1
|
Piscon B, Fichtman B, Harel A, Adler A, Rahav G, Gal-Mor O. The Effect of glycocholic acid on the growth, membrane permeability, conjugation and antibiotic susceptibility of Enterobacteriaceae. Front Cell Infect Microbiol 2025; 15:1550545. [PMID: 40256452 PMCID: PMC12006743 DOI: 10.3389/fcimb.2025.1550545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/25/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Glycocholic acid (GCA) is a steroid acid and one of the main glycine-conjugated bile components in mammalian bile, which is involved in the emulsification and absorption of fats and sterols. It is long-known that the amphipathic nature of bile acids enables them to interact with the lipid membrane of Gram-positive bacteria and act as potent antimicrobial compounds. Nevertheless, Gram-negative Enterobacteriaceae species inhabiting the intestinal tract of mammals are considered to be more bile-resistant compared to Gram-positive bacteria and are thought to tolerate high bile concentrations. Results Here, we show that 1-2% of GCA inhibit the growth of Enterobacteriaceae species, including E. coli, Salmonella enterica. Klebsiella spp., Citrobacter spp., and Raoultella spp. during their late logarithmic phase in liquid culture, but not in solid media. Despite their lipopolysaccharide membrane layer, we demonstrate that, in liquid, GCA increases permeability, changes the surface of the Enterobacteriaceae membrane, and compromises its integrity. These changes result in leakage of cytoplasmic proteins and enhancement of their susceptibility to antibiotics. Moreover, GCA significantly reduces bacterial motility, the frequency of bacterial conjugation and horizontal acquisition of antibiotic resistance genes. These phenotypes are associated with repression of flagellin (fliC) transcription and a sharp decrease in the occurrence of conjugative pili in the presence of glycocholic acid, respectively. Discussion Overall, these findings broaden the current understanding about bile resistance of Gram-negative bacteria and suggest that GCA can be used to inhibit bacterial growth, augment the activity of antimicrobial compounds and diminish acquisition and dissemination of antibiotic resistance genes by conjugation.
Collapse
Affiliation(s)
- Bar Piscon
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Ramat-Gan, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amos Adler
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Ramat-Gan, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Piscon B, Pia Esposito E, Fichtman B, Samburski G, Efremushkin L, Amselem S, Harel A, Rahav G, Zarrilli R, Gal-Mor O. The Effect of Outer Space and Other Environmental Cues on Bacterial Conjugation. Microbiol Spectr 2023; 11:e0368822. [PMID: 36995224 PMCID: PMC10269834 DOI: 10.1128/spectrum.03688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial conjugation is one of the most abundant horizontal gene transfer (HGT) mechanisms, playing a fundamental role in prokaryote evolution. A better understanding of bacterial conjugation and its cross talk with the environment is needed for a more complete understanding of HGT mechanisms and to fight the dissemination of malicious genes between bacteria. Here, we studied the effect of outer space, microgravity, and additional key environmental cues on transfer (tra) gene expression and conjugation efficiency, using the under studied broad-host range plasmid pN3, as a model. High resolution scanning electron microscopy revealed the morphology of the pN3 conjugative pili and mating pair formation during conjugation. Using a nanosatellite carrying a miniaturized lab, we studied pN3 conjugation in outer space, and used qRT-PCR, Western blotting and mating assays to determine the effect of ground physicochemical parameters on tra gene expression and conjugation. We showed for the first time that bacterial conjugation can occur in outer space and on the ground, under microgravity-simulated conditions. Furthermore, we demonstrated that microgravity, liquid media, elevated temperature, nutrient depletion, high osmolarity and low oxygen significantly reduce pN3 conjugation. Interestingly, under some of these conditions we observed an inverse correlation between tra gene transcription and conjugation frequency and found that induction of at least traK and traL can negatively affect pN3 conjugation frequency in a dose-dependent manner. Collectively, these results uncover pN3 regulation by various environmental cues and highlight the diversity of conjugation systems and the different ways in which they may be regulated in response to abiotic signals. IMPORTANCE Bacterial conjugation is a highly ubiquitous and promiscuous process, by which a donor bacterium transfers a large portion of genetic material to a recipient cell. This mechanism of horizontal gene transfer plays an important role in bacterial evolution and in the ability of bacteria to acquire resistance to antimicrobial drugs and disinfectants. Bacterial conjugation is a complex and energy-consuming process, that is tightly regulated and largely affected by various environmental signals sensed by the bacterial cell. Comprehensive knowledge about bacterial conjugation and the ways it is affected by environmental cues is required to better understand bacterial ecology and evolution and to find new effective ways to counteract the threating dissemination of antibiotic resistance genes between bacterial populations. Moreover, characterizing this process under stress or suboptimal growth conditions such as elevated temperatures, high salinity or in the outer space, may provide insights relevant to future habitat environmental conditions.
Collapse
Affiliation(s)
- Bar Piscon
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Guy Samburski
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Lihi Efremushkin
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Shimon Amselem
- SpacePharma R&D Israel LTD., Herzliya Pituach, Israel & SpacePharma SA, Courgenay, Switzerland
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
4
|
Cooke MB, Herman C. Conjugation's Toolkit: the Roles of Nonstructural Proteins in Bacterial Sex. J Bacteriol 2023; 205:e0043822. [PMID: 36847532 PMCID: PMC10029717 DOI: 10.1128/jb.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.
Collapse
Affiliation(s)
- Matthew B. Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Martinez-Bond EA, Soriano BM, Williams AH. The mechanistic landscape of Lytic transglycosylase as targets for antibacterial therapy. Curr Opin Struct Biol 2022; 77:102480. [PMID: 36323133 DOI: 10.1016/j.sbi.2022.102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Lytic transglycosylases (Ltgs) are glycan strand cleaving enzymes whose role is poorly understood in the genesis of the bacterial envelope. They play multiple roles in all stages of a bacterial life cycle, by creating holes in the peptidoglycan that is necessary for cell division and separation. Here, we review recent advances in understanding the suitability of Ltgs as antibacterial drug targets. We specifically highlight a known inhibitor bulgecin A that is able to inhibit the function of structurally diverse Ltgs, as well as synergize with beta-lactams to improve its efficacy in antibiotic insensitive strains. Discovery of new antibiotics or new targets has been challenging. These studies could provide a viable path toward designing broad-spectrum inhibitors that targets Ltgs.
Collapse
Affiliation(s)
- Elizabeth A Martinez-Bond
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA. https://twitter.com/bondlizbond
| | - Berliza M Soriano
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA. https://twitter.com/AWilliamslab
| | - Allison H Williams
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
7
|
Wang HC, Lin SJ, Mohapatra A, Kumar R, Wang HC. A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms 2020; 8:E996. [PMID: 32635298 PMCID: PMC7409025 DOI: 10.3390/microorganisms8070996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal shrimp disease. The pathogenic agent of this disease is a special Vibrio parahaemolyticus strain that contains a pVA1 plasmid. The protein products of two toxin genes in pVA1, pirAvp and pirBvp, targeted the shrimp's hepatopancreatic cells and were identified as the major virulence factors. However, in addition to pirAvp and pirBvp, pVA1 also contains about ~90 other open-reading frames (ORFs), which may encode functional proteins. NCBI BLASTp annotations of the functional roles of 40 pVA1 genes reveal transposases, conjugation factors, and antirestriction proteins that are involved in horizontal gene transfer, plasmid transmission, and maintenance, as well as components of type II and III secretion systems that may facilitate the toxic effects of pVA1-containing Vibrio spp. There is also evidence of a post-segregational killing (PSK) system that would ensure that only pVA1 plasmid-containing bacteria could survive after segregation. Here, in this review, we assess the functional importance of these pVA1 genes and consider those which might be worthy of further study.
Collapse
Affiliation(s)
- Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Arpita Mohapatra
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Mits School of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Abstract
Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.
Collapse
|
9
|
Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. Curr Top Microbiol Immunol 2018; 418:233-260. [PMID: 29808338 DOI: 10.1007/82_2018_94] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Li ZQ, Zhang JL, Xi L, Yang GL, Wang SL, Zhang XG, Zhang JB, Zhang H. Deletion of the transcriptional regulator GntR down regulated the expression of Genes Related to Virulence and Conferred Protection against Wild-Type Brucella Challenge in BALB/c Mice. Mol Immunol 2017; 92:99-105. [PMID: 29055858 DOI: 10.1016/j.molimm.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 01/03/2023]
Abstract
Brucellosis, which is caused by Brucella spp., is a zoonotic infectious disease that can cause great hazard to public health and safety. The virulence of Brucella is essential for survive and multiply in host macrophages. GntR is a transcriptional regulator in Brucella that is required for virulence in macrophages and mice, and involved in resistance to stress responses. To determine the expression levels of target genes of GntR, we detected the expression levels of the GntR target genes in Brucella infected BALB/c mice. The results showed that several genes related to virulence, including omp25, virB1, vjbR, dnaK, htrA and hfq, were regulated by GntR during infection in BALB/c mice. Moreover, the 2308ΔgntR mutant induced high protective immunity in BALB/c mice challenge with B. abortus 2308 (S2308), and elicited an anti-Brucella-specific immunoglobulin G (IgG) response and induced the secretion of gamma interferon (IFN-γ) and interleukin-4 (IL-4). All together, these results indicated that gntR promoted the virulence of Brucella. The 2308ΔgntR was significantly attenuated in macrophages and mice and induced protective immune response during infection, suggested that 2308ΔgntR mutant is an attractive candidate for the design of a live attenuated vaccine against Brucella.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Jin-Liang Zhang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Li Xi
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Guang-Li Yang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Shu-Li Wang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Xiao-Gen Zhang
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Province, China
| | - Jun-Bo Zhang
- College of Biology, Agriculture and Forestry, Tongren University, Tongren 554300, Guizhou Province, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang Province, China.
| |
Collapse
|
11
|
Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLoS Genet 2017; 13:e1006705. [PMID: 28355215 PMCID: PMC5389848 DOI: 10.1371/journal.pgen.1006705] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/12/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
IncC conjugative plasmids and Salmonella genomic island 1 (SGI1) and relatives are frequently associated with multidrug resistance of clinical isolates of pathogenic Enterobacteriaceae. SGI1 is specifically mobilized in trans by IncA and IncC plasmids (commonly referred to as A/C plasmids) following its excision from the chromosome, an event triggered by the transcriptional activator complex AcaCD encoded by these helper plasmids. Although SGI1 is not self-transmissible, it carries three genes, traNS, traHS and traGS, coding for distant homologs of the predicted mating pore subunits TraNC, TraHC and TraGC, respectively, encoded by A/C plasmids. Here we investigated the regulation of traNS and traHGS and the role of these three genes in the transmissibility of SGI1. Transcriptional fusion of the promoter sequences of traNS and traHGS to the reporter gene lacZ confirmed that expression of these genes is inducible by AcaCD. Mating experiments using combinations of deletion mutants of SGI1 and the helper IncC plasmid pVCR94 revealed complex interactions between these two mobile genetic elements. Whereas traNC and traHGC are essential for IncC plasmid transfer, SGI1 could rescue null mutants of each individual gene revealing that TraNS, TraHS and TraGS are functional proteins. Complementation assays of individual traC and traS mutants showed that not only do TraNS/HS/GS replace TraNC/HC/GC in the mating pore encoded by IncC plasmids but also that traGS and traHS are both required for SGI1 optimal transfer. In fact, remodeling of the IncC-encoded mating pore by SGI1 was found to be essential to enhance transfer rate of SGI1 over the helper plasmid. Furthermore, traGS was found to be crucial to allow DNA transfer between cells bearing IncC helper plasmids, thereby suggesting that by remodeling the mating pore SGI1 disables an IncC-encoded entry exclusion mechanism. Hence traS genes facilitate the invasion by SGI1 of cell populations bearing IncC plasmids. Acquisition and dissemination of multidrug resistance genes among Enterobacteriaceae is in part driven by IncA and IncC (A/C) conjugative plasmids and Salmonella genomic island 1 (SGI1). Although unrelated, SGI1 relies on the self-transmissible A/C plasmids to disseminate within bacterial populations. The mechanisms allowing SGI1 to hijack the mating apparatus synthesized by A/C plasmids have not been previously established. Here, we show that IncC plasmids trigger the expression of three SGI1-borne genes that code for functional mating pore subunits distantly related to those encoded by the IncC helper plasmids. Our results indicate that these subunits alter the mating pore encoded by IncC plasmids to ensure optimal transfer of SGI1 and promote SGI1 dissemination in cell populations harboring IncC plasmids. Apart from SGI1 and relatives, documented mobilizable genomic islands are not known to code for mating pore components, possibly because of redundancy with those encoded by helper conjugative elements. Instead they usually code for mobilization proteins such as a relaxase and auxiliary factors involved in DNA recognition, processing and docking to the mating pore encoded by their helper conjugative element. From an ecological and epidemiological perspective, the strategy used by SGI1 likely confers a strong competitive advantage to SGI1 over IncC plasmids in clinical settings and could account for the high prevalence of SGI1 and relatives in multidrug-resistant Salmonella enterica and Proteus mirabilis.
Collapse
|
12
|
Conjugative type IV secretion in Gram-positive pathogens: TraG, a lytic transglycosylase and endopeptidase, interacts with translocation channel protein TraM. Plasmid 2017; 91:9-18. [PMID: 28219792 DOI: 10.1016/j.plasmid.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
Abstract
Conjugative transfer plays a major role in the transmission of antibiotic resistance in bacteria. pIP501 is a Gram-positive conjugative model plasmid with the broadest transfer host-range known so far and is frequently found in Enterococcus faecalis and Enterococcus faecium clinical isolates. The pIP501 type IV secretion system is encoded by 15 transfer genes. In this work, we focus on the VirB1-like protein TraG, a modular peptidoglycan metabolizing enzyme, and the VirB8-homolog TraM, a potential member of the translocation channel. By providing full-length traG in trans, but not with a truncated variant, we achieved full recovery of wild type transfer efficiency in the traG-knockout mutant E. faecalis pIP501ΔtraG. With peptidoglycan digestion experiments and tandem mass spectrometry we could assign lytic transglycosylase and endopeptidase activity to TraG, with the CHAP domain alone displaying endopeptidase activity. We identified a novel interaction between TraG and TraM in a bacterial-2-hybrid assay. In addition we found that both proteins localize in focal spots at the E. faecalis cell membrane using immunostaining and fluorescence microscopy. Extracellular protease digestion to evaluate protein cell surface exposure revealed that correct membrane localization of TraM requires the transmembrane helix of TraG. Thus, we suggest an essential role for TraG in the assembly of the pIP501 type IV secretion system.
Collapse
|
13
|
Sharifahmadian M, Baron C. Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors. Curr Top Microbiol Immunol 2017. [PMID: 29536359 DOI: 10.1007/978-3-319-75241-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen-host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
14
|
Abstract
Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.
Collapse
|
15
|
The bifunctional cell wall hydrolase CwlT is needed for conjugation of the integrative and conjugative element ICEBs1 in Bacillus subtilis and B. anthracis. J Bacteriol 2014; 196:1588-96. [PMID: 24532767 DOI: 10.1128/jb.00012-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobile genetic element ICEBs1 is an integrative and conjugative element (ICE) found in Bacillus subtilis. One of the ICEBs1 genes, cwlT, encodes a cell wall hydrolase with two catalytic domains, a muramidase and a peptidase. We found that cwlT is required for ICEBs1 conjugation. We examined the role of each of the two catalytic domains and found that the muramidase is essential, whereas the peptidase is partially dispensable for transfer of ICEBs1. We also found that the putative signal peptide in CwlT is required for CwlT to function in conjugation, consistent with the notion that CwlT is normally secreted from the cytoplasm. We found that alteration of the putative lipid attachment site on CwlT had no effect on its role in conjugation, indicating that if CwlT is a lipoprotein, the lipid attachment is not required for conjugation. Finally, we found conditions supporting efficient transfer of ICEBs1 into and out of Bacillus anthracis and that cwlT was needed for ICEBs1 to function in B. anthracis. The mature cell wall of B. anthracis is resistant to digestion by CwlT, indicating that CwlT might act during cell wall synthesis, before modifications of the peptidoglycan are complete.
Collapse
|
16
|
PrgK, a multidomain peptidoglycan hydrolase, is essential for conjugative transfer of the pheromone-responsive plasmid pCF10. J Bacteriol 2013; 196:527-39. [PMID: 24244005 DOI: 10.1128/jb.00950-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan (PG) hydrolases associated with bacterial type IV secretion systems (T4SSs) are thought to generate localized lesions in the PG layer to facilitate assembly of the translocation channel. The pheromone-responsive plasmid pCF10 of Enterococcus faecalis encodes a putative cell wall hydrolase, PrgK, and here we report that a prgK deletion abolished functionality of the pCF10-encoded T4SS as monitored by pCF10 conjugative transfer. Expression in trans of wild-type prgK fully complemented this mutation. PrgK has three potential hydrolase motifs resembling staphylococcal LytM, soluble lytic transglycosylase (SLT), and cysteine-, histidine-dependent amidohydrolase/peptidase (CHAP) domains. Complementation analyses with mutant alleles established that PrgK bearing two hydrolase domains in any combination supported near-wild-type plasmid transfer, and PrgK bearing a single hydrolase domain supported at least a low level of transfer in filter matings. When exported to the Escherichia coli periplasm, each domain disrupted cell growth, and combinations of domains additionally induced cell rounding and blebbing and conferred enhanced sensitivity to osmotic shock. Each domain bound PG in vitro, but only the SLT domain exhibited detectable hydrolase activity, as shown by zymographic analyses and release of fluorescent PG fragments. Genes encoding three T4SS-associated, putative hydrolases, Lactococcus lactis CsiA, Tn925 Orf14, and pIP501 TraG, partially complemented the ΔprgK mutation. Our findings establish that PrgK is an essential component of the pCF10-encoded Prg/Pcf T4SS and that its hydrolase domains coordinate their activities for full PrgK function. PrgK is indispensable for plasmid transfer in liquid matings, suggestive of a role in formation or stabilization of mating junctions.
Collapse
|
17
|
Structural independence of conjugative coupling protein TrwB from its Type IV secretion machinery. Plasmid 2013; 70:146-53. [PMID: 23583564 DOI: 10.1016/j.plasmid.2013.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/21/2022]
Abstract
The stability of components of multiprotein complexes often relies on the presence of the functional complex. To assess structural dependence among the components of the R388 Type IV secretion system (T4SS), the steady-state level of several Trw proteins was determined in the absence of other Trw components. While several Trw proteins were affected by the lack of others, we found that the coupling protein TrwB is not affected by the absence of other T4SS components, nor did its absence alter significantly the levels of integral components of the complex, underscoring the independent role of the coupling protein on the T4SS architecture. The cytoplasmic ATPases TrwK (VirB4) and TrwD (VirB11) were affected by the absence of several core complex components, while the pilus component TrwJ (VirB5) required the presence of all other Trw proteins (except for TrwB) to be detectable. Overall, the results delineate a possible assembly pathway for the T4SS of R388. We have also tested structural complementation of TrwD (VirB11) and TrwJ (VirB5) by their homologues in the highly related Trw system of Bartonella tribocorum (Bt). The results reveal a correlation with the functional complementation data previously reported.
Collapse
|
18
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
19
|
Abstract
Brucellosis is a global disease of domestic and wild mammals that is caused by intracellular bacteria of the genus Brucella. Although humans are not a natural reservoir for Brucella, infection in the human population is common in many countries, and brucellosis is one of the most common zoonotic infections. Brucella species have evolved to avoid the host's immune system and infection is usually characterized by long-term persistence of the bacteria. One important Brucella virulence factor for intracellular survival and persistence in the host is the type IV secretion system. This review will discuss the Brucella type IV secretion system in detail, including current knowledge of architecture and regulation, as well as the newly identified effector substrates that this system transports into host cells.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | | |
Collapse
|
20
|
Scheurwater EM, Burrows LL. Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol Lett 2011; 318:1-9. [DOI: 10.1111/j.1574-6968.2011.02228.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol 2011; 193:2097-106. [PMID: 21398549 DOI: 10.1128/jb.00907-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Type IV secretion systems are virulence factors used by many gram-negative bacteria to translocate macromolecules across the cell envelope. VirB8 is an essential inner membrane component of type IV secretion systems, and it is believed to form a homodimer. In the absence of VirB8, the levels of several other VirB proteins were reduced (VirB1, VirB3, VirB4, VirB5, VirB6, VirB7, and VirB11) in Agrobacterium tumefaciens, underlining its importance for complex stability. To assess the importance of dimerization, we changed residues at the predicted dimer interface (V97, A100, Q93, and E94) in order to strengthen or to abolish dimerization. We verified the impact of the changes on dimerization in vitro with purified V97 variants, followed by analysis of the in vivo consequences in a complemented virB8 deletion strain. Dimer formation was observed in vivo after the introduction of a cysteine residue at the predicted interface (V97C), and this variant supported DNA transfer, but the formation of elongated T pili was not detected by the standard pilus isolation technique. Variants with changes at V97 and A100 that weaken dimerization did not support type IV secretion system functions. The T-pilus component VirB2 cofractionated with high-molecular-mass core protein complexes extracted from the membranes, and the presence of VirB8 as well as its dimer interface were important for this association. We conclude that the VirB8 dimer interface is required for T4SS function, for the stabilization of many VirB proteins, and for targeting of VirB2 to the T-pilus assembly site.
Collapse
|
22
|
García-Gómez E, Espinosa N, de la Mora J, Dreyfus G, González-Pedrajo B. The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. MICROBIOLOGY-SGM 2011; 157:1145-1160. [PMID: 21233160 DOI: 10.1099/mic.0.045617-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important cause of infectious diarrhoea. It colonizes human intestinal epithelial cells by delivering effector proteins into the host cell cytoplasm via a type III secretion system (T3SS) encoded within the chromosomal locus of enterocyte effacement (LEE). The LEE pathogenicity island also encodes a lytic transglycosylase (LT) homologue named EtgA. In the present work we investigated the significance of EtgA function in type III secretion (T3S). Purified recombinant EtgA was found to have peptidoglycan lytic activity in vitro. Consistent with this function, signal peptide processing and bacterial cell fractionation revealed that EtgA is a periplasmic protein. EtgA possesses the conserved glutamate characteristic of the LT family, and we show here that it is essential for enzymic activity. Overproduction of EtgA in EPEC inhibits bacterial growth and induces cell lysis unless the predicted catalytic glutamate is mutated. An etgA mutant is attenuated for T3S, red blood cell haemolysis and EspA filamentation. BfpH, a plasmid-encoded putative LT, was not able to functionally replace EtgA. Overall, our results indicate that the muramidase activity of EtgA is not critical but makes a significant contribution to the efficiency of the T3S process.
Collapse
Affiliation(s)
- Elizabeth García-Gómez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Javier de la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Georges Dreyfus
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| |
Collapse
|
23
|
Stentz R, Wegmann U, Parker M, Bongaerts R, Lesaint L, Gasson M, Shearman C. CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA translocation through the cell envelope. Mol Microbiol 2010; 72:779-94. [PMID: 19400771 DOI: 10.1111/j.1365-2958.2009.06683.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conjugation is a widely spread mechanism allowing bacteria to adapt and evolve by acquiring foreign DNA. The chromosome of Lactococcus lactis MG 1363 contains a 60 kb conjugative element called the sex factor capable of high-frequency DNA transfer. Yet, little is known about the proteins involved in this process. Comparative genomics revealed a close relationship between the sex factor and elements found in Gram-positive pathogenic cocci. Among the conserved gene products, CsiA is a large protein that contains a highly conserved domain (HCD) and a C-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain in its C-terminal moiety. Here, we show that CsiA is required for DNA transfer. Surprisingly, increased expression of CsiA affects cell viability and the cells become susceptible to lysis. Point mutagenesis of HCD reveals that this domain is responsible for the observed phenotypes. Growth studies and electron microscope observations suggest that CsiA is acting as a cell wall synthesis inhibitor. In vitro experiments reveal the capacity of CsiA to bind d-Ala-d-Ala analogues and to prevent the action of penicillin binding proteins. Our results strongly suggest that CsiA sequesters the peptidoglycan precursor and prevents the final stage of cell wall biosynthesis to enable the localized assembly of the DNA transfer machinery through the cell wall.
Collapse
Affiliation(s)
- Régis Stentz
- Commensals and Microflora (G2), Institute of Food Research, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep 2010; 38:503-9. [PMID: 20358296 DOI: 10.1007/s11033-010-0134-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
The Cag Type IV secretion apparatus proteins in Helicobacter pylori can mediate the injection of effector CagA protein into eukaryotic target cells. Although this apparatus forms an important pathway for bacterium-host interaction, its assembly process in vivo is poorly understood, and the proteins which contribute to break the bacterial cell walls in Cag-PAI have not yet been identified. The cagγ gene in Cag-PAI is a unique member that contains a conserved SLT catalysis domain, which makes it an attracting question whether cagy gene has the capacity to digest the bacterial cell wall. In the current study, therefore, the cagγ gene was cloned from the H. pylori NCTC 11637 and expressed in Escherichia coli, and its lytic effect on cell walls in vitro was observed. Results indicated that Cagγ protein has a lytic activity against bacterial cell walls. An allelic-exchange mutant (Δcagγ) was further constructed to investigate the relationship between Cagγ and effector CagA translocation. These results suggested that Cagγ contributed to the assembly of Cag Type IV secretion apparatus by digesting the peptidoglycan meshwork of bacterial cell walls.
Collapse
|
25
|
Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci U S A 2010; 107:3758-63. [PMID: 20133577 DOI: 10.1073/pnas.0914940107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genetic transformation of plant cells by Agrobacterium tumefaciens results from the transfer of DNA and proteins via a specific virulence (vir) -induced type IV secretion system (T4SS). To better understand T4SS function, we analyzed the localization of its structural components and substrates by deconvolution fluorescence microscopy. GFP fusions to T4SS proteins with cytoplasmic tails, VirB8 and VirD4, or cytoplasmic T4SS substrate proteins, VirD2, VirE2, and VirF, localize in a helical pattern of fluorescent foci around the perimeter of the bacterial cell. All fusion proteins were expressed at native levels of vir induction. Importantly, most fusion proteins are functional and do not exhibit dominant-negative effects on DNA transfer to plant cells. Further, GFP-VirB8 complements a virB8 deletion strain. We also detect native VirB8 localization as a helical array of foci by immunofluorescence microscopy. T4SS foci likely use an existing helical scaffold during their assembly. Indeed, the bacterial cytoskeletal component MinD colocalizes with GFP-VirB8. Helical arrays of foci are found at all times investigated between 12 and 48 h post vir induction at 19 degrees C. These data lead to a model with multiple T4SSs around the bacterial cell that likely facilitate host cell attachment and DNA transfer. In support, we find multiple T pili around vir-induced bacterial cells.
Collapse
|
26
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
27
|
Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 2008; 190:2161-71. [PMID: 18178731 DOI: 10.1128/jb.01341-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori, genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens. The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.
Collapse
|
28
|
Aly KA, Baron C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. MICROBIOLOGY-SGM 2008; 153:3766-3775. [PMID: 17975085 DOI: 10.1099/mic.0.2007/010462-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) mediates the transfer of single-stranded DNA and protein virulence factors into plant cells, and also determines the assembly of the T-pilus, which is believed to play a role in host recognition. The T-pilus is composed of the major component VirB2 and the minor component VirB5. Using immuno-electron microscopy we detected the major component VirB2 along the entire length of detached T-pili, but not on cell-bound T-pili or on the cell surface. In contrast, the minor T-pilus component VirB5 was detected on the tips of cell-bound T-pili as well as on the ends of detached T-pili and on the cell surface. To gain further insights into the role of VirB5 we introduced changes at its C terminus. C-terminal deletions of up to four amino acids and alanine replacements did not abolish T-pilus formation and incorporation of the VirB5 variants at the tip, although they did impact the length of T-pili. Also, these changes differentially affected the ability of the T4SS to transfer DNA into plant and bacterial recipients, suggesting differential effects on host-cell specificity. The data presented here suggest that VirB5 localizes at the T-pilus tip, and provide novel insights into its role during the type IV secretion process.
Collapse
Affiliation(s)
- Khaled A Aly
- McMaster University, Department of Biology and Antimicrobial Research Centre, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Christian Baron
- McMaster University, Department of Biology and Antimicrobial Research Centre, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
29
|
Oh HS, Kvitko BH, Morello JE, Collmer A. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. J Bacteriol 2007; 189:8277-89. [PMID: 17827286 PMCID: PMC2168667 DOI: 10.1128/jb.00998-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae translocates virulence effector proteins into plant cells via a type III secretion system (T3SS) encoded by hrp (for hypersensitive response and pathogenicity) genes. Three genes coregulated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase domains: PSPTO1378 (here designated hrpH), PSPTO2678 (hopP1), and PSPTO852 (hopAJ1). hrpH is located between hrpR and avrE1 in the Hrp pathogenicity island and is carried in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11. Strong expression of DC3000 hrpH in Escherichia coli inhibits bacterial growth unless the predicted catalytic glutamate at position 148 is mutated. Translocation tests involving C-terminal fusions with a Cya (Bordetella pertussis adenylate cyclase) reporter indicate that HrpH and HopP1, but not HopAJ1, are T3SS substrates. Pseudomonas fluorescens carrying a pHIR11 derivative lacking hrpH is poorly able to translocate effector HopA1, and this deficiency can be restored by HopP1 and HopAJ1, but not by HrpH(E148A) or HrpH(1-241). DC3000 mutants lacking hrpH or hrpH, hopP1, and hopAJ1 combined are variously reduced in effector translocation, elicitation of the hypersensitive response, and virulence. However, the mutants are not reduced in secretion of T3SS substrates in culture. When produced in wild-type DC3000, the HrpH(E148A) and HrpH(1-241) variants have a dominant-negative effect on the ability of DC3000 to elicit the hypersensitive response in nonhost tobacco and to grow and cause disease in host tomato. The three Hrp-associated lytic transglycosylases in DC3000 appear to have overlapping functions in contributing to T3SS functions during infection.
Collapse
Affiliation(s)
- Hye-Sook Oh
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
30
|
Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P. VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 2007; 189:6551-63. [PMID: 17631630 PMCID: PMC2045169 DOI: 10.1128/jb.00480-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vir-type IV secretion system of Agrobacterium is assembled from 12 proteins encoded by the virB operon and virD4. VirB1 is one of the least-studied proteins encoded by the virB operon. Its N terminus is a lytic transglycosylase. The C-terminal third of the protein, VirB1*, is cleaved from VirB1 and secreted to the outside of the bacterial cell, suggesting an additional function. We show that both nopaline and octopine strains produce abundant amounts of VirB1* and perform detailed studies on nopaline VirB1*. Both domains are required for wild-type virulence. We show here that the nopaline type VirB1* is essential for the formation of the T pilus, a subassembly of the vir-T4SS composed of processed and cyclized VirB2 (major subunit) and VirB5 (minor subunit). A nopaline virB1 deletion strain does not produce T pili. Complementation with full-length VirB1 or C-terminal VirB1*, but not the N-terminal lytic transglycosylase domain, restores T pili containing VirB2 and VirB5. T-pilus preparations also contain extracellular VirB1*. Protein-protein interactions between VirB1* and VirB2 and VirB5 were detected in the yeast two-hybrid assay. We propose that VirB1 is a bifunctional protein required for virT4SS assembly. The N-terminal lytic transglycosylase domain provides localized lysis of the peptidoglycan cell wall to allow insertion of the T4SS. The C-terminal VirB1* promotes T-pilus assembly through protein-protein interactions with T-pilus subunits.
Collapse
Affiliation(s)
- John Zupan
- Department of Plant and Microbial Biology, Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
31
|
Kohler PL, Hamilton HL, Cloud-Hansen K, Dillard JP. AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system. J Bacteriol 2007; 189:5421-8. [PMID: 17526702 PMCID: PMC1951824 DOI: 10.1128/jb.00531-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.
Collapse
Affiliation(s)
- Petra L Kohler
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
32
|
Cui LL, Shao SH. Cloning and sequence analysis of Helicobacter pylori NCTC 11637 cagT gene. Shijie Huaren Xiaohua Zazhi 2007; 15:1433-1436. [DOI: 10.11569/wcjd.v15.i12.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clone and analyze H. pylori cagT gene.
METHODS: H. pylori cagT gene was amplified from the genome DNA by polymerase chain reaction (PCR). The PCR product was inserted into pGEM-T vector and then transformed into E.coli DH5α. The positive recombinant clone was analyzed by digestion of restriction endonuclease. Next, the cagT gene fragment was inserted directionally into vector pQE30 to construct recombinant clone of cagT, which was sequenced finally.
RESULTS: A cagT gene consisting of 843 base pairs, which encoded a product of 280 amino acids, was obtained using PCR method and was cloned into pGEM-T vector successfully. Its GenBank accession number was EF114758. Sequence analysis showed that cagT gene had shared 97%-99% homology with other strains in GenBank.
CONCLUSION: The correct cagT gene is successfully cloned, which established a basis for further investigation of its biological function.
Collapse
|
33
|
Patey G, Qi Z, Bourg G, Baron C, O'Callaghan D. Swapping of periplasmic domains between Brucella suis VirB8 and a pSB102 VirB8 homologue allows heterologous complementation. Infect Immun 2006; 74:4945-9. [PMID: 16861687 PMCID: PMC1539617 DOI: 10.1128/iai.00584-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Brucella suis mutant with a nonpolar deletion in the virB8 gene was attenuated in a macrophage infection model. Complementation with the B. suis VirB8 protein expressed from the virB promoter restored virulence. Expression of TraJ, a VirB8 homologue from plasmid pSB102, did not restore virulence; however, virulence was partially restored by a chimeric protein containing the N terminus of the B. suis VirB8 protein and the C-terminal periplasmic domain of TraJ.
Collapse
Affiliation(s)
- Gilles Patey
- Institut National de la Santé et de la Recherche Médicale U431, UFR Médecine, CS83021, Avenue Kennedy, 30908 Nîmes Cedex 02, France
| | | | | | | | | |
Collapse
|
34
|
Mortelmans K. Isolation of plasmid pKM101 in the Stocker laboratory. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2006; 612:151-164. [PMID: 16716644 DOI: 10.1016/j.mrrev.2006.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
pKM101 is a mutagenesis-enhancing resistance transfer plasmid (R plasmid) that was introduced into several tester strains used in the Salmonella/microsome mutation assay (Ames test). Plasmid pKM101 has contributed substantially to the effectiveness of the Ames assay, which is used on a world-wide basis to detect mutagens and is required by many government regulatory agencies for approval to market new drugs and other chemical agents. Widely used since 1975, the Ames test is still regarded as one of the most sensitive genetic toxicity assays and a useful short-term test for predicting carcinogenicity in animals. Plasmid pKM101, which is a deletion derivative of plasmid R46 (also referred to as R-Brighton after its origin of isolation in Brighton, England), has also been used to elucidate molecular mechanisms of mutagenesis. It was isolated in the laboratory of Professor Bruce A.D. Stocker at Stanford University as part of my doctoral research with 20 R plasmids. Professor Stocker's phenomenal insight into the genetics of Salmonella typhimurium and plasmid behavior was a major factor that led to the isolation of pKM101. This paper includes a tribute to Bruce Stocker, together with a summary of my research with mutagenesis-enhancing R plasmids and a brief discussion of the molecular mechanisms involved in pKM101 plasmid-mediated bacterial mutagenesis.
Collapse
Affiliation(s)
- Kristien Mortelmans
- SRI International, Biosciences Division, Microbiology Program, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, United States.
| |
Collapse
|
35
|
Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 2006; 59:84-98. [PMID: 16359320 DOI: 10.1111/j.1365-2958.2005.04930.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The culturability of several actinobacteria is controlled by resuscitation-promoting factors (Rpfs). These are proteins containing a c. 70-residue domain that adopts a lysozyme-like fold. The invariant catalytic glutamate residue found in lysozyme and various bacterial lytic transglycosylases is also conserved in the Rpf proteins. Rpf from Micrococcus luteus, the founder member of this protein family, is indeed a muralytic enzyme, as revealed by its activity in zymograms containing M. luteus cell walls and its ability to (i) cause lysis of Escherichia coli when expressed and secreted into the periplasm; (ii) release fluorescent material from fluorescamine-labelled cell walls of M. luteus; and (iii) hydrolyse the artificial lysozyme substrate, 4-methylumbelliferyl-beta-D-N,N',N''-triacetylchitotrioside. Rpf activity was reduced but not completely abolished when the invariant glutamate residue was altered. Moreover, none of the other acidic residues in the Rpf domain was absolutely required for muralytic activity. Replacement of one or both of the cysteine residues that probably form a disulphide bridge within Rpf impaired but did not completely abolish muralytic activity. The muralytic activities of the Rpf mutants were correlated with their abilities to stimulate bacterial culturability and resuscitation, consistent with the view that the biological activity of Rpf results directly or indirectly from its ability to cleave bonds in bacterial peptidoglycan.
Collapse
Affiliation(s)
- Galina V Mukamolova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Couturier MR, Tasca E, Montecucco C, Stein M. Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 2006; 74:273-81. [PMID: 16368981 PMCID: PMC1346642 DOI: 10.1128/iai.74.1.273-281.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Development of severe gastric diseases is strongly associated with those strains of Helicobacter pylori that contain the cag pathogenicity island (PAI) inserted into the chromosome. The cag PAI encodes a type IV secretion system that translocates the major disease-associated virulence protein, CagA, into the host epithelial cell. CagA then affects host signaling pathways, leading to cell elongations and inflammation. Since the precise mechanism by which the CagA toxin is translocated by the type IV secretion system remained elusive, we used fusion proteins and immunoprecipitation studies to identify CagA-interacting secretion components. Here we demonstrate that CagA, in addition to other yet-unidentified proteins, interacts with CagF, presumably at the inner bacterial membrane. This interaction is required for CagA translocation, since an isogenic nonpolar cagF mutant was translocation deficient. Our results suggest that CagF may be a protein with unique chaperone-like function that is involved in the early steps of CagA recognition and delivery into the type IV secretion channel.
Collapse
Affiliation(s)
- Marc Roger Couturier
- Department of Medical Microbiology and Immunology, University of Alberta, 1-17 Medical Sciences Building, Edmonton, Alberta T6G 2R3, Canada
| | | | | | | |
Collapse
|
37
|
Carle A, Höppner C, Ahmed Aly K, Yuan Q, den Dulk-Ras A, Vergunst A, O'Callaghan D, Baron C. The Brucella suis type IV secretion system assembles in the cell envelope of the heterologous host Agrobacterium tumefaciens and increases IncQ plasmid pLS1 recipient competence. Infect Immun 2006; 74:108-17. [PMID: 16368963 PMCID: PMC1346655 DOI: 10.1128/iai.74.1.108-117.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Brucella species replicate within mammalian cells, and their type IV secretion system is essential for intracellular survival and replication. The options for biochemical studies on the Brucella secretion system are limited due to the rigidity of the cells and biosafety concerns, which preclude large-scale cell culture and fractionation. To overcome these problems, we heterologously expressed the Brucella suis virB operon in the closely related alpha(2)-proteobacterium Agrobacterium tumefaciens and showed that the VirB proteins assembled into a complex. Eight of the twelve VirB proteins were detected in the membranes of the heterologous host with specific antisera. Cross-linking indicated protein-protein interactions similar to those in other type IV secretion systems, and the results of immunofluorescence analysis supported the formation of VirB protein complexes in the cell envelope. Production of a subset of the B. suis VirB proteins (VirB3-VirB12) in A. tumefaciens strongly increased its ability to receive IncQ plasmid pLS1 in conjugation experiments, and production of VirB1 further enhanced the conjugation efficiency. Plasmid recipient competence correlated with periplasmic leakage and the detergent sensitivity of A. tumefaciens, suggesting a weakening of the cell envelope. Heterologous expression thus permits biochemical characterization of B. suis type IV secretion system assembly.
Collapse
Affiliation(s)
- Anna Carle
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario LS8 4K1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Höppner C, Carle A, Sivanesan D, Hoeppner S, Baron C. The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. MICROBIOLOGY-SGM 2005; 151:3469-3482. [PMID: 16272371 DOI: 10.1099/mic.0.28326-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
VirB1-like proteins are believed to act as lytic transglycosylases, which facilitate the assembly of type IV secretion systems via localized lysis of the peptidoglycan. This paper presents the biochemical analysis of interactions of purified Brucella suis VirB1 with core components of the type IV secretion system. Genes encoding VirB1, VirB8, VirB9, VirB10 and VirB11 were cloned into expression vectors; the affinity-tagged proteins were purified from Escherichia coli, and analyses by gel filtration chromatography showed that they form monomers or homo-multimers. Analysis of protein-protein interactions by affinity precipitation revealed that VirB1 bound to VirB9 and VirB11. The results of bicistron expression experiments followed by gel filtration further supported the VirB1-VirB9 interaction. Peptide array mapping identified regions of VirB1 that interact with VirB8, VirB9 and VirB11 and underscored the importance of the C-terminus, especially for the VirB1-VirB9 interaction. The binding sites were localized on a structure model of VirB1, suggesting that different portions of VirB1 may interact with other VirB proteins during assembly of the type IV secretion machinery.
Collapse
Affiliation(s)
- Christoph Höppner
- Ludwig-Maximilians-Universität, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| | - Anna Carle
- Ludwig-Maximilians-Universität, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| | - Durga Sivanesan
- McMaster University, Department of Biology, 1280 Main St West, Hamilton, ON, Canada LS8 4K1
| | - Sabine Hoeppner
- Ludwig-Maximilians-Universität, Gene Center, Feodor-Lynen Str. 25, D-81377 München, Germany
| | - Christian Baron
- McMaster University, Department of Biology, 1280 Main St West, Hamilton, ON, Canada LS8 4K1
- Ludwig-Maximilians-Universität, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| |
Collapse
|
39
|
de Paz HD, Sangari FJ, Bolland S, García-Lobo JM, Dehio C, de la Cruz F, Llosa M. Functional interactions between type IV secretion systems involved in DNA transfer and virulence. MICROBIOLOGY-SGM 2005; 151:3505-3516. [PMID: 16272374 DOI: 10.1099/mic.0.28410-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports an analysis of the functional interactions between type IV secretion systems (T4SS) that are part of the conjugative machinery for horizontal DNA transfer (cT4SS), and T4SS involved in bacterial pathogenicity (pT4SS). The authors' previous work showed that a conjugative coupling protein (T4CP) interacts with the VirB10-type component of the T4SS in order to recruit the protein-DNA complex to the transporter for conjugative DNA transfer. This study now shows by two-hybrid analysis that conjugative T4CPs also interact with the VirB10 element of the pT4SS of Agrobacterium tumefaciens (At), Bartonella tribocorum (Bt) and Brucella suis (Bs). Moreover, the VirB10 component of a cT4SS (protein TrwE of plasmid R388) could be partially substituted by that of a pT4SS (protein TrwE of Bt) for conjugation. This result opens the way for the construction of hybrid T4SS that deliver DNA into animal cells. Interestingly, in the presence of part of the Bs T4SS the R388 T4SS protein levels were decreased and R388 conjugation was strongly inhibited. Complementation assays between the Trw systems of R388 and Bt showed that only individual components from the so-called 'core complex' could be exchanged, supporting the concept that this core is the common scaffold for the transport apparatus while the other 'peripheral components' are largely system-specific.
Collapse
Affiliation(s)
- Héctor D de Paz
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Félix J Sangari
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Silvia Bolland
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Juan M García-Lobo
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Christoph Dehio
- Division of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Matxalen Llosa
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
40
|
Zahrl D, Wagner M, Bischof K, Bayer M, Zavecz B, Beranek A, Ruckenstuhl C, Zarfel GE, Koraimann G. Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology (Reading) 2005; 151:3455-3467. [PMID: 16272370 DOI: 10.1099/mic.0.28141-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Specialized lytic transglycosylases are muramidases capable of locally degrading the peptidoglycan meshwork of Gram-negative bacteria. Specialized lytic transglycosylase genes are present in clusters encoding diverse macromolecular transport systems. This paper reports the analysis of selected members of the specialized lytic transglycosylase family from type III and type IV secretion systems. These proteins were analysedin vivoby assaying their ability to complement the DNA transfer defect of the conjugative F-like plasmid R1-16 lacking a functional P19 protein, the specialized lytic transglycosylase of this type IV secretion system. Heterologous complementation was accomplished using IpgF from the plasmid-encoded type III secretion system ofShigella sonneiand TrbN from the type IV secretion system of the conjugative plasmid RP4. In contrast, neither VirB1 proteins (Agrobacterium tumefaciens,Brucella suis) nor IagB (Salmonella enterica) could functionally replace P19.In vitro, IpgF, IagB, both VirB1 proteins, HP0523 (Helicobacter pylori) and P19 displayed peptidoglycanase activity in zymogram analyses. Using an established test system and a newly developed assay it was shown that IpgF degraded peptidoglycan in solution. IpgF was active only after removal of the chaperonin GroEL, which co-purified with IpgF and inhibited its enzymic activity. A mutant IpgF protein in which the predicted catalytic amino acid, Glu42, was replaced by Gln, was completely inactive. IpgF-catalysed peptidoglycan degradation was optimal at pH 6 and was inhibited by the lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A.
Collapse
Affiliation(s)
- Doris Zahrl
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Maria Wagner
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Karin Bischof
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Michaela Bayer
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Barbara Zavecz
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Andreas Beranek
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Christoph Ruckenstuhl
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Gernot E Zarfel
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Günther Koraimann
- Institut für Molekulare Biowissenschaften (IMB), Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
41
|
Abstract
Helicobacter pylori is a human-specific gastric pathogen that colonizes over half the world's population. Infection with this bacterium is associated with a spectrum of gastric pathologies ranging from mild gastritis to peptic ulcers and gastric cancer. A strong predictor of severe disease outcome is infection with a bacterial strain harbouring the cag (cytotoxin associated gene) pathogenicity island (PAI), a 40 kb stretch of DNA that encodes homologues of several components of a type IV secretion system (TFSS). One gene within the cag PAI, cagA, has been shown to encode a substrate for the TFSS which is translocated into host cells and causes multiple changes in host cell signalling. Here we review recent advances in the characterization of type IV secretion, the activities of CagA and CagA-independent effects of the TFSS, which are contributing to our understanding of H. pylori pathogenesis.
Collapse
Affiliation(s)
- Kevin M Bourzac
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
42
|
Teng YTA, Zhang X. Apoptotic activity and sub-cellular localization of a T4SS-associated CagE-homologue in Actinobacillus actinomycetemcomitans. Microb Pathog 2005; 38:125-32. [PMID: 15748814 DOI: 10.1016/j.micpath.2004.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 11/28/2022]
Abstract
A potent virulence factor, cagE homologue of Actinobacillus actinomycetemcomitans, was identified via an expression cloning strategy and periodontitis-associated CD4(+)T-cells of a humanized mouse model. Through the immuno-gold labeling with transmission electron microscopy, immunofluorescent staining, in vitro co-cultures and Western blot studies, the resulting data clearly demonstrate that: (i) in CagE-homologue treated human epithelia in vitro, there are ultra-structural features of plasma membrane blebbing, sub-cellular disorganization with condensed and marginalized chromatins along the nuclear membrane, consistent with the pro-apoptotic characteristics, (ii) the disturbed membrane integrity detected above is associated with localization of the CagE proteins on target cell surface, and (iii) CagE-homologue is located in the cytoplasm of A. actinomycetemcomitans and associated with a bacterial type-IV secretion system (T4SS), suggesting that its translocation is required for secretion. Thus, CagE-homologue may be critically involved in A. actinomycetemcomitans-induced tissue destruction, inflammation and subsequent adverse immunity in periodontal pathogenesis.
Collapse
Affiliation(s)
- Yen-Tung A Teng
- School of Medicine and Dentistry, University of Rochester Medical Centre, 625 Elmwood Ave. Rochester, NY, 14620-2989, USA
| | | |
Collapse
|
43
|
Yuan Q, Carle A, Gao C, Sivanesan D, Aly KA, Höppner C, Krall L, Domke N, Baron C. Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 2005; 280:26349-59. [PMID: 15901731 DOI: 10.1074/jbc.m502347200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili. The NTPase Walker A active site of the inner membrane protein VirB4 is required for virulence, but an active site VirB4 variant stabilized VirB3 and VirB8 and enabled T-pilus formation. Analysis of VirB protein complexes extracted from the membranes with mild detergent revealed that VirB2-VirB5 complex formation depended on VirB4, which identified a novel T-pilus assembly step. Bicistron expression demonstrated direct interaction of VirB4 with VirB8, and analyses with purified proteins showed that VirB5 bound to VirB8 and VirB10. VirB4 therefore localizes at the basis of a trans-envelope interaction sequence, and by stabilization of VirB8 it mediates the incorporation of VirB5 and VirB2 into extracellular pili.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Biology, McMaster University, Hamilton, Ontario LS8 4K1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
den Hartigh AB, Sun YH, Sondervan D, Heuvelmans N, Reinders MO, Ficht TA, Tsolis RM. Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun 2004; 72:5143-9. [PMID: 15322008 PMCID: PMC517456 DOI: 10.1128/iai.72.9.5143-5149.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/12/2004] [Accepted: 06/02/2004] [Indexed: 11/20/2022] Open
Abstract
The Brucella abortus virB operon, encoding a type IV secretion system (T4SS), is required for intracellular replication and persistent infection in the mouse model. The products of the first two genes of the virB operon, virB1 and virB2, are predicted to be localized at the bacterial surface, where they could potentially interact with host cells. Studies to date have focused on characterization of transposon mutations in these genes, which are expected to exert polar effects on downstream genes in the operon. In order to determine whether VirB1 and VirB2 are required for the function of the T4SS apparatus, we constructed and characterized nonpolar deletion mutations of virB1 and virB2. Both mutants were shown to be nonpolar, as demonstrated by their ability to express the downstream gene virB5 during stationary phase of growth in vitro. Both VirB1 and VirB2 were essential for intracellular replication in J774 macrophages. The nonpolar virB2 mutant was unable to cause persistent infection in the mouse model, demonstrating the essential role of VirB2 in the function of the T4SS apparatus during infection. In contrast, the nonpolar virB1 mutant persisted at wild-type levels, showing that the function of VirB1 is dispensable in the mouse model of persistent infection.
Collapse
Affiliation(s)
- Andreas B den Hartigh
- Department of Medical Microbiology & Immunology, Texas A&M University Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|