserved motif universally present as part of all N-glycans correlates with the V. vulnificus MARTX toxin having broad specificity and targeting nearly all cell types.
Collapse
Affiliation(s)
- Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Francisco X. S. Hernandez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Chen J, Goerdeler F, Jaroentomeechai T, Hernandez FXS, Wang X, Clausen H, Narimatsu Y, Satchell KJF. Biantennary N-glycans As Receptors for MARTX Toxins in Vibrio Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611726. [PMID: 39314294 PMCID: PMC11418979 DOI: 10.1101/2024.09.12.611726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multifunctional Autoprocessing Repeats-in-Toxin (MARTX) toxins are a diverse effector delivery platform of many Gram-negative bacteria that infect mammals, insects, and aquatic animal hosts. The mechanisms by which these toxins recognize host cell receptors for translocation of toxic effectors into the cell have remained elusive. Here, we map the first surface receptor-binding domain of a MARTX toxin from the highly lethal foodborne pathogen Vibrio vulnificus. This domain corresponds to a 273-amino acid sequence with predicted symmetrical immunoglobulin-like folds. We demonstrate that this domain binds internal N-acetylglucosamine on complex biantennary N-glycans with select preference for L1CAM and other N-glycoproteins with multiple N-glycans on host cell surfaces. This receptor binding domain is essential for V. vulnificus pathogenesis during intestinal infection. The identification of a highly conserved motif universally present as part of all N-glycans correlates with the V. vulnificus MARTX toxin boasting broad specificity and targeting nearly all cell types.
Collapse
Affiliation(s)
- Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Francisco X. S. Hernandez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| |
Collapse
|
3
|
Chen L, Khan H, Tan L, Li X, Zhang G, Im YJ. Structural basis of the activation of MARTX cysteine protease domain from Vibrio vulnificus. PLoS One 2024; 19:e0307512. [PMID: 39093838 PMCID: PMC11296635 DOI: 10.1371/journal.pone.0307512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The multifunctional autoprocessing repeat-in-toxin (MARTX) toxin is the primary virulence factor of Vibrio vulnificus displaying cytotoxic and hemolytic properties. The cysteine protease domain (CPD) is responsible for activating the MARTX toxin by cleaving the toxin precursor and releasing the mature toxin fragments. To investigate the structural determinants for inositol hexakisphosphate (InsP6)-mediated activation of the CPD, we determined the crystal structures of unprocessed and β-flap truncated MARTX CPDs of Vibrio vulnificus strain MO6-24/O in complex with InsP6 at 1.3 and 2.2Å resolution, respectively. The CPD displays a conserved domain with a central seven-stranded β-sheet flanked by three α-helices. The scissile bond Leu3587-Ala3588 is bound in the catalytic site of the InsP6-loaded form of the Cys3727Ala mutant. InsP6 interacts with the conserved basic cleft and the β-flap inducing the active conformation of catalytic residues. The β-flap of the post-CPD is flexible in the InsP6-unbound state. The structure of the CPD Δβ-flap showed an inactive conformation of the catalytic residues due to the absence of interaction between the active site and the β-flap. This study confirms the InsP6-mediated activation of the MARTX CPDs in which InsP6-binding induces conformational changes of the catalytic residues and the β-flap that holds the N terminus of the CPD in the active site, facilitating hydrolysis of the scissile bond.
Collapse
Affiliation(s)
- Lin Chen
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Haider Khan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Lingchen Tan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Xiaojie Li
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Gongchun Zhang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Shaw S, Samanta P, Chowdhury G, Ghosh D, Dey TK, Deb AK, Ramamurthy T, Miyoshi SI, Ghosh A, Dutta S, Mukhopadhyay AK. Altered Molecular Attributes and Antimicrobial Resistance Patterns of Vibrio cholerae O1 El Tor Strains Isolated from the Cholera Endemic Regions of India. J Appl Microbiol 2022; 133:3605-3616. [PMID: 36000378 DOI: 10.1111/jam.15794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to document the comparative analysis of differential hyper-virulent features of Vibrio cholerae O1 strains isolated during 2018 from cholera endemic regions in Gujarat and Maharashtra (Western India) and West Bengal (Eastern India). METHODS AND RESULTS A total of 87 V. cholerae O1 clinical strains from Western India and 48 from Eastern India were analyzed for a number of biotypic and genotypic features followed by antimicrobial resistance (AMR) profile. A novel PCR was designed to detect a large fragment deletion in the Vibrio seventh pandemic island II (VSP-II) genomic region, which is a significant genetic feature of the V. cholerae strains that has caused Yemen cholera outbreak. All the strains from Western India were belong to the Ogawa serotype, polymyxin B-sensitive, hemolytic, had a deletion in VSP-II (VSP-IIC) region and carried Haitian genetic alleles of ctxB, tcpA and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India belonged to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored VSP-II other than VSP-IIC type, classical ctxB, Haitian tcpA and El Tor rtxA alleles. Resistance to tetracycline and chloramphenicol has been observed in strains from both the regions. CONCLUSIONS This study showed hyper-virulent, polymyxin B-sensitive epidemic causing strains in India along with the strains with polymyxin B-resistant and non-hemolytic traits that may spread and cause serious disease outcome in future. SIGNIFICANCE AND IMPACT OF THE STUDY The outcomes of this study can help to improve the understanding of the hyper-pathogenic property of recently circulating pandemic V. cholerae strains in India. A special attention is also needed on the monitoring of AMR surveillance because V. cholerae strains are losing susceptibility to many antibiotics used as a second line of defense in the treatment of cholera.
Collapse
Affiliation(s)
- Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Tanmoy Kumar Dey
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
6
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Gong Y, Guo RH, Rhee JH, Kim YR. TolCV1 Has Multifaceted Roles During Vibrio vulnificus Infection. Front Cell Infect Microbiol 2021; 11:673222. [PMID: 33996641 PMCID: PMC8120275 DOI: 10.3389/fcimb.2021.673222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023] Open
Abstract
RtxA1 is a major cytotoxin of Vibrio vulnificus (V. vulnificus) causing fatal septicemia and necrotic wound infections. Our previous work has shown that RpoS regulates the expression and secretion of V. vulnificus RtxA1 toxin. This study was conducted to further investigate the potential mechanisms of RpoS on RtxA1 secretion. First, V. vulnificus TolCV1 and TolCV2 proteins, two Escherichia coli TolC homologs, were measured at various time points by Western blotting. The expression of TolCV1 was increased time-dependently, whereas that of TolCV2 was decreased. Expression of both TolCV1 and TolCV2 was significantly downregulated in an rpoS deletion mutation. Subsequently, we explored the roles of TolCV1 and TolCV2 in V. vulnificus pathogenesis. Western blot analysis showed that RtxA1 toxin was exported by TolCV1, not TolCV2, which was consistent with the cytotoxicity results. Furthermore, the expression of TolCV1 and TolCV2 was increased after treatment of the host signal bile salt and the growth of tolCV1 mutant was totally abolished in the presence of bile salt. A tolCV1 mutation resulted in significant reduction of V. vulnificus induced-virulence in mice. Taken together, TolCV1 plays key roles in RtxA1 secretion, bile salt resistance, and mice lethality of V. vulnificus, suggesting that TolCV1 could be an attractive target for the design of new medicines to treat V. vulnificus infections.
Collapse
Affiliation(s)
- Yue Gong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, South Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
9
|
Molecular detection and phylogenetic analysis of Vibrio cholerae genotypes in Hillah, Iraq. New Microbes New Infect 2020; 37:100739. [PMID: 32874595 PMCID: PMC7452163 DOI: 10.1016/j.nmni.2020.100739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Vibrio cholerae is a cause of serious endemic diarrhoea associated with cholera in many regions in the world. A total of 256 stool and rectal swabs were collected from patients suspected to have cholera admitted to three hospitals in Hillah, Babylon Governorate, Iraq, for the period 1 September to 29 December 2017. After the routine culture of samples for isolation and identification of V. cholerae isolates, PCR was performed for molecular detection of V. cholerae isolates based on 16S ribosomal RNA gene. Toxigenicity was detected by RTX toxin genes. PCR technique emphasized molecular detection of V. cholerae for eight isolates. Only two isolates (25%) possessed both the rtxA and rtxC genes, while only three isolates (37.5%) possessed the rtxB gene. DNA sequencing was performed for the eight isolates via analysis and phylogenetic tree. The observed bacterial variants were compared to their neighbour homologous reference sequences using the National Center for Biotechnology Information (NCBI) BLAST server (Basic Local Alignment Search Tool; https://blast.ncbi.nlm.nih.gov/Blast.cgi). The findings indicated that the eight investigated isolates of V. cholerae were positioned in three different phylogenetic positions. Partial sequence dissimilarities were reported between GenBank isolate accession number MK212155.1 and these six clustered GenBank accession numbers of the same species. For the first time in Babylon Governorate, Iraq, the molecular assay, sequencing and phylogenetic tree are reported for V. cholerae and their toxins isolated during the 2017 cholera outbreak.
Collapse
|
10
|
Spatiotemporal Regulation of Vibrio Exotoxins by HlyU and Other Transcriptional Regulators. Toxins (Basel) 2020; 12:toxins12090544. [PMID: 32842612 PMCID: PMC7551375 DOI: 10.3390/toxins12090544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
After invading a host, bacterial pathogens secrete diverse protein toxins to disrupt host defense systems. To ensure successful infection, however, pathogens must precisely regulate the expression of those exotoxins because uncontrolled toxin production squanders energy. Furthermore, inappropriate toxin secretion can trigger host immune responses that are detrimental to the invading pathogens. Therefore, bacterial pathogens use diverse transcriptional regulators to accurately regulate multiple exotoxin genes based on spatiotemporal conditions. This review covers three major exotoxins in pathogenic Vibrio species and their transcriptional regulation systems. When Vibrio encounters a host, genes encoding cytolysin/hemolysin, multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, and secreted phospholipases are coordinately regulated by the transcriptional regulator HlyU. At the same time, however, they are distinctly controlled by a variety of other transcriptional regulators. How this coordinated but distinct regulation of exotoxins makes Vibrio species successful pathogens? In addition, anti-virulence strategies that target the coordinating master regulator HlyU and related future research directions are discussed.
Collapse
|
11
|
Guerrero A, Licea-Navarro AF, González-Sánchez R, Lizárraga-Partida ML. Whole-genome comparison between reference sequences and oyster Vibrio vulnificus C-genotype strains. PLoS One 2019; 14:e0220385. [PMID: 31361763 PMCID: PMC6667273 DOI: 10.1371/journal.pone.0220385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/15/2019] [Indexed: 01/22/2023] Open
Abstract
Whole-genome sequences of Vibrio vulnificus clinical genotype (C-genotype) from the CICESE Culture Collection, isolated from oysters, were compared with reference sequences of CMCP6 and YJ016 V. vulnificus C-genotype strains of clinical origin. The RAST web server estimated the whole genome to be ~4.8 Mb in CICESE strain 316 and ~4.7 Mb in CICESE strain 325. No plasmids were detected in the CICESE strains. Based on a phylogenetic tree that was constructed with the whole-genome results, we observed high similarity between the reference sequences and oyster C-genotype isolates and a sharp contrast with environmental genotype (E-genotype) reference sequences, indicating that the differences between the C- and E-genotypes do not necessarily correspond to their isolation origin. The CICESE strains share 3488 genes (63.2%) with the YJ016 strain and 3500 genes (63.9%) with the CMCP6 strain. A total of 237 pathogenicity associated genes were selected from reference clinical strains, where—92 genes were from CMCP6, 126 genes from YJ016, and 19 from MO6-24/O; the presence or absence of these genes was recorded for the CICESE strains. Of the 92 genes that were selected for CMCP6, 67 were present in both CICESE strains, as were as 86 of the 126 YJ016 genes and 13 of the 19 MO6-24/O genes. The detection of elements that are related to virulence in CICESE strains—such as the RTX gene cluster, vvhA and vvpE, the type IV pili cluster, the XII genomic island, and the viuB genes, suggests that environmental isolates with the C-genotype, have significant potential for infection.
Collapse
Affiliation(s)
- Abraham Guerrero
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Alexei Fedorovish Licea-Navarro
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Ricardo González-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Marcial Leonardo Lizárraga-Partida
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
- * E-mail:
| |
Collapse
|
12
|
Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS. Front Microbiol 2019; 9:3216. [PMID: 30687246 PMCID: PMC6333679 DOI: 10.3389/fmicb.2018.03216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Virulent Aeromonas hydrophila causes severe motile Aeromonas septicemia in warmwater fishes. In recent years, channel catfish farming in the U.S.A. and carp farming in China have been affected by virulent A. hydrophila, and genome comparisons revealed that these virulent A. hydrophila strains belong to the same clonal group. Bacterial secretion systems are often important virulence factors; in the current study, we investigated whether secretion systems contribute to the virulent phenotype of these strains. Thus, we conducted comparative secretion system analysis using 55 A. hydrophila genomes, including virulent A. hydrophila strains from U.S.A. and China. Interestingly, tight adherence (TaD) system is consistently encoded in all the vAh strains. The majority of U.S.A. isolates do not possess a complete type VI secretion system, but three core elements [tssD (hcp), tssH, and tssI (vgrG)] are encoded. On the other hand, Chinese isolates have a complete type VI secretion system operon. None of the virulent A. hydrophila isolates have a type III secretion system. Deletion of two genes encoding type VI secretion system proteins (hcp1 and vgrG1) from virulent A. hydrophila isolate ML09-119 reduced virulence 2.24-fold in catfish fingerlings compared to the parent strain ML09-119. By determining the distribution of genes encoding secretion systems in A. hydrophila strains, our study clarifies which systems may contribute to core A. hydrophila functions and which may contribute to more specialized adaptations such as virulence. Our study also clarifies the role of type VI secretion system in A. hydrophila virulence.
Collapse
Affiliation(s)
- Hasan C Tekedar
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Salih Kumru
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Attila Karsi
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
13
|
Kim BS. The Modes of Action of MARTX Toxin Effector Domains. Toxins (Basel) 2018; 10:toxins10120507. [PMID: 30513802 PMCID: PMC6315884 DOI: 10.3390/toxins10120507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Food Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
14
|
Jang SY, Hwang J, Kim BS, Lee EY, Oh BH, Kim MH. Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus. J Biol Chem 2018; 293:18110-18122. [PMID: 30282804 PMCID: PMC6254334 DOI: 10.1074/jbc.ra118.004857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site-coordinating core β-sheet-containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes.
Collapse
Affiliation(s)
- Song Yee Jang
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,; the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and
| | - Jungwon Hwang
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and.
| | - Byoung Sik Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and; the Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Young Lee
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and
| | - Byung-Ha Oh
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,.
| | - Myung Hee Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and.
| |
Collapse
|
15
|
Pérez-Reytor D, Jaña V, Pavez L, Navarrete P, García K. Accessory Toxins of Vibrio Pathogens and Their Role in Epithelial Disruption During Infection. Front Microbiol 2018; 9:2248. [PMID: 30294318 PMCID: PMC6158335 DOI: 10.3389/fmicb.2018.02248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Gastrointestinal episodes associated with Vibrio species have been rising worldwide in the last few years. Consequently, it is important to comprehend how occurs the production of diarrhea, to establish new preventive and therapeutic measures. Besides the classical CT and TCP toxins, Zot, RTX, and Ace among others have been deeply studied in V. cholerae. However, in other Vibrio species of clinical interest, where some of these toxins have been reported, there is practically no information. Zot activates a cascade of signals inside of the cell that increase the permeability of epithelial barrier, while RTX causes depolymerization of the actin cytoskeleton and Ace increases the permeability of intestinal cell monolayers. The goal of this study is to acquire information about the distribution of these toxins in human pathogenic Vibrios and to review the progress in the study of their role in the intestinal epithelium during infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Victor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
16
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
17
|
Lu WJ, Lin HJ, Janganan TK, Li CY, Chin WC, Bavro VN, Lin HTV. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function. Int J Mol Sci 2018; 19:ijms19041000. [PMID: 29584668 PMCID: PMC5979437 DOI: 10.3390/ijms19041000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
Collapse
Affiliation(s)
- Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Thamarai K Janganan
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK.
| | - Cheng-Yi Li
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Wei-Chiang Chin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Vassiliy N Bavro
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| |
Collapse
|
18
|
Fan F, Li X, Pang B, Zhang C, Li Z, Zhang L, Li J, Zhang J, Yan M, Liang W, Kan B. The outer-membrane protein TolC of Vibrio cholerae serves as a second cell-surface receptor for the VP3 phage. J Biol Chem 2017; 293:4000-4013. [PMID: 29259138 DOI: 10.1074/jbc.m117.805689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Receptor recognition is a key step in the initiation of phage infection. Previously, we found that VP3, the T7 family phage of the Vibrio cholerae serogroup O1 biotype El Tor, can adsorb the core oligosaccharide (OS) of lipopolysaccharides of V. cholerae However, some wildtype strains of V. cholerae possessing the intact OS gene cluster still have VP3 binding but are resistant to VP3 infection. Moreover, an OS gene-deletion mutant still exhibits weak VP3 binding, suggesting multiple factors are possibly involved in VP3 binding to V. cholerae Here, we report that the outer-membrane protein TolC of V. cholerae is involved in the host adsorption of VP3. We observed that TolC directly interacts with the VP3 tail fiber protein gp44 and its C-terminal domains, and we also found that three amino acid residues in the outside loops of TolC, at positions 78, 290, and 291, are critical for binding to gp44. Among the VP3-resistant wildtype V. cholerae strains, frequent amino acid residue mutations were observed in the loops around the sites 78, 290, and 291, which were predicted to be exposed to the cell surface. These findings reveal a co-receptor-binding mechanism for VP3 infection of V. cholerae and that both outer-membrane TolC and OS are necessary for successful VP3 infection of V. cholerae We conclude that mutations on the outside loops of the receptor may confer V. cholerae strains with VP3 phage resistance, enabling these strains to survive in environments containing VP3 or related phages.
Collapse
Affiliation(s)
- Fenxia Fan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Xu Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Bo Pang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Cheng Zhang
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Zhe Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Lijuan Zhang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Jie Li
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Jingyun Zhang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Meiying Yan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206
| | - Weili Liang
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, and
| | - Biao Kan
- From the State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, .,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, and
| |
Collapse
|
19
|
Woida PJ, Satchell KJF. Coordinated delivery and function of bacterial MARTX toxin effectors. Mol Microbiol 2017; 107:133-141. [PMID: 29114985 DOI: 10.1111/mmi.13875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
Bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include toxins counteracting or amplifying effects of another toxin or though regulating the stability of virulence factors to remove their function once it is no longer needed. Multifunctional autoprocessing repeats-in toxin (MARTX) toxins are effector delivery toxins that form a pore into the plasma membrane of a eukaryotic cell to deliver multiple effector proteins into the cytosol of the target cell. The function of these proteins includes manipulating actin cytoskeletal dynamics, regulating signal transduction pathways and inhibiting host secretory pathways. Investigations into the molecular mechanisms of these effector domains are providing insight into how the function of some effectors overlap and regulate one another during infection. Coordinated crosstalk of effector function suggests that MARTX toxins are not simply a sum of all their parts. Instead, modulation of cell function by effector domains may depend on which other effector domain are co-delivered. Future studies will elucidate how these effectors interact with each other to modulate the bacterial host interaction.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
22
|
Regulation of Expression of Uropathogenic Escherichia coli Nonfimbrial Adhesin TosA by PapB Homolog TosR in Conjunction with H-NS and Lrp. Infect Immun 2016; 84:811-21. [PMID: 26755158 DOI: 10.1128/iai.01302-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
Urinary tract infections (UTIs) are a major burden to human health. The overwhelming majority of UTIs are caused by uropathogenic Escherichia coli (UPEC) strains. Unlike some pathogens, UPEC strains do not have a fixed core set of virulence and fitness factors but do have a variety of adhesins and regulatory pathways. One such UPEC adhesin is the nonfimbrial adhesin TosA, which mediates adherence to the epithelium of the upper urinary tract. The tos operon is AT rich, resides on pathogenicity island aspV, and is not expressed under laboratory conditions. Because of this, we hypothesized that tosA expression is silenced by H-NS. Lrp, based on its prominent function in the regulation of other adhesins, is also hypothesized to contribute to tos operon regulation. Using a variety of in vitro techniques, we mapped both the tos operon promoter and TosR binding sites. We have now identified TosR as a dual regulator of the tos operon, which could control the tos operon in association with H-NS and Lrp. H-NS is a negative regulator of the tos operon, and Lrp positively regulates the tos operon. Exogenous leucine also inhibits Lrp-mediated tos operon positive regulation. In addition, TosR binds to the pap operon, which encodes another important UPEC adhesin, P fimbria. Induction of TosR synthesis reduces production of P fimbria. These studies advance our knowledge of regulation of adhesin expression associated with uropathogen colonization of a host.
Collapse
|
23
|
Gavin HE, Satchell KJF. MARTX toxins as effector delivery platforms. Pathog Dis 2015; 73:ftv092. [PMID: 26472741 DOI: 10.1093/femspd/ftv092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
24
|
In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc Natl Acad Sci U S A 2015; 112:10491-6. [PMID: 26240338 DOI: 10.1073/pnas.1512424112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The estuarine gram-negative rod and human diarrheal pathogen Vibrio cholerae synthesizes a VPS exopolysaccharide-dependent biofilm matrix that allows it to form a 3D structure on surfaces. Proteins associated with the matrix include, RbmA, RbmC, and Bap1. RbmA, a protein whose crystallographic structure suggests two binding surfaces, associates with cells by means of a VPS-dependent mechanism and promotes biofilm cohesiveness and recruitment of cells to the biofilm. Here, we show that RbmA undergoes limited proteolysis within the biofilm. This proteolysis, which is carried out by the hemagglutinin/protease and accessory proteases, yields the 22-kDa C-terminal polypeptide RbmA*. RbmA* remains biofilm-associated. Unlike full-length RbmA, the association of RbmA* with cells is no longer VPS-dependent, likely due to an electropositive surface revealed by proteolysis. We provide evidence that this proteolysis event plays a role in recruitment of VPS(-) cells to the biofilm surface. Based on our findings, we propose that association of RbmA with the matrix reinforces the biofilm structure and leads to limited proteolysis of RbmA to RbmA*. RbmA*, in turn, promotes recruitment of cells that have not yet initiated VPS synthesis to the biofilm surface. The assignment of two functions to RbmA, separated by a proteolytic event that depends on matrix association, dictates an iterative cycle in which reinforcement of recently added biofilm layers precedes the recruitment of new VPS(-) cells to the biofilm.
Collapse
|
25
|
Dolores JS, Agarwal S, Egerer M, Satchell KJF. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 2015; 95:590-604. [PMID: 25427654 DOI: 10.1111/mmi.12879] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/17/2022]
Abstract
The Vibrio cholerae MARTXVc toxin delivers three effector domains to eukaryotic cells. To study toxin delivery and function of individual domains, the rtxA gene was modified to encode toxin with an in-frame beta-lactamase (Bla) fusion. The hybrid RtxA::Bla toxin was Type I secreted from bacteria; and then Bla was translocated into eukaryotic cells and delivered by autoprocessing, demonstrating that the MARTXVc toxin is capable of heterologous protein transfer. Strains that produce hybrid RtxA::Bla toxins that carry one effector domain in addition to Bla were found to more efficiently translocate Bla. In cell biological assays, the actin cross-linking domain (ACD) and Rho-inactivation domain (RID) are found to cross-link actin and inactivate RhoA, respectively, when other effector domains are absent, with toxin autoprocessing required for high efficiency. The previously unstudied alpha-beta hydrolase domain (ABH) is shown here to activate CDC42, although the effect is ameliorated when RID is also present. Despite all effector domains acting on cytoskeleton assembly, the ACD was sufficient to rapidly inhibit macrophage phagocytosis. Both the ACD and RID independently disrupted polarized epithelial tight junction integrity. The sufficiency of ACD but strong selection for retention of RID and ABH suggests these two domains may primarily function by modulating cell signaling.
Collapse
Affiliation(s)
- Jazel S Dolores
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | |
Collapse
|
26
|
Gillespie JJ, Driscoll TP, Verhoeve VI, Utsuki T, Husseneder C, Chouljenko VN, Azad AF, Macaluso KR. Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol 2014; 7:35-56. [PMID: 25477419 PMCID: PMC4316617 DOI: 10.1093/gbe/evu262] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rickettsia felis (Alphaproteobacteria: Rickettsiales) is the causative agent of an emerging flea-borne rickettsiosis with worldwide occurrence. Originally described from the cat flea, Ctenocephalides felis, recent reports have identified R. felis from other flea species, as well as other insects and ticks. This diverse host range for R. felis may indicate an underlying genetic variability associated with host-specific strains. Accordingly, to determine a potential genetic basis for host specialization, we sequenced the genome of R. felis str. LSU-Lb, which is an obligate mutualist of the parthenogenic booklouse Liposcelis bostrychophila (Insecta: Psocoptera). We also sequenced the genome of R. felis str. LSU, the second genome sequence for cat flea-associated strains (cf. R. felis str. URRWXCal2), which are presumably facultative parasites of fleas. Phylogenomics analysis revealed R. felis str. LSU-Lb diverged from the flea-associated strains. Unexpectedly, R. felis str. LSU was found to be divergent from R. felis str. URRWXCal2, despite sharing similar hosts. Although all three R. felis genomes contain the pRF plasmid, R. felis str. LSU-Lb carries an additional unique plasmid, pLbaR (plasmid of L. bostrychophila associated Rickettsia), nearly half of which encodes a unique 23-gene integrative conjugative element. Remarkably, pLbaR also encodes a repeats-in-toxin-like type I secretion system and associated toxin, heretofore unknown from other Rickettsiales genomes, which likely originated from lateral gene transfer with another obligate intracellular parasite of arthropods, Cardinium (Bacteroidetes). Collectively, our study reveals unexpected genomic diversity across three R. felis strains and identifies several diversifying factors that differentiate facultative parasites of fleas from obligate mutualists of booklice.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Victoria I Verhoeve
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Tadanobu Utsuki
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kevin R Macaluso
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| |
Collapse
|
27
|
Kawano H, Miyamoto K, Yasunobe M, Murata M, Myojin T, Tsuchiya T, Tanabe T, Funahashi T, Sato T, Azuma T, Mino Y, Tsujibo H. The RND protein is involved in the vulnibactin export system in Vibrio vulnificus M2799. Microb Pathog 2014; 75:59-67. [PMID: 25205089 DOI: 10.1016/j.micpath.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022]
Abstract
Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus.
Collapse
Affiliation(s)
- Hiroaki Kawano
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Megumi Yasunobe
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masahiro Murata
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomoka Myojin
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takahiro Tsuchiya
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Takaji Sato
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takashi Azuma
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
28
|
Natividad-Bonifacio I, Fernández FJ, Quiñones-Ramírez EI, Curiel-Quesada E, Vázquez-Salinas C. Presence of virulence markers in environmental Vibrio vulnificus strains. J Appl Microbiol 2013; 114:1539-46. [PMID: 23351134 DOI: 10.1111/jam.12149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/17/2022]
Abstract
AIMS This work aims to demonstrate the presence of several genes and factors associated with virulence in strains isolated from the environment at Pueblo Viejo Lagoon, State of Veracruz, Mexico. METHODS AND RESULTS In this study, we investigated the production of V. vulnificus virulence factors, as cytolysin (haemolysin), RTX toxin, metalloprotease, siderophores, capsular polysaccharide, adhesion structures (like type IV pili), and polar and lateral flagella, involved in swimming and swarming (or, at least, the presence of genes encoding some of them) in 40 strains of V. vulnificus isolated from water and food. The results indicate that strains of environmental origin possess potential virulence characteristics. CONCLUSIONS Caution should be exercised when consuming raw shellfish (especially by those more susceptible risk groups). SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work focused on the evaluation of V. vulnificus virulence factors in Mexico.
Collapse
|
29
|
Liu M, Crosa JH. The regulator HlyU, the repeat-in-toxin gene rtxA1, and their roles in the pathogenesis of Vibrio vulnificus infections. Microbiologyopen 2012; 1:502-13. [PMID: 23233275 PMCID: PMC3535394 DOI: 10.1002/mbo3.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 12/19/2022] Open
Abstract
HlyU is a master regulator that plays an essential role in the virulence of the human pathogen Vibrio vulnificus. One of the most noteworthy characteristics of HlyU regulation in this organism is its positive control of the expression of the repeat-in-toxin (RtxA1) gene, one of the most important virulence factors accounting for the fulminating and damaging nature of V. vulnificus infections. In this work, we reviewed the latest studies of RtxA1 in this bacterium and highlight the mechanism of gene regulation of rtxA1 expression by HlyU under a broader gene regulatory network.
Collapse
Affiliation(s)
- Moqing Liu
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
30
|
Actin cross-linking domain of Aeromonas hydrophila repeat in toxin A (RtxA) induces host cell rounding and apoptosis. Gene 2012; 506:369-76. [PMID: 22814176 DOI: 10.1016/j.gene.2012.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/15/2012] [Accepted: 07/09/2012] [Indexed: 11/24/2022]
Abstract
The repeat in toxin (Rtx) of an environmental isolate ATCC 7966 of Aeromonas hydrophila consists of six genes (rtxACHBDE) organized in an operon similar to the gene organization found for the Rtx of the Vibrio species. The first gene in this operon (rtxA) encodes an exotoxin in vibrios, while other genes code for proteins needed for proper activation of RtxA and in secretion of this toxin from Vibrio cholerae. However, the RtxA of ATCC 7966, as well as from the clinical isolate SSU of A. hydrophila, was exclusively expressed and produced during co-infection of this pathogen with the host, e.g., HeLa cells, indicating that rtxA gene expression required host cell contact. Within the RtxA, an actin cross-linking domain (ACD) exists and to investigate the functionality of this domain, several truncated versions of ACD were generated to discern its minimal biological active region. Such genetically modified genes encoding ACD, which were truncated on either the NH(2) or the COOH terminal, as well as on both ends, were expressed from a bidirectional promoter of the pBI-enhanced green fluorescent protein (EGFP) vector in a HeLa-Tet-Off cell system. We demonstrated that only the full-length ACD of RtxA from A. hydrophila catalyzed the covalent cross-linking of the host cellular actin, whereas the ACD truncated on the NH(2), COOH or both ends did not exhibit such actin cross-linking characteristics. Further, we showed that the full-length ACD of A. hydrophila RtxA disrupted the actin cytoskeleton of HeLa cells, resulting in their rounding phenotype. Finally, our data provided evidence that the full-length ACD of RtxA induced host cell apoptosis. Our study is the first to report that A. hydrophila possesses a functional RtxA having an ACD that contributes to the host cell apoptosis, and hence could represent a potential virulence factor of this emerging human pathogen.
Collapse
|
31
|
Satchell KJ. Structure and Function of MARTX Toxins and Other Large Repetitive RTX Proteins. Annu Rev Microbiol 2011; 65:71-90. [DOI: 10.1146/annurev-micro-090110-102943] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karla J.F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
32
|
Hwang W, Lee NY, Kim J, Lee MA, Kim KS, Lee KH, Park SJ. Functional characterization of EpsC, a component of the type II secretion system, in the pathogenicity of Vibrio vulnificus. Infect Immun 2011; 79:4068-80. [PMID: 21788383 PMCID: PMC3187239 DOI: 10.1128/iai.05351-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/16/2011] [Indexed: 01/22/2023] Open
Abstract
EpsC, one of the components comprising the type II secretion system (T2SS), was isolated from a human-pathogenic bacterium, Vibrio vulnificus, to evaluate its role in eliciting virulence. An espC-deleted mutant of V. vulnificus displayed a reduced cytotoxicity to the human cell line HEp-2 and an attenuated virulence in a mouse model. This mutant exhibited dramatic defects in the secretion of diverse extracellular proteins, such as outer membrane proteins, transporters, and the known secreted factors, notably, a hemolysin (VvhA) and an elastase (VvpE). A defect in its secretion of proteins was restored by in trans complementation of the intact epsC gene. Analyses of cellular fractions revealed that VvhA and VvpE of the ΔepsC mutant were not excreted outside the cell but were present mainly in the periplasmic space. Examination of a V. vulnificus mutant deficient in TolC, a component of the T1SS, showed that it is not involved in the secretion of VvhA and VvpE but that it is necessary for the secretion of another major toxin of V. vulnificus, RtxA. Therefore, the T2SS is required for V. vulnificus pathogenicity, which is mediated by at least two secreted factors, VvhA and VvpE, via facilitating the secretion and exposure of these factors to host cells.
Collapse
Affiliation(s)
- Won Hwang
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Post Brain Korea 21 Program, Yonsei University College of Medicine, Seoul 120-752
- Department of Life Science, Sogang University, Seoul 121-741
| | - Na Yeon Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Post Brain Korea 21 Program, Yonsei University College of Medicine, Seoul 120-752
| | - Juri Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Post Brain Korea 21 Program, Yonsei University College of Medicine, Seoul 120-752
| | - Mi-Ae Lee
- Department of Environmental Sciences, Hankuk University of Foreign Studies, Yongin 449-741, Republic of Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, Seoul 121-741
| | - Kyu-Ho Lee
- Department of Environmental Sciences, Hankuk University of Foreign Studies, Yongin 449-741, Republic of Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Post Brain Korea 21 Program, Yonsei University College of Medicine, Seoul 120-752
| |
Collapse
|
33
|
Abstract
A Vibrio cholerae tolC mutant showed increased toxT expression in M9 medium, but not in the presence of four amino acids that induce cholera toxin production, and in LB with high osmolarity but not high pH or temperature. TolC did not affect expression of other regulatory genes in the ToxR regulon.
Collapse
|
34
|
|
35
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Construction and characterization of rtxA and rtxC mutants of auxotrophic O139 Vibrio cholerae. Microb Pathog 2009; 48:85-90. [PMID: 19900531 DOI: 10.1016/j.micpath.2009.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/21/2022]
Abstract
Vibrio cholerae is a Gram-negative bacterium that causes diarrheal disease. V. cholerae O1 and O139 serogroups are toxigenic and are known to cause epidemic cholera. These serogroups produce cholera toxin and other accessory toxins such as accessory cholera enterotoxin, zonula occludens toxin, and multifunctional, autoprocessing repeat in toxin (MARTX). In the present study, we incorporated mutated rtxA and rtxC genes that encode MARTX toxin into the existing aminolevulinic acid (ALA) auxotrophic vaccine candidate VCUSM2 of V. cholerae O139 serogroup. The rtxC mutant was named VCUSM9 and the rtxC/rtxA mutant was named VCUSM10. VCUSM9 and VCUSM10 were able to colonize intestinal cells well, compared with the parent vaccine strain, and produced no fluid accumulation in a rabbit ileal loop model. Cell rounding and western blotting assays indicated that mutation of the rtxC gene alone (VCUSM9 strain) did not abolish MARTX toxicity. However mutation of both the rtxA and rtxC genes (VCUSM10) completely abolished MARTX toxicity. Thus we have produced a new, less reactogenic, auxotrophic rtxC/rtxA mutated vaccine candidate against O139 V. cholerae.
Collapse
|
38
|
Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJF, Yildiz F, Klose KE. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 2009; 191:6555-70. [PMID: 19717600 PMCID: PMC2795290 DOI: 10.1128/jb.00949-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a motile bacterium responsible for the disease cholera, and motility has been hypothesized to be inversely regulated with virulence. We examined the transcription profiles of V. cholerae strains containing mutations in flagellar regulatory genes (rpoN, flrA, flrC, and fliA) by utilizing whole-genome microarrays. Results revealed that flagellar transcription is organized into a four-tiered hierarchy. Additionally, genes with proven or putative roles in virulence (e.g., ctx, tcp, hemolysin, and type VI secretion genes) were upregulated in flagellar regulatory mutants, which was confirmed by quantitative reverse transcription-PCR. Flagellar regulatory mutants exhibit increased hemolysis of human erythrocytes, which was due to increased transcription of the thermolabile hemolysin (tlh). The flagellar regulatory system positively regulates transcription of a diguanylate cyclase, CdgD, which in turn regulates transcription of a novel hemagglutinin (frhA) that mediates adherence to chitin and epithelial cells and enhances biofilm formation and intestinal colonization in infant mice. Our results demonstrate that the flagellar regulatory system modulates the expression of nonflagellar genes, with induction of an adhesin that facilitates colonization within the intestine and repression of virulence factors maximally induced following colonization. These results suggest that the flagellar regulatory hierarchy facilitates correct spatiotemporal expression patterns for optimal V. cholerae colonization and disease progression.
Collapse
Affiliation(s)
- Khalid Ali Syed
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Sinem Beyhan
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Nidia Correa
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Jessica Queen
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Jirong Liu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Fen Peng
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Karla J. F. Satchell
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Fitnat Yildiz
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, Department of Microbiology-Immunology, Northwestern University Medical School, Evanston, Illinois
| |
Collapse
|
39
|
Localization and characterization of VVA0331, a 489-kDa RTX-like protein, in Vibrio vulnificus YJ016. Arch Microbiol 2009; 191:441-50. [PMID: 19326097 DOI: 10.1007/s00203-009-0471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus YJ016 contains three genes encoding proteins homologous to repeats-in-toxin proteins. One of these genes, vva0331, possesses a long open reading frame of 13,971 bp in length and resides on the small chromosome between two gene clusters encoding a type I secretion system and several regulatory proteins, respectively. Bioinformatic analysis revealed that VVA0331 consist of nineteen 87-amino acid repeats, two Arg-Gly-Asp motifs, four cysteine residues, an outer membrane protein domain, a polysaccharide-binding site and several motifs related to cell adhesions. These features are distinct from those of typical repeat-in-toxins and autotransporter adhesins. Real-time quantitative PCR analysis indicates that vva0331 gene expression is activated at 30 degrees C and regulated by iron. In addition, VVA0331 is present primarily in a secreted form as determined by cell fractionation assay and Western blot analysis. No significant difference in Hep2 cell adherence, cytotoxicity, and virulence was observed between the wild type and vva0331 mutant strains. In contrast, these strains exhibited apparently different outer membrane protein profiles, and antiserum raised against C-terminal region of VVA0331 reacted with an 85-kDa outer membrane protein of V. vulnificus YJ016.
Collapse
|
40
|
|
41
|
Lee BC, Choi SH, Kim TS. Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect 2008; 10:1504-13. [DOI: 10.1016/j.micinf.2008.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 01/06/2023]
|
42
|
Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 2008; 10:2368-86. [PMID: 18484997 DOI: 10.1111/j.1462-2920.2008.01662.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudomonas fluorescens CHA0 and the related strain Pf-5 are well-characterized representatives of rhizosphere bacteria that have the capacity to protect crop plants from fungal root diseases, mainly by releasing a variety of exoproducts that are toxic to plant pathogenic fungi. Here, we report that the two plant-beneficial pseudomonads also exhibit potent insecticidal activity. Anti-insect activity is linked to a novel genomic locus encoding a large protein toxin termed Fit (for P. fluorescensinsecticidal toxin) that is related to the insect toxin Mcf (Makes caterpillars floppy) of the entomopathogen Photorhabdus luminescens, a mutualist of insect-invading nematodes. When injected into the haemocoel, even low doses of P. fluorescens CHA0 or Pf-5 killed larvae of the tobacco hornworm Manduca sexta and the greater wax moth Galleria mellonella. In contrast, mutants of CHA0 or Pf-5 with deletions in the Fit toxin gene were significantly less virulent to the larvae. When expressed from an inducible promoter in a non-toxic Escherichia coli host, the Fit toxin gene was sufficient to render the bacterium toxic to both insect hosts. Our findings establish the Fit gene products of P. fluorescens CHA0 and Pf-5 as potent insect toxins that define previously unappreciated anti-insect properties of these plant-colonizing bacteria.
Collapse
Affiliation(s)
- Maria Péchy-Tarr
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun 2008; 76:2620-32. [PMID: 18378637 DOI: 10.1128/iai.01308-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum is the causative agent of vibriosis in fish. Hemolysins of V. anguillarum have been considered virulence factors during infection. One hemolysin gene, vah1, has been previously identified but does not account for all hemolytic activity. The mini-Tn10Km mutagenesis performed with a vah1 mutant resulted in a hemolysin-negative mutant. The region surrounding the mutation was cloned and sequenced, revealing a putative rtx operon with six genes (rtxACHBDE), where rtxA encodes an exotoxin, rtxC encodes an RtxA activator, rtxH encodes a conserved hypothetical protein, and rtxBDE encode the ABC transporters. Single mutations in rtx genes did not result in a hemolysin-negative phenotype. However, strains containing a mutation in vah1 and a mutation in an rtx gene resulted in a hemolysin-negative mutant, demonstrating that the rtx operon is a second hemolysin gene cluster in V. anguillarum M93Sm. Reverse transcription-PCR analysis revealed that the rtxC and rtxA genes are cotranscribed, as are the rtxBDE genes. Additionally, Vah1 and RtxA each have cytotoxic activity against Atlantic salmon kidney (ASK) cells. Single mutations in vah1 or rtxA attenuate the cytotoxicity of V. anguillarum M93Sm. A vah1 rtxA double mutant is no longer cytotoxic. Moreover, Vah1 and RtxA each have a distinct cytotoxic effect on ASK cells, Vah1 causes cell vacuolation, and RtxA causes cell rounding. Finally, wild-type and mutant strains were tested for virulence in juvenile Atlantic salmon. Only strains containing an rtxA mutation had reduced virulence, suggesting that RtxA is a major virulence factor for V. anguillarum.
Collapse
|
44
|
Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 2008; 76:1509-17. [PMID: 18250174 DOI: 10.1128/iai.01503-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Numerous secreted virulence factors have been proposed to account for the fulminating and destructive nature of Vibrio vulnificus infections. A mutant of V. vulnificus that exhibited less cytotoxicity to INT-407 human intestinal epithelial cells was screened from a library of mutants constructed by random transposon mutagenesis. A transposon-tagging method was used to identify and clone an open reading frame encoding an RTX toxin secretion ATP binding protein, RtxE, from V. vulnificus. The deduced amino acid sequence of RtxE from V. vulnificus was 91% identical to that reported from Vibrio cholerae. Functions of the rtxE gene in virulence were assessed by constructing an isogenic mutant whose rtxE gene was inactivated by allelic exchanges and by evaluating the differences between its virulence phenotype and that of the wild type in vitro and in mice. The disruption of rtxE blocked secretion of RtxA to the cell exterior and resulted in a significant reduction in cytotoxic activity against epithelial cells in vitro. Also, the intraperitoneal 50% lethal dose of the rtxE mutant was 10(4) to 10(5) times higher than that of the parental wild type, indicating that RtxE is essential for the virulence of V. vulnificus. Furthermore, the present study demonstrated that the rtxBDE genes are transcribed as one transcriptional unit under the control of a single promoter, P(rtxBDE). The activity of V. vulnificus P(rtxBDE) is induced by exposure to INT-407 cells, and the induction requires direct contact of the bacteria with the host cells.
Collapse
|
45
|
A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 2007; 190:1638-48. [PMID: 18156267 DOI: 10.1128/jb.01484-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Vibrio vulnificus, a marine bacterial species pathogenic for humans and eels, are divided into three biotypes, and those virulent for eels are classified as biotype 2. All biotype 2 strains possess one or more plasmids, which have been shown to harbor the biotype 2-specific DNA sequences. In this study we determined the DNA sequences of three biotype 2 plasmids: pR99 (68.4 kbp) in strain CECT4999 and pC4602-1 (56.6 kb) and pC4602-2 (66.9 kb) in strain CECT4602. Plasmid pC4602-2 showed 92% sequence identity with pR99. Curing of pR99 from strain CECT4999 resulted in loss of resistance to eel serum and virulence for eels but had no effect on the virulence for mice, an animal model, and resistance to human serum. Plasmids pC4602-2 and pR99 could be transferred to the plasmid-cured strain by conjugation in the presence of pC4602-1, which was self-transmissible, and acquisition of pC4602-2 restored the virulence of the cured strain for eels. Therefore, both pR99 and pC4602-2 were virulence plasmids for eels but not mice. A gene in pR99, which encoded a novel protein and had an equivalent in pC4602-2, was further shown to be essential, but not sufficient, for the resistance to eel serum and virulence for eels. There was evidence showing that pC4602-2 may form a cointegrate with pC4602-1. An investigation of six other biotype 2 strains for the presence of various plasmid markers revealed that they all harbored the virulence plasmid and four of them possessed the conjugal plasmid in addition.
Collapse
|
46
|
Affiliation(s)
- Karla J Fullner Satchell
- Department of Microbiology-Immunology, Northwestern University Medical School, Tarry 3-713, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Sheahan KL, Cordero CL, Satchell KJF. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 2007; 26:2552-61. [PMID: 17464284 PMCID: PMC1868911 DOI: 10.1038/sj.emboj.7601700] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 03/30/2007] [Indexed: 11/09/2022] Open
Abstract
Vibrio cholerae RTX is a large multifunctional bacterial toxin that causes actin crosslinking. Due to its size, it was predicted to undergo proteolytic cleavage during translocation into host cells to deliver activity domains to the cytosol. In this study, we identified a domain within the RTX toxin that is conserved in large clostridial glucosylating toxins TcdB, TcdA, TcnA, and TcsL; putative toxins from V. vulnificus, Yersinia sp., Photorhabdus sp., and Xenorhabdus sp.; and a filamentous/hemagglutinin-like protein FhaL from Bordetella sp. In vivo transfection studies and in vitro characterization of purified recombinant protein revealed that this domain from the V. cholerae RTX toxin is an autoprocessing cysteine protease whose activity is stimulated by the intracellular environment. A cysteine point mutation within the RTX holotoxin attenuated actin crosslinking activity suggesting that processing of the toxin is an important step in toxin translocation. Overall, we have uncovered a new mechanism by which large bacterial toxins and proteins deliver catalytic activities to the eukaryotic cell cytosol by autoprocessing after translocation.
Collapse
Affiliation(s)
- Kerri-Lynn Sheahan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christina L Cordero
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karla J Fullner Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
48
|
Abstract
Many bacterial toxins target small Rho GTPases in order to manipulate the actin cytoskeleton. The depolymerization of the actin cytoskeleton by the Vibrio cholerae RTX toxin was previously identified to be due to the unique mechanism of covalent actin cross-linking. However, identification and subsequent deletion of the actin cross-linking domain within the RTX toxin revealed that this toxin has an additional cell rounding activity. In this study, we identified that the multifunctional RTX toxin also disrupts the actin cytoskeleton by causing the inactivation of small Rho GTPases, Rho, Rac and Cdc42. Inactivation of Rho by RTX was reversible in the presence of cycloheximide and by treatment of cells with CNF1 to constitutively activate Rho. These data suggest that RTX targets Rho GTPase regulation rather than affecting Rho GTPase directly. A novel 548-amino-acid region of RTX was identified to be responsible for the toxin-induced inactivation of the Rho GTPases. This domain did not carry GAP or phosphatase activities. Overall, these data show that the RTX toxin reversibly inactivates Rho GTPases by a mechanism distinct from other Rho-modifying bacterial toxins.
Collapse
Affiliation(s)
- Kerri-Lynn Sheahan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Karla J. Fullner Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
49
|
Liu M, Alice AF, Naka H, Crosa JH. The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infect Immun 2007; 75:3282-9. [PMID: 17438022 PMCID: PMC1932941 DOI: 10.1128/iai.00045-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen that preferentially infects compromised iron-overloaded patients, causing a fatal primary septicemia with very rapid progress, resulting in a high mortality rate. In this study we determined that the HlyU protein, a virulence factor in V. vulnificus CMCP6, up-regulates the expression of VV20479, a homologue of the Vibrio cholerae RTX (repeats in toxin) toxin gene that we named rtxA1. This gene is part of an operon together with two other open reading frames, VV20481 and VV20480, that encode two predicted proteins, a peptide chain release factor 1 and a hemolysin acyltransferase, respectively. A mutation in rtxA1 not only contributes to the loss of cytotoxic activity but also results in a decrease in virulence, whereas a deletion of VV20481 and VV20480 causes a slight decrease in virulence but with no effect in cytotoxicity. Activation of the expression of the rtxA1 operon by HlyU occurs at the transcription initiation level by binding of the HlyU protein to a region upstream of this operon.
Collapse
Affiliation(s)
- Moqing Liu
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
50
|
Boardman BK, Meehan BM, Fullner Satchell KJ. Growth phase regulation of Vibrio cholerae RTX toxin export. J Bacteriol 2007; 189:1827-35. [PMID: 17189368 PMCID: PMC1855747 DOI: 10.1128/jb.01766-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 12/13/2006] [Indexed: 12/30/2022] Open
Abstract
Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, secretes several "accessory" toxins, including RTX toxin, which causes the cross-linking of the actin cytoskeleton. RTX toxin is exported to the extracellular milieu by an atypical type I secretion system (T1SS), and we previously noted that RTX-associated activity is detectable only in supernatant fluids from log phase cultures. Here, we investigate the mechanisms for regulating RTX toxin activity in supernatant fluids. We find that exported proteases are capable of destroying RTX activity and may therefore play a role in the growth phase regulation of toxin activity. We determined that the absence of RTX toxin in stationary-phase culture supernatant fluids is also due to a lack of toxin secretion and not attributable to solely proteolytic degradation. We ascertained that the T1SS apparatus is regulated at the transcriptional level by growth phase control that is independent of quorum sensing, unlike other virulence factors of V. cholerae. Additionally, in stationary-phase cultures, all RTX toxin activity is associated with bacterial membranes or outer membrane vesicles.
Collapse
Affiliation(s)
- Bethany Kay Boardman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|