1
|
He X, Zhang W, Liu J, Liu J, Chen Y, Luan C, Zhang J, Bao G, Lin X, Muh F, Lin T, Lu F. The global regulatory role of RsbUVW in virulence and biofilm formation in MRSA. Microb Pathog 2025; 203:107508. [PMID: 40158706 DOI: 10.1016/j.micpath.2025.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The widespread prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has caused serious challenges to clinical treatment. This study was designed to explore effective targets for MRSA prevention and control. The key virulence regulator was screened through the correlation analysis between virulence and various regulatory factors in the main clinical epidemic MRSA. The potential key factors were inactivated to further evaluate the inhibitory effect on the virulence of MRSA standard strain S. aureus ATCC43300 and its influence on drug resistance and biofilm formation. Enterobacterial repetitive intergenic consensus-PCR was used to analyze the clinical epidemic genotypes of MRSA. The virulence of MRSA was evaluated mainly by measuring its adhesion and invasion ability to A549 cells, the lethality to Galleria mellonella larvae, and the transcription level of related genes. The biofilm formation was assessed by crystal violet staining on polystyrene microplates. The results showed that most virulence factors of clinical representative MRSA strain were significantly positively correlated with RsbUVW system. After knocking out the rsbV gene, a key component of the rsbUVW system, the virulence of S. aureus ATCC43300 was significantly reduced (P < 0.05), as indicated by a significant decrease in lethality against G. mellonella larvae and invasion against A549 cells, and a significant decrease in the expression of immune escape related virulence factors polysaccharide intercellular adhesin (PIA) and staphyloxanthin. The biomass and stability of protein-dependent biofilm by S. aureus ATCC43300 were significantly increased. This study will provide useful information for the effective prevention and control of MRSA.
Collapse
Affiliation(s)
- Xinlong He
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225001, China
| | - Wenwen Zhang
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, Affiliated Hospital of East China Normal University, Shanghai, 200050, China
| | - Jie Liu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Jiali Liu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yinsong Chen
- Department of Lung, Third People's Hospital of Yangzhou, Yangzhou, China
| | - Changjiao Luan
- Department of Lung, Third People's Hospital of Yangzhou, Yangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Guangyu Bao
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Xiangfang Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Fauzi Muh
- Department of Epidemiology & Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia
| | - Tao Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China.
| | - Feng Lu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
2
|
Males A, Moroz OV, Blagova E, Munch A, Hansen GH, Johansen AH, Østergaard LH, Segura DR, Eddenden A, Due AV, Gudmand M, Salomon J, Sørensen SR, Franco Cairo JPL, Nitz M, Pache RA, Vejborg RM, Bhosale S, Vocadlo DJ, Davies GJ, Wilson KS. Expansion of the diversity of dispersin scaffolds. Acta Crystallogr D Struct Biol 2025; 81:130-146. [PMID: 40019001 PMCID: PMC11883664 DOI: 10.1107/s205979832500110x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Microorganisms are known to secrete copious amounts of extracellular polymeric substances (EPS) that form complex matrices around the cells to shield them against external stresses, to maintain structural integrity and to influence their environment. Many microorganisms also secrete enzymes that are capable of remodelling or degrading EPS in response to various environmental cues. One key enzyme class is the poly-β-1,6-linked N-acetyl-D-glucosamine (PNAG)-degrading glycoside hydrolases, of which the canonical member is dispersin B (DspB) from CAZy family GH20. We sought to test the hypothesis that PNAG-degrading enzymes would be present across family GH20, resulting in expansion of the sequence and structural space and thus the availability of PNAGases. Phylogenetic analysis revealed that several microorganisms contain potential DspB-like enzymes. Six of these were expressed and characterized, and four crystal structures were determined (two of which were in complex with the established GH20 inhibitor 6-acetamido-6-deoxy-castanospermine and one with a bespoke disaccharide β-1,6-linked thiazoline inhibitor). One enzyme expressed rather poorly, which restricted crystal screening and did not allow activity measurements. Using synthetic PNAG oligomers and MALDI-TOF analysis, two of the five enzymes tested showed preferential endo hydrolytic activity. Their sequences, having only 26% identity to the pioneer enzyme DspB, highlight the considerable array of previously unconsidered dispersins in nature, greatly expanding the range of potential dispersin backbones available for societal application and engineering.
Collapse
Affiliation(s)
- Alexandra Males
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Astrid Munch
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | | | | | | | | | | | - Anne V. Due
- Novonesis A/S, Krogshøjvej 36, 2880Bagsvaerd, Denmark
| | - Martin Gudmand
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | - Jesper Salomon
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | | | | | - Mark Nitz
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Roland A. Pache
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | | | - Sandeep Bhosale
- Department of ChemistrySimon Fraser UniversityBurnabyBritish ColumbiaV5A 1S6Canada
| | - David J. Vocadlo
- Department of ChemistrySimon Fraser UniversityBurnabyBritish ColumbiaV5A 1S6Canada
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| |
Collapse
|
3
|
Zhang J, Hao J, Wang J, Li H, Zhao D. Strategic manipulation of biofilm dispersion for controlling Listeria monocytogenes infections. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39367886 DOI: 10.1080/10408398.2024.2409340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Listeria monocytogenes (L. monocytogenes), a gram-positive foodborne pathogen that can easily cause listeriosis. It secretes extracellular polymers and forms biofilms that are highly resistant to disinfection methods, such as UV light and germicides, posing risks to food processing equipment and food quality. Dispersion of biofilm is the cycle of its formation in which the bacteria return to planktonic state and become susceptible to antimicrobials, the strategic manipulation of biofilm dispersion is thus heralded as a novel and promising approach for the effective control of biofilm-related infections. Compared to the traditional methods, it is more effective to start with the composition of biofilms, cut off the production of their constituent substances, and genetically reduce the probability of biofilm formation. Meanwhile, the dispersion of bacteria can be supplemented with exogenous substances, making long-term control possible. This paper provides a brief but comprehensive overview of the mechanisms of L. monocytogenes biofilms or cross-contamination and their resistance properties, and facilitates our understanding and control of the prevention and containment of L. monocytogenes biofilm contamination based on the biofilm's active and passive diffusion strategies. This work provides practical guidelines for the food industry to guard against the enduring threat to food safety due to L. monocytogenes biofilms.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jingyi Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huiying Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
4
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024; 13:668. [PMID: 39204268 PMCID: PMC11357414 DOI: 10.3390/pathogens13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The extracellular matrix of most bacterial biofilms contains polysaccharides, proteins, and nucleic acids. These biopolymers have been shown to mediate fundamental biofilm-related phenotypes including surface attachment, intercellular adhesion, and biocide resistance. Enzymes that degrade polymeric biofilm matrix components, including glycoside hydrolases, proteases, and nucleases, are useful tools for studying the structure and function of biofilm matrix components and are also being investigated as potential antibiofilm agents for clinical use. Dispersin B is a well-studied, broad-spectrum antibiofilm glycoside hydrolase produced by Aggregatibacter actinomycetemcomitans. Dispersin B degrades poly-N-acetylglucosamine, a biofilm matrix polysaccharide that mediates biofilm formation, stress tolerance, and biocide resistance in numerous Gram-negative and Gram-positive pathogens. Dispersin B has been shown to inhibit biofilm and pellicle formation; detach preformed biofilms; disaggregate bacterial flocs; sensitize preformed biofilms to detachment by enzymes, detergents, and metal chelators; and sensitize preformed biofilms to killing by antiseptics, antibiotics, bacteriophages, macrophages, and predatory bacteria. This review summarizes the results of nearly 100 in vitro and in vivo studies that have been carried out on dispersin B since its discovery 20 years ago. These include investigations into the biological function of the enzyme, its structure and mechanism of action, and its in vitro and in vivo antibiofilm activities against numerous bacterial species. Also discussed are potential clinical applications of dispersin B.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
| | - Svetlana A. Sukhishvili
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA;
| | | | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| |
Collapse
|
6
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
8
|
Moran CL, Debowski A, Vrielink A, Stubbs K, Sarkar-Tyson M. N-acetyl-β-hexosaminidase activity is important for chitooligosaccharide metabolism and biofilm formation in Burkholderia pseudomallei. Environ Microbiol 2024; 26:e16571. [PMID: 38178319 DOI: 10.1111/1462-2920.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-β-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-β-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-β-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.
Collapse
Affiliation(s)
- Clare L Moran
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Aleksandra Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Keith Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
9
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
10
|
Joardar I, Dutta S. A Selective Review on the Novel Approaches and Potential Control Agents of Anti-biofouling and Anti-biofilming. Appl Biochem Biotechnol 2023; 195:5605-5617. [PMID: 36066803 DOI: 10.1007/s12010-022-04160-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Specific aggregates of bacterial colonies, which, when embedded in a self-produced matrix, are known to cause biofouling. These complex structures are highly resistant to extreme stress conditions like antibiotics, complex cleaning strategies, or even the human immune system. The formation of biofilm matrices and biofouling is chosen as the preferred microbial environment owing to the advantages offered for the embedded cells for their long-term survival. This increased resistance and virulence emphasizes the urgency of finding newer alternatives for its complete eradication. Combined approaches using enzymes, biomimetic surface modification, and a fusion of physical and chemical methods are gaining more prominence. In brief, this review discusses the structure and biology of biofilms, their mechanism of action, and the new-age anti-biofilm and biofouling agents in food industries, bioelectric, and medical devices. Current anti-biofouling methods, including engineered polymers, surface coatings to antimicrobials, and antibiotics, have also been described.
Collapse
Affiliation(s)
- Ishani Joardar
- Department of Biotechnology, Haldia Institute of Technology (HIT), ICARE Complex, Hatiberia, Haldia, West Bengal, India, 721657
| | - Subhasish Dutta
- Department of Biotechnology, Haldia Institute of Technology (HIT), ICARE Complex, Hatiberia, Haldia, West Bengal, India, 721657.
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab, India, 140306.
| |
Collapse
|
11
|
Kumar S, Kapkoti DS, Mina PR, Gupta M, Kumar R, Kumar P, Pathak P, Bhakuni RS, Rout P, Pal A, Darokar MP. Effect of liquiritigenin on chloroquine accumulation in digestive vacuole leading to apoptosis-like death of chloroquine-resistant P. falciparum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154738. [PMID: 36940579 DOI: 10.1016/j.phymed.2023.154738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Malaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PURPOSE To evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. METHODS The in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. RESULTS LTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. CONCLUSION LTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.
Collapse
Affiliation(s)
- Saurabh Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepak Singh Kapkoti
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Pooja Rani Mina
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Madhuri Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ravi Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Parmanand Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Priyanka Pathak
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - R S Bhakuni
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Prasant Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anirban Pal
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| | - Mahendra P Darokar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
12
|
Zhang Q, Peng L, Han W, Chen H, Tang H, Chen X, Langford PR, Huang Q, Zhou R, Li L. The morphology and metabolic changes of Actinobacillus pleuropneumoniae during its growth as a biofilm. Vet Res 2023; 54:42. [PMID: 37237397 PMCID: PMC10224306 DOI: 10.1186/s13567-023-01173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen. Previous studies have suggested that growth as a biofilm is a natural state of A. pleuropneumoniae infection. To understand the survival features involved in the biofilm state, the growth features, morphology and gene expression profiles of planktonic and biofilm A. pleuropneumoniae were compared. A. pleuropneumoniae in biofilms showed reduced viability but maintained the presence of extracellular polymeric substances (EPS) after late log-phase. Under the microscope, bacteria in biofilms formed dense aggregated structures that were connected by abundant EPS, with reduced condensed chromatin. By construction of Δpga and ΔdspB mutants, polymeric β-1,6-linked N-acetylglucosamine and dispersin B were confirmed to be critical for normal biofilm formation. RNA-seq analysis indicated that, compared to their planktonic counterparts, A. pleuropneumoniae in biofilms had an extensively altered transcriptome. Carbohydrate metabolism, energy metabolism and translation were significantly repressed, while fermentation and genes contributing to EPS synthesis and translocation were up-regulated. The regulators Fnr (HlyX) and Fis were found to be up-regulated and their binding motifs were identified in the majority of the differentially expressed genes, suggesting their coordinated global role in regulating biofilm metabolism. By comparing the transcriptome of wild-type biofilm and Δpga, the utilization of oligosaccharides, iron and sulfur and fermentation were found to be important in adhesion and aggregation during biofilm formation. Additionally, when used as inocula, biofilm bacteria showed reduced virulence in mouse, compared with planktonic grown cells. Thus, these results have identified new facets of A. pleuropneumoniae biofilm maintenance and regulation.
Collapse
Affiliation(s)
- Qiuhong Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Lu Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Weiyao Han
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hongyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hao Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, Hubei, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, Hubei, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, Hubei, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, Hubei, China.
| |
Collapse
|
13
|
Schaffer SD, Hutchison CA, Rouchon CN, Mdluli NV, Weinstein AJ, McDaniel D, Frank KL. Diverse Enterococcus faecalis strains show heterogeneity in biofilm properties. Res Microbiol 2023; 174:103986. [PMID: 35995340 PMCID: PMC9825631 DOI: 10.1016/j.resmic.2022.103986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Biofilm formation is important for Enterococcus faecalis to cause healthcare-associated infections. It is unclear how E. faecalis biofilms vary in parameters such as development and composition. To test the hypothesis that differences in biofilms exist among E. faecalis strains, we evaluated in vitro biofilm formation and matrix characteristics of five genetically diverse E. faecalis lab-adapted strains and clinical isolates (OG1RF, V583, DS16, MMH594, and VA1128). Biofilm formation of all strains was repressed in TSB+10% FBS. However, DMEM+10% FBS enhanced biofilm formation of clinical isolate VA1128. Crystal violet staining and fluorescence microscopy of biofilms grown on Aclar membranes demonstrated differences between OG1RF and VA1128 in biofilm development over a 48-h time course. None of the biofilms were dispersed by single treatments of sodium (meta)periodate, DNase, or Proteinase K alone, but the biofilm biomass of both OG1RF and DS16 was partially removed by a sequential treatment of sodium (meta)periodate and DNase. Reversing the treatment order was not effective, suggesting that the extracellular DNA targeted by DNase was obscured by carbohydrates that are susceptible to sodium (meta)periodate degradation. Fluorescent staining of biofilm matrix components further demonstrated that more carbohydrates bound by wheat germ agglutinin comprise OG1RF biofilms compared to VA1128 biofilms. This study highlights the existence of heterogeneity in biofilm properties among diverse E. faecalis strains, which may have implications for the design of novel anti-biofilm treatment strategies.
Collapse
Affiliation(s)
- Scott D Schaffer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Carissa A Hutchison
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Candace N Rouchon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Nontokozo V Mdluli
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Arielle J Weinstein
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Dennis McDaniel
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kristi L Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
14
|
Visperas A, Santana D, Klika AK, Higuera‐Rueda CA, Piuzzi NS. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J Orthop Res 2022; 40:1477-1491. [PMID: 35437846 PMCID: PMC9322555 DOI: 10.1002/jor.25345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) remains a devastating complication after total joint arthroplasty. Bacteria involved in these infections are notorious for adhering to foreign implanted surfaces and generating a biofilm matrix. These biofilms protect the bacteria from antibiotic treatment and the immune system making eradication difficult. Current treatment strategies including debridement, antibiotics, and implant retention, and one- and two-stage revisions still present a relatively high overall failure rate. One of the main shortcomings that has been associated with this high failure rate is the lack of a robust approach to treating bacterial biofilm. Therefore, in this review, we will highlight new strategies that have the potential to combat PJI by targeting biofilm integrity, therefore giving antibiotics and the immune system access to the internal network of the biofilm structure. This combination antibiofilm/antibiotic therapy may be a new strategy for PJI treatment while promoting implant retention.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - Daniel Santana
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Alison K. Klika
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | | | - Nicolas S. Piuzzi
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
15
|
Costa RC, Bertolini M, Costa Oliveira BE, Nagay BE, Dini C, Benso B, Klein MI, Barāo VAR, Souza JGS. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit Rev Microbiol 2022; 49:370-390. [PMID: 35584310 DOI: 10.1080/1040841x.2022.2062219] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, CA, Chile
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University, São Paulo, Brazil
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Joāo Gabriel S Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Brazil.,Dental Research Division, Guarulhos University, Sāo Paulo, Brazil
| |
Collapse
|
16
|
Lu J, Hu X, Ren L. Biofilm control strategies in food industry: Inhibition and utilization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Chiba A, Seki M, Suzuki Y, Kinjo Y, Mizunoe Y, Sugimoto S. Staphylococcus aureus utilizes environmental RNA as a building material in specific polysaccharide-dependent biofilms. NPJ Biofilms Microbiomes 2022; 8:17. [PMID: 35379830 PMCID: PMC8980062 DOI: 10.1038/s41522-022-00278-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilms are surface-bound microbial communities that are typically embedded in a matrix of self-produced extracellular polymeric substances and can cause chronic infections. Extracellular DNA is known to play a crucial role in biofilm development in diverse bacteria; however, the existence and function of RNA are poorly understood. Here, we show that RNA contributes to the structural integrity of biofilms formed by the human pathogen Staphylococcus aureus. RNase A dispersed both fresh and mature biofilms, indicating the importance of RNA at various stages. RNA-sequencing analysis demonstrated that the primary source of RNA in the biofilm matrix was the Brain Heart Infusion medium (>99.32%). RNA purified from the medium promoted biofilm formation. Microscopic and molecular interaction analyses demonstrated that polysaccharides were critical for capturing and stabilizing external RNA in biofilms, which contributes to biofilm organization. These findings provide a basis for exploring the role of externally derived substances in bacterial biofilm organization.
Collapse
|
18
|
Ramírez-Larrota JS, Eckhard U. An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules 2022; 12:306. [PMID: 35204806 PMCID: PMC8869686 DOI: 10.3390/biom12020306] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial biofilms represent multicellular communities embedded in a matrix of extracellular polymeric substances, conveying increased resistance against environmental stress factors but also antibiotics. They are shaped by secreted enzymes such as proteases, which can aid pathogenicity by degrading host proteins of the connective tissue or the immune system. Importantly, both secreted proteases and the capability of biofilm formation are considered key virulence factors. In this review, we focus on the basic aspects of proteolysis and protein secretion, and highlight various secreted bacterial proteases involved in biofilm establishment and dispersal, and how they aid bacteria in immune evasion by degrading immunoglobulins and components of the complement system. Thus, secreted proteases represent not only prominent antimicrobial targets but also enzymes that can be used for dedicated applications in biotechnology and biomedicine, including their use as laundry detergents, in mass spectrometry for the glycoprofiling of antibodies, and the desensitization of donor organs intended for positive crossmatch patients.
Collapse
Affiliation(s)
| | - Ulrich Eckhard
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15-21, 08028 Barcelona, Spain;
| |
Collapse
|
19
|
Liu Z, Zhao Z, Zeng K, Xia Y, Xu W, Wang R, Guo J, Xie H. Functional Immobilization of a Biofilm-Releasing Glycoside Hydrolase Dispersin B on Magnetic Nanoparticles. Appl Biochem Biotechnol 2022; 194:737-747. [PMID: 34524634 DOI: 10.1007/s12010-021-03673-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Dispersin B (DspB) is a member of glycoside hydrolase family 20 (GH20) and catalyzes degradation of biofilms forming by pathogenic bacteria such as Staphylococcus aureus. Magnetoreceptor (MagR) is a magnetic protein that can be used as a fusion partner for functionally immobilizing proteins on magnetic surfaces. In the present study, a recombinant protein DspB-MagR was constructed by fusing MagR to the C-terminus of DspB and expressed in Escherichia coli. Magnetic immobilization of purified DspB-MagR on magnetic core-shell structured Fe3O4@SiO2 nanoparticles was achieved and characterized by means of various techniques including SDS-PAGE, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential measurement, and scanning electron microscopy. It was evaluated the influence of temperature, pH, and storage time on the performance of immobilized DspB-MagR on Fe3O4@SiO2 nanoparticles. Removal of biofilms forming by Staphylococcus aureus and other medical sourced bacterial species was achieved by using Fe3O4@SiO2 nanoparticles loading with DspB-MagR. This work promoted potential applications of DspB and similar enzymes for medical purposes.
Collapse
Affiliation(s)
- Zewen Liu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Zisong Zhao
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Kai Zeng
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yue Xia
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Weihua Xu
- Department of Orthopaetics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruoyu Wang
- Department of Orthopaetics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junhui Guo
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
20
|
Duan B, Peng W, Yan K, Liu F, Tang J, Yang F, Chen H, Yuan F, Bei W. The QseB/QseC two-component system contributes to virulence of Actinobacillus pleuropneumoniae by downregulating apf gene cluster transcription. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractActinobacillus pleuropneumoniae (APP) is the major pathogen of porcine contagious pleuropneumoniae (PCP). The QseB/QseC two-component system (TCS) consists of the regulator QseB and the kinase QseC, which relates to quorum sensing (QS) and virulence in some bacteria. Here, we investigated the role of QseB/QseC in apf gene cluster (apfABCD) expression of APP. Our results have showed that QseB/QseC TCS can potentially regulate the expression of apf gene cluster. The ΔqseBC, ΔapfA, ΔapfB, ΔapfC and ΔapfD strains are more sensitive to acidic and osmotic stressful conditions, and exhibite lower biofilm formation ability than wild-type (WT) strain, whereas the complemented strains show similar phenotype to the WT strain. In additon, the mutants have defective anti-phagocytosis, adhesion and invasion when they come into contact with the host cells. In experimental animal models of infection, mice infected with ΔqseBC, ΔapfA, ΔapfB, ΔapfC and ΔapfD strains showed lower mortality and bacterial loads in the lung and the blood than those infected with WT strain. In conclusion, our results suggest that QseB/QseC TCS contributes to stress resistance, biofilm formation, phagocytosis, adhesion, invasion and virulence by downregulating expression of apf gene cluster in A. pleuropneumoniae.
Collapse
|
21
|
Multifunctional fluorescent probes for high-throughput characterization of hexosaminidase enzyme activity. Bioorg Chem 2021; 119:105532. [PMID: 34883361 DOI: 10.1016/j.bioorg.2021.105532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022]
Abstract
Microbial polysaccharides composed of N-acetylglucosamine (GlcNAc), such as chitin, peptidoglycan and poly-β-(1 → 6)-GlcNAc (dPNAG), play a critical role in maintaining cell integrity or in facilitating biofilm formation in numerous fungal and bacterial pathogens. Glycosyl hydrolase enzymes that catalyze the degradation of these β-GlcNAc containing polysaccharides play important roles in normal microbial cell physiology and can also be exploited as biocatalysts with applications as anti-fungal, anti-bacterial, or biofilm dispersal agents. Assays to rapidly detect and characterize the activity of such glycosyl hydrolase enzymes can facilitate their development as biocatalyst, however, currently available probes such as 4-methylumbelliferyl-β-GlcNAc (4MU-GlcNAc) are not universally accepted as substrates, and their fluorescent signal is sensitive to changes in pH. Here, we present the development of a new multifunctional fluorescent substrate analog for the detection and characterization of hexosaminidase enzyme activity containing a 7-amino-4-methyl coumarin (AMC) carbamate aglycone. This probe is widely tolerated as a substrate for exo-acting β-hexosaminidase, family 19 endo-chitinase, and the dPNAG hydrolase enzyme Dispersin B (DspB) and enables detection of hexosaminidase enzyme activity via either single wavelength fluorescent measurements or ratiometric fluorescent detection. We demonstrate the utility of this probe to screen for recombinant DspB activity in Escherichia coli cell lysates, and for the development of a high-throughput assay to screen for DspB inhibitors.
Collapse
|
22
|
Natural and synthetic plant compounds as anti-biofilm agents against Escherichia coli O157:H7 biofilm. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 95:105055. [PMID: 34461310 DOI: 10.1016/j.meegid.2021.105055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
Escherichia coli is a common gram-negative bacterium found in the gut and intestinal tract of warm-blooded animals including humans. An evolved seropathotype E. coli O157:H7 (STEC) came into existence in 1982, since then it has been evolved as a stronger and more robust drug-resistant pathotype of E. coli. This drug resistance is due to horizontal gene transfer, natural gene evolution for survival, and most of the cases due to the ability of STEC to switch to the biofilm growth mode from planktonic lifestyle. During the growth in biofilm mode, Escherichia coli O157:H7 opts more robust ability to grow in adverse environments i.e., in presence of antibiotics and other antimicrobial chemicals. Due to the biofilm matrix, the microbial community acquires drug resistance. This makes the treatment of diseases caused by E. coli O157:H7 a complex challenge. To address the illnesses caused by this biofilm-forming pathogen, there are several possible strategies such as antibiotic therapies, synthetic antimicrobial chemicals, adjunct therapy of synergistic effect of multiple drugs, and more importantly plant originated compounds as a new anti-biofilm candidate. The present review summarizes various phytochemicals and their derivatives reported in the last decade mostly to eliminate the biofilm of STEC. The review will progressively reveal the antibiofilm mechanism of the phytochemicals against STEC and to be a potential candidate for the development of the future antibacterial drugs to STEC induced infections.
Collapse
|
23
|
Activity of CcpA-Regulated GH18 Family Glycosyl Hydrolases That Contributes to Nutrient Acquisition and Fitness in Enterococcus faecalis. Infect Immun 2021; 89:e0034321. [PMID: 34424752 DOI: 10.1128/iai.00343-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (ef0114, ef0361, and ef2863), in E. faecalis were previously found to be upregulated under glucose-limiting conditions. The GH18 catalytic domain is present in proteins that are classified as either chitinases or β-1,4 endo-β-N-acetylglucosaminidases (ENGases) based on their β-1,4 endo-N-acetyl-β-d-glucosaminidase activity, and ENGase activity is commonly associated with cleaving N-linked glycoprotein, an abundant glycan structure on host epithelial surfaces. Here, we show that all three hydrolases are negatively regulated by the transcriptional regulator carbon catabolite protein A (CcpA). Additionally, we demonstrate that a constitutively active CcpA variant represses the expression of CcpA-regulated genes irrespective of glucose availability. Previous studies showed that the GH18 catalytic domains of EndoE (EF0114) and EfEndo18A (EF2863) were capable of deglycosylating RNase B, a model high-mannose-type glycoprotein. However, it remained uncertain which glycosidase is primarily responsible for the deglycosylation of high-mannose-type glycoproteins. In this study, we show by mutation analysis as well as a dose-dependent analysis of recombinant protein expression that EfEndo18A is primarily responsible for deglycosylating high-mannose glycoproteins and that the glycans removed by EfEndo18A support growth under nutrient-limiting conditions in vitro. In contrast, IgG is representative of a complex-type glycoprotein, and we demonstrate that the GH18 domain of EndoE is primarily responsible for the removal of this glycan decoration. Finally, our data highlight the combined contribution of glycosidases to the virulence of E. faecalis in vivo.
Collapse
|
24
|
Evstigneeva SS, Telesheva EM, Mokeev DI, Borisov IV, Petrova LP, Shelud’ko AV. Response of Bacteria to Mechanical Stimuli. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
Bacteria adapt rapidly to changes in ambient conditions, constantly inspecting their surroundings by means of their sensor systems. These systems are often thought to respond only to signals of a chemical nature. Yet, bacteria are often affected by mechanical forces, e.g., during transition from planktonic to sessile state. Mechanical stimuli, however, have seldom been considered as the signals bacteria can sense and respond to. Nonetheless, bacteria perceive mechanical stimuli, generate signals, and develop responses. This review analyzes the information on the way bacteria respond to mechanical stimuli and outlines how bacteria convert incoming signals into appropriate responses.
Collapse
|
25
|
Ma X, Zheng B, Wang J, Li G, Cao S, Wen Y, Huang X, Zuo Z, Zhong Z, Gu Y. Quinolone Resistance of Actinobacillus pleuropneumoniae Revealed through Genome and Transcriptome Analyses. Int J Mol Sci 2021; 22:ijms221810036. [PMID: 34576206 PMCID: PMC8472844 DOI: 10.3390/ijms221810036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a pathogen that infects pigs and poses a serious threat to the pig industry. The emergence of quinolone-resistant strains of A.pleuropneumoniae further limits the choice of treatment. However, the mechanisms behind quinolone resistance in A.pleuropneumoniae remain unclear. The genomes of a ciprofloxacin-resistant strain, A. pleuropneumoniae SC1810 and its isogenic drug-sensitive counterpart were sequenced and analyzed using various bioinformatics tools, revealing 559 differentially expressed genes. The biological membrane, plasmid-mediated quinolone resistance genes and quinolone resistance-determining region were detected. Upregulated expression of efflux pump genes led to ciprofloxacin resistance. The expression of two porins, OmpP2B and LamB, was significantly downregulated in the mutant. Three nonsynonymous mutations in the mutant strain disrupted the water–metal ion bridge, subsequently reducing the affinity of the quinolone–enzyme complex for metal ions and leading to cross-resistance to multiple quinolones. The mechanism of quinolone resistance in A. pleuropneumoniae may involve inhibition of expression of the outer membrane protein genes ompP2B and lamB to decrease drug influx, overexpression of AcrB in the efflux pump to enhance its drug-pumping ability, and mutation in the quinolone resistance-determining region to weaken the binding of the remaining drugs. These findings will provide new potential targets for treatment.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Bowen Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Jiafan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Gen Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
- Bioengineering Department, Sichuan Water Conservancy Vocational College, Chengdu 611231, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
- Correspondence: (S.C.); (Y.G.)
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.H.)
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (B.Z.); (J.W.); (G.L.); (Z.Z.); (Z.Z.)
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.C.); (Y.G.)
| |
Collapse
|
26
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
27
|
Verspecht T, Van Holm W, Boon N, Bernaerts K, Daep CA, Masters JG, Zayed N, Quirynen M, Teughels W. Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm. J Oral Microbiol 2021; 13:1910462. [PMID: 33968313 PMCID: PMC8079042 DOI: 10.1080/20002297.2021.1910462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Modulation of the commensal oral microbiota constitutes a promising preventive/therapeutic approach in oral healthcare. The use of prebiotics for maintaining/restoring the health-associated homeostasis of the oral microbiota has become an important research topic. Aims: This study hypothesised that in vitro 14-species oral biofilms can be modulated by (in)direct stimulation of beneficial/commensal bacteria with new potential prebiotic substrates tested at 1 M and 1%(w/v), resulting in more host-compatible biofilms with fewer pathogens, decreased virulence and less inflammatory potential. Methods: Established biofilms were repeatedly rinsed with N-acetyl-D-glucosamine, α-D-lactose, D-(+)-trehalose or D-(+)-raffinose at 1 M or 1%(w/v). Biofilm composition, metabolic profile, virulence and inflammatory potential were eventually determined. Results: Repeated rinsing caused a shift towards a more health-associated microbiological composition, an altered metabolic profile, often downregulated virulence gene expression and decreased the inflammatory potential on oral keratinocytes. At 1 M, the substrates had pronounced effects on all biofilm aspects, whereas at 1%(w/v) they had a pronounced effect on virulence gene expression and a limited effect on inflammatory potential. Conclusion: Overall, this study identified four new potential prebiotic substrates that exhibit different modulatory effects at two different concentrations that cause in vitro multi-species oral biofilms to become more host-compatible.
Collapse
Affiliation(s)
- Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem & Tech, Leuven, Belgium
| | - Carlo A Daep
- Colgate-Palmolive Technology Center, Piscataway, NJ USA
| | | | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Marc Quirynen
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium.,Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Guo F, Guo J, Cui Y, Cao X, Zhou H, Su X, Yang B, Blackall PJ, Xu F. Exposure to Sublethal Ciprofloxacin Induces Resistance to Ciprofloxacin and Cross-Antibiotics, and Reduction of Fitness, Biofilm Formation, and Apx Toxin Secretion in Actinobacillus pleuropneumoniae. Microb Drug Resist 2021; 27:1290-1300. [PMID: 33739878 DOI: 10.1089/mdr.2020.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Actinobacillus pleuropneumoniae, the etiological agent of porcine pleuropneumonia, is increasingly resistant to antibiotics. However, little is known about the mechanisms of antibiotic resistance in this pathogen. In this study, we experimentally evolved the reference strain of both A. pleuropneumoniae serovar 1 and serovar 7, the most prevalent serovars worldwide, to quinolone resistance by sequential exposure to subinhibitory concentrations of ciprofloxacin. The adaptive ciprofloxacin-resistant mutants of A. pleuropneumoniae serovar 1 and serovar 7 had a minimum inhibitory concentration (MIC) increment from 0.004 to 1 or 2 μg/mL, respectively. Adaptation to ciprofloxacin was shown to confer quinolone resistance with a 32- to 512-fold increase (serovars 1 and 7, respectively) as well as cross-resistance to ampicillin with an increased MIC by 16,384- and 64-fold (serovars 1 and 7, respectively). The genetic analysis of quinolone resistance-determining region mutations showed that substitutions occurred in gyrA (S83A) and parC (D84N) of serovar 1, and gyrA (D87N) of serovar 7. The ciprofloxacin-resistant mutants showed significantly reduced bacterial fitness. The mutants also showed changes in efflux ability and biofilm formation. Notably, the transcription and secretion levels of Apx toxins were dramatically reduced in ciprofloxacin-resistant mutants compared with their wild-type strains. Altogether, these results demonstrated marked phenotypic changes in ciprofloxacin-resistant mutants of A. pleuropneumoniae. The results stress the need for further studies on the impact of both the genotypic and phenotypic characteristics of A. pleuropneumoniae following exposure to subinhibitory concentrations of antibiotics.
Collapse
Affiliation(s)
- Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jie Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Australia
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
29
|
In Vitro Study of the Synergistic Effect of an Enzyme Cocktail and Antibiotics against Biofilms in a Prosthetic Joint Infection Model. Antimicrob Agents Chemother 2021; 65:AAC.01699-20. [PMID: 33468484 DOI: 10.1128/aac.01699-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Prosthetic joint infections (PJI) are frequent complications of arthroplasties. Their treatment is made complex by the rapid formation of bacterial biofilms, limiting the effectiveness of antibiotic therapy. In this study, we explore the effect of a tri-enzymatic cocktail (TEC) consisting of an endo-1,4-β-d-glucanase, a β-1,6-hexosaminidase, and an RNA/DNA nonspecific endonuclease combined with antibiotics of different classes against biofilms of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli grown on Ti-6Al-4V substrates. Biofilms were grown in Trypticase soy broth (TSB) with 10 g/liter glucose and 20 g/liter NaCl (TGN). Mature biofilms were assigned to a control group or treated with the TEC for 30 min and then either analyzed or reincubated for 24 h in TGN or TGN with antibiotics. The cytotoxicity of the TEC was assayed against MG-63 osteoblasts, primary murine fibroblasts, and J-774 macrophages using the lactate dehydrogenase (LDH) release test. The TEC dispersed 80.3 to 95.2% of the biofilms' biomass after 30 min. The reincubation of the treated biofilms with antibiotics resulted in a synergistic reduction of the total culturable bacterial count (CFU) compared to that of biofilms treated with antibiotics alone in the three tested species (additional reduction from 2 to more than 3 log10 CFU). No toxicity of the TEC was observed against the tested cell lines after 24 h of incubation. The combination of pretreatment with TEC followed by 24 h of incubation with antibiotics had a synergistic effect against biofilms of S. aureus, S. epidermidis, and E. coli Further studies should assess the potential of the TEC as an adjuvant therapy in in vivo models of PJI.
Collapse
|
30
|
Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000 2021; 86:210-230. [PMID: 33690950 DOI: 10.1111/prd.12371] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
In health, indigenous polymicrobial communities at mucosal surfaces maintain an ecological balance via both inter-microbial and host-microbial interactions that promote their own and the host's fitness, while preventing invasion by exogenous pathogens. However, genetic and acquired destabilizing factors (including immune deficiencies, immunoregulatory defects, smoking, diet, obesity, diabetes and other systemic diseases, and aging) may disrupt this homeostatic balance, leading to selective outgrowth of species with the potential for destructive inflammation. This process, known as dysbiosis, underlies the development of periodontitis in susceptible hosts. The pathogenic process is not linear but involves a positive-feedback loop between dysbiosis and the host inflammatory response. The dysbiotic community is essentially a quasi-organismal entity, where constituent organisms communicate via sophisticated physical and chemical signals and display functional specialization (eg, accessory pathogens, keystone pathogens, pathobionts), which enables polymicrobial synergy and dictates the community's pathogenic potential or nososymbiocity. In this review, we discuss early and recent studies in support of the polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis. According to this concept, disease is not caused by individual "causative pathogens" but rather by reciprocally reinforced interactions between physically and metabolically integrated polymicrobial communities and a dysregulated host inflammatory response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
31
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Bharti S, Maurya RK, Venugopal U, Singh R, Akhtar MS, Krishnan MY. Rv1717 Is a Cell Wall - Associated β-Galactosidase of Mycobacterium tuberculosis That Is Involved in Biofilm Dispersion. Front Microbiol 2021; 11:611122. [PMID: 33584576 PMCID: PMC7873859 DOI: 10.3389/fmicb.2020.611122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding the function of conserved hypothetical protein (CHP)s expressed by a pathogen in the infected host can lead to better understanding of its pathogenesis. The present work describes the functional characterization of a CHP, Rv1717 of Mycobacterium tuberculosis (Mtb). Rv1717 has been previously reported to be upregulated in TB patient lungs. Rv1717 belongs to the cupin superfamily of functionally diverse proteins, several of them being carbohydrate handling proteins. Bioinformatic analysis of the amino acid sequence revealed similarity to glycosyl hydrolases. Enzymatic studies with recombinant Rv1717 purified from Escherichia coli showed that the protein is a β-D-galactosidase specific for pyranose form rather than the furanose form. We expressed the protein in Mycobacterium smegmatis (Msm), which lacks its ortholog. In MsmRv1717, the protein was found to localize to the cell wall (CW) with a preference to the poles. MsmRv1717 showed significant changes in colony morphology and cell surface properties. Most striking observation was its unusual Congo red colony morphotype, reduced ability to form biofilms, pellicles and autoagglutinate. Exogenous Rv1717 not only prevented biofilm formation in Msm, but also degraded preformed biofilms, suggesting that its substrate likely exists in the exopolysaccharides of the biofilm matrix. Presence of galactose in the extracellular polymeric substance (EPS) has not been reported before and hence we used the galactose-specific Wisteria floribunda lectin (WFL) to test the same. The lectin extensively bound to Msm and Mtb EPS, but not the bacterium per se. Purified Rv1717 also hydrolyzed exopolysaccharides extracted from Msm biofilm. Eventually, to decipher its role in Mtb, we downregulated its expression and demonstrate that the strain is unable to disperse from in vitro biofilms, unlike the wild type. Biofilms exposed to carbon starvation showed a sudden upregulation of Rv1717 transcripts supporting the potential role of Rv1717 in Mtb dispersing from a deteriorating biofilm.
Collapse
Affiliation(s)
- Suman Bharti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Kumar Maurya
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Radhika Singh
- Toxicology and Health Risk Assessment Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
33
|
Nahar N, Turni C, Tram G, Blackall PJ, Atack JM. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. Adv Microb Physiol 2021; 78:179-216. [PMID: 34147185 DOI: 10.1016/bs.ampbs.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is responsible for high economic losses in swine herds across the globe. Pleuropneumonia is characterized by severe respiratory distress and high mortality. The knowledge about the interaction between bacterium and host within the porcine respiratory tract has improved significantly in recent years. A. pleuropneumoniae expresses multiple virulence factors, which are required for colonization, immune clearance, and tissue damage. Although vaccines are used to protect swine herds against A. pleuropneumoniae infection, they do not offer complete coverage, and often only protect against the serovar, or serovars, used to prepare the vaccine. This review will summarize the role of individual A. pleuropneumoniae virulence factors that are required during key stages of pathogenesis and disease progression, and highlight progress made toward developing effective and broadly protective vaccines against an organism of great importance to global agriculture and food production.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
34
|
Ishikawa KH, Bueno MR, Kawamoto D, Simionato MRL, Mayer MPA. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2021; 36:92-102. [PMID: 33372378 DOI: 10.1111/omi.12330] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107 CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.
Collapse
Affiliation(s)
- Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria R L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates: In Vivo Virulence Assessment in Galleria mellonella and Potential Therapeutics by Polycationic Oligoethyleneimine. Antibiotics (Basel) 2021; 10:antibiotics10010056. [PMID: 33430101 PMCID: PMC7826767 DOI: 10.3390/antibiotics10010056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.
Collapse
|
36
|
Manoharadas S, Altaf M, Alrefaei AF, Devasia RM, Badjah Hadj AYM, Abuhasil MSA. Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and 'green synthesized' silver nanoparticles. RSC Adv 2021; 11:1420-1429. [PMID: 35424119 PMCID: PMC8693614 DOI: 10.1039/d0ra09725j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcal biofilms predominantly cause persistent nosocomial infections. The widespread antibiotic resistance followed by its ability to form biofilm in biological and inert surfaces often contributes to major complications in patients and veterinary animals. Strategic importance of bacteriophage therapy against critical staphylococcal infections had been predicted ever since the advent of antibiotic resistant staphylococcal strains. The significance of metal nanoparticles in quenching biofilm associated bacteria was previously reported. In this study, we demonstrate a concerted action of ‘green synthesized’ silver nanoparticles and bacteriophages in removing pre-formed Staphylococcus aureus biofilms from an inert glass surface in a time dependent manner. Our results demonstrate, for the first time, the rapid co-operative dispersion of the bacterial biofilm. In addition, the synergistic activity of the nanoparticles and bacteriophages causes the loss of viability of the biofilm entrapped bacterial cells thus preventing establishment of a new infection and subsequent colonization. This work further opens up a platform for the combinational therapeutic approach with a variety of nanoparticles and bacteriophages against mono or poly bacterial biofilm in environmental, industrial or clinical settings. Formation of biofilm by Staphylococcus aureus ‘Rumba’ on untreated glass surface and a concerted disruption of the biofilm by silver nanoparticle and phage ϕ44AHJD.![]()
Collapse
Affiliation(s)
- Salim Manoharadas
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170
| | - Mohammad Altaf
- King Saud University, Department of Botany and Microbiology, Central Laboratory RM 55A College of Science Building 5, P.O. Box. 2454 Riyadh 11451 Saudi Arabia +966-14699665 +966-114689170.,King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- King Saud University, Department of Zoology, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | | | - Ahmed Yacine M Badjah Hadj
- King Saud University, Department of Chemistry, College of Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| | - Mohammed Saeed Ali Abuhasil
- King Saud University, Department of Food Science and Nutrition, College of Agriculture and Food Science P.O. Box. 2454 Riyadh 11451 Saudi Arabia
| |
Collapse
|
37
|
Breslawec AP, Wang S, Li C, Poulin MB. Anionic amino acids support hydrolysis of poly-β-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin B. J Biol Chem 2020; 296:100203. [PMID: 33334876 PMCID: PMC7949127 DOI: 10.1074/jbc.ra120.015524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The exopolysaccharide poly-β-(1→6)-N-acetylglucosamine (PNAG) is a major structural determinant of bacterial biofilms responsible for persistent and nosocomial infections. The enzymatic dispersal of biofilms by PNAG-hydrolyzing glycosidase enzymes, such as Dispersin B (DspB), is a possible approach to treat biofilm-dependent bacterial infections. The cationic charge resulting from partial de-N-acetylation of native PNAG is critical for PNAG-dependent biofilm formation. We recently demonstrated that DspB has increased catalytic activity on de-N-acetylated PNAG oligosaccharides, but the molecular basis for this increased activity is not known. Here, we analyze the role of anionic amino acids surrounding the catalytic pocket of DspB in PNAG substrate recognition and hydrolysis using a combination of site-directed mutagenesis, activity measurements using synthetic PNAG oligosaccharide analogs, and in vitro biofilm dispersal assays. The results of these studies support a model in which bound PNAG is weakly associated with a shallow anionic groove on the DspB protein surface with recognition driven by interactions with the -1 GlcNAc residue in the catalytic pocket. An increased rate of hydrolysis for cationic PNAG was driven, in part, by interaction with D147 on the anionic surface. Moreover, we identified that a DspB mutant with improved hydrolysis of fully acetylated PNAG oligosaccharides correlates with improved in vitro dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. These results provide insight into the mechanism of substrate recognition by DspB and suggest a method to improve DspB biofilm dispersal activity by mutation of the amino acids within the anionic binding surface.
Collapse
Affiliation(s)
- Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Crystal Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
38
|
The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020. [PMID: 33240473 DOI: 10.1016/jcsbj202010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
|
39
|
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020; 18:3324-3334. [PMID: 33240473 PMCID: PMC7674160 DOI: 10.1016/j.csbj.2020.10.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
PIA is a key extracellular matrix component in staphylococci and other bacteria. PIA is a cationic, partially deacetylated N-acetylglucosamine polymer. PIA has a major role in bacterial biofilms and biofilm-associated infection.
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
Affiliation(s)
- Hoai T T Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA.,School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Khu Pho 6, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| |
Collapse
|
40
|
Crispim JS, da Silva TF, Sanches NM, da Silva GC, Pereira MF, Rossi CC, Li Y, Terra VS, Vohra P, Wren BW, Langford PR, Bossé JT, Bazzolli DMS. Serovar-dependent differences in Hfq-regulated phenotypes inActinobacillus pleuropneumoniae. Pathog Dis 2020; 78:5936557. [DOI: 10.1093/femspd/ftaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
ABSTRACTThe RNA chaperone Hfq regulates diverse processes in numerous bacteria. In this study, we compared phenotypes (growth rate, adherence, response to different stress conditions and virulence in Galleria mellonella) of wild-type (WT) and isogenic hfq mutants of three serovars (1, 8 and 15) of the porcine pathogen Actinobacillus pleuropneumoniae. Similar growth in rich broth was seen for all strains except Ap1∆hfq, which showed slightly reduced growth throughout the 24 h time course, and the complemented Ap8∆hfqC mutant had a prolonged lag phase. Differences were seen between the three serovar WT strains regarding adherence, stress response and virulence in G. mellonella, and deletion of hfq affected some, but not all of these phenotypes, depending on serovar. Complementation by expression of cloned hfq from an endogenous promoter only restored some WT phenotypes, indicating that complex regulatory networks may be involved, and that levels of Hfq may be as important as presence/absence of the protein regarding its contribution to gene regulation. Our results support that Hfq is a pleiotropic global regulator in A. pleuropneumoniae, but serovar-related differences exist. These results highlight the importance of testing multiple strains/serovars within a given species when determining contributions of global regulators, such as Hfq, to expression of complex phenotypes.
Collapse
Affiliation(s)
- Josicelli Souza Crispim
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Thyara Ferreira da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Monalessa Fábia Pereira
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Vanessa Sofia Terra
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Prerna Vohra
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária – BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570–900, Brazil
| |
Collapse
|
41
|
Gangwar B, Kumar S, Darokar MP. Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome. Front Microbiol 2020; 11:1779. [PMID: 33071991 PMCID: PMC7534511 DOI: 10.3389/fmicb.2020.01779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an opportunistic bacterium of the human body and a leading cause of nosocomial infections. Methicillin resistant S. aureus (MRSA) infections involving biofilm lead to higher mortality and morbidity in patients. Biofilm causes serious clinical issues, as it mitigates entry of antimicrobials to reach the etiological agents. It plays an important role in resilient chronic infections which place an unnecessary burden on antibiotics and the associated costs. To combat drug-resistant infection involving biofilm, there is a need to discover potential anti-biofilm agents. In this study, activity of polyphenolic flavonoid glabridin against biofilm formation of methicillin resistant clinical isolates of S. aureus is being reported for the first time. Crystal violet assay and scanning electron microscopy evidences shows that glabridin prevents formation of cells clusters and attachment of methicillin resistant clinical isolate (MRSA 4423) of S. aureus to the surface in a dose dependent manner. Gel free proteomic analysis of biofilm matrix by LC-ESI-QTOF confirmed the existence of several proteins known to be involved in cells adhesion. Furthermore, expression analysis of cell surface proteins revealed that glabridin significantly down regulates an abundance of several surface-associated adhesins including fibronectin binding proteins (FnbA, FnbB), serine-aspartate repeat-containing protein D (SdrD), immunoglobulin-binding protein G (Sbi), and other virulence factors which were induced by extracellular glucose in MRSA 4423. In addition, several moonlighting proteins (proteins with multiple functions) such as translation elongation factors (EF-Tu, EF-G), chaperone protein (DnaK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) were detected on the cell surface wherein their abundance was inversely proportional to surface-associated adhesins. This study clearly suggests that glabridin prevents biofilm formation in S. aureus through modulation of the cell surface proteins.
Collapse
Affiliation(s)
- Bhavana Gangwar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Santosh Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
42
|
|
43
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
44
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
45
|
Lee S, Kim JH, Han BK, Kim WI, Cho BK, Woo SM, Kim YH, Ahn JY. Wax-printed well pads and colorimetric LAMP detection of ApxIA toxin gene. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Morrison ZA, Nitz M. Synthesis of C6-substituted UDP-GlcNAc derivatives. Carbohydr Res 2020; 495:108071. [PMID: 32634644 DOI: 10.1016/j.carres.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023]
Abstract
UDP-sugar analogs are useful for the study of glycosyltransferases and the production of unnatural glycans. The preparation of five UDP-GlcNAc derivatives is reported with 6-deoxy, 6-azido, 6-amino, 6-mercapto, or 6-fluoro substitutions. A concise chemoenzymatic synthesis was developed using the kinase NahK (B. longum JCM1217) and the uridyl transferase GlmU (E. coli K12).
Collapse
Affiliation(s)
- Zachary A Morrison
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
47
|
Eddenden A, Kitova EN, Klassen JS, Nitz M. An Inactive Dispersin B Probe for Monitoring PNAG Production in Biofilm Formation. ACS Chem Biol 2020; 15:1204-1211. [PMID: 31917539 DOI: 10.1021/acschembio.9b00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial exopolysaccharide poly-β-1,6-N-acetylglucosamine is a major extracellular matrix component in biofilms of both Gram-positive and Gram-negative organisms. We have leveraged the specificity of the biofilm-dispersing glycoside hydrolase Dispersin B (DspB) to generate a probe (Dispersin B PNAG probe, DiPP) for monitoring PNAG production and localization during biofilm formation. Mutation of the active site of Dispersin B gave DiPP, which was an effective probe despite its low affinity for PNAG oligosaccharides (KD ∼ 1-10 mM). Imaging of PNAG-dependent and -independent biofilms stained with a fluorescent-protein fusion of DiPP (GFP-DiPP) demonstrated the specificity of the probe for the structure of PNAG on both single-cell and biofilm levels, indicating a high local concentration of PNAG at the bacterial cell surface. Through quantitative bacterial cell binding assays and confocal microscopy analysis using GFP-DiPP, discrete areas of local high concentrations of PNAG were detected on the surface of early log phase cells. These distinct areas were seen to grow, slough from cells, and accumulate in interbacterial regions over the course of several cell divisions, showing the development of a PNAG-dependent biofilm. A potential helical distribution of staining was also noted, suggesting some degree of organization of PNAG production at the cell surface prior to cell aggregation. Together, these experiments shed light on the early stages of PNAG-dependent biofilm formation and demonstrate the value of a low-affinity-high-specificity probe for monitoring the production of bacterial exopolysaccharides.
Collapse
Affiliation(s)
- Alexander Eddenden
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada M5S 3H6
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. Edmonton, Alberta, Canada T6G 2G2
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
48
|
Keren-Paz A, Kolodkin-Gal I. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix. N Biotechnol 2020; 56:9-15. [DOI: 10.1016/j.nbt.2019.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023]
|
49
|
Host Mucin Is Exploited by Pseudomonas aeruginosa To Provide Monosaccharides Required for a Successful Infection. mBio 2020; 11:mBio.00060-20. [PMID: 32127446 PMCID: PMC7064748 DOI: 10.1128/mbio.00060-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the primary functions of the mucosal barrier, found lining epithelial cells, is to serve as a first-line of defense against microbial pathogens. The major structural components of mucus are heavily glycosylated proteins called mucins. Mucins are key components of the innate immune system as they aid in the clearance of pathogens and can decrease pathogen virulence. It has also been recently reported that individual mucins and derived glycans can attenuate the virulence of the human pathogen Pseudomonas aeruginosa Here, we show data indicating that mucins not only play a role in host defense but that they can also be subverted by P. aeruginosa to cause disease. We found that the mucin MUL-1 and mucin-derived monosaccharides N-acetyl-galactosamine and N-acetylglucosamine are required for P. aeruginosa killing of Caenorhabditis elegans We also found that the defective adhesion of P. aeruginosa to human lung alveolar epithelial cells, deficient in the mucin MUC1, can be reversed by the addition of individual monosaccharides. The monosaccharides identified in this study are found in a wide range of organisms where they act as host factors required for bacterial pathogenesis. While mucins in C. elegans lack sialic acid caps, which makes their monosaccharides readily available, they are capped in other species. Pathogens such as P. aeruginosa that lack sialidases may rely on enzymes from other bacteria to utilize mucin-derived monosaccharides.IMPORTANCE One of the first lines of defense present at mucosal epithelial tissues is mucus, which is a highly viscous material formed by mucin glycoproteins. Mucins serve various functions, but importantly they aid in the clearance of pathogens and debris from epithelial barriers and serve as innate immune factors. In this study, we describe a requirement of host monosaccharides, likely derived from host mucins, for the ability of Pseudomonas aeruginosa to colonize the intestine and ultimately cause death in Caenorhabditis elegans We also demonstrate that monosaccharides alter the ability of bacteria to bind to both Caenorhabditis elegans intestinal cells and human lung alveolar epithelial cells, suggesting that there are conserved mechanisms underlying host-pathogen interactions in a range of organisms. By gaining a better understanding of pathogen-mucin interactions, we can develop better approaches to protect against pathogen infection.
Collapse
|
50
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|