1
|
Maslova O, Beletsky A, Mindlin S, Petrova N, Mardanov A, Petrova M. Conjugative Plasmid pPPUT-Tik1-1 from a Permafrost Pseudomonas putida Strain and Its Present-Day Counterparts Inhabiting Environments and Clinics. Int J Mol Sci 2023; 24:13518. [PMID: 37686323 PMCID: PMC10488154 DOI: 10.3390/ijms241713518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
A novel group of conjugative plasmids of Pseudomonas is characterized. The prototype plasmid pPPUT-Tik1-1 (153,663 bp), isolated from a permafrost strain of P. putida Tik1, carries a defective mercury transposon, Tn501, and a streptomycin resistance transposon, Tn5393. Ten plasmids and 34 contigs with backbone regions closely related to pPPUT-Tik1-1 have been found in GenBank. Two of these plasmids from clinical strains of P. putida and P. fulva are almost identical to the ancient plasmid. A characteristic feature of this group of plasmids is the presence of two genes encoding the initiators of replication (repA1 and repA2). None of these genes have high similarity with plasmid replication genes belonging to known incompatibility groups. It has been demonstrated that while pPPUT-Tik1-1-like plasmids have homologous backbone regions, they significantly differ by the molecular structure and the predicted functions of their accessory regions. Some of the pPPUT-Tik1-1-related plasmids carry determinants of antibiotic resistance and/or heavy metal salts. Some plasmids are characterized by the ability to degrade xenobiotics. Plasmids related to pPPUT-Tik1-1 are characterized by a narrow host range and are found in various species of the Pseudomonas genus. Interestingly, we also found shorter plasmid variants containing the same replication module, but lacking conjugation genes and containing other structural changes that strongly distinguish them from plasmids related to pPPUT-Tik1-1, indicating that the structure of the replication module cannot be used as the sole criterion for classifying plasmids. Overall, the results suggest that the plasmids of the novel group can be spread using conjugation in environmental and clinical strains of Pseudomonas and may play diverse adaptive functions due to the presence of various accessory regions.
Collapse
Affiliation(s)
- Olga Maslova
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| | - Alexey Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (A.B.); (A.M.)
| | - Sofia Mindlin
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| | - Nika Petrova
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| | - Andrey Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (A.B.); (A.M.)
| | - Mayya Petrova
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| |
Collapse
|
2
|
Schott S, Scheuer R, Ermoli F, Glatter T, Evguenieva-Hackenberg E, Diepold A. A ParDE toxin-antitoxin system is responsible for the maintenance of the Yersinia virulence plasmid but not for type III secretion-associated growth inhibition. Front Cell Infect Microbiol 2023; 13:1166077. [PMID: 37228670 PMCID: PMC10203498 DOI: 10.3389/fcimb.2023.1166077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Many Gram-negative pathogens utilize the type III secretion system (T3SS) to translocate virulence-promoting effector proteins into eukaryotic host cells. The activity of this system results in a severe reduction of bacterial growth and division, summarized as secretion-associated growth inhibition (SAGI). In Yersinia enterocolitica, the T3SS and related proteins are encoded on a virulence plasmid. We identified a ParDE-like toxin-antitoxin system on this virulence plasmid in genetic proximity to yopE, encoding a T3SS effector. Effectors are strongly upregulated upon activation of the T3SS, indicating a potential role of the ParDE system in the SAGI or maintenance of the virulence plasmid. Expression of the toxin ParE in trans resulted in reduced growth and elongated bacteria, highly reminiscent of the SAGI. Nevertheless, the activity of ParDE is not causal for the SAGI. T3SS activation did not influence ParDE activity; conversely, ParDE had no impact on T3SS assembly or activity itself. However, we found that ParDE ensures the presence of the T3SS across bacterial populations by reducing the loss of the virulence plasmid, especially under conditions relevant to infection. Despite this effect, a subset of bacteria lost the virulence plasmid and regained the ability to divide under secreting conditions, facilitating the possible emergence of T3SS-negative bacteria in late acute and persistent infections.
Collapse
Affiliation(s)
- Saskia Schott
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Robina Scheuer
- Department of Microbiology and Molecular Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Francesca Ermoli
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Liu C, Xu X, Koivisto O, Zhou W, Jacquemet G, Rosenholm JM, Zhang H. Improving the knock-in efficiency of the MOF-encapsulated CRISPR/Cas9 system through controllable embedding structures. NANOSCALE 2021; 13:16525-16532. [PMID: 34596650 DOI: 10.1039/d1nr02872c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Appropriate tuning of robust artificial coatings can not only enhance intracellular delivery but also preserve the biological functions of genetic molecules in gene based therapies. Here, we report a strategy to synthesize controllable nanostructures in situ by encapsulating CRISPR/Cas9 plasmids into metal-organic frameworks (MOFs) via biomimetic mineralization. The structure-functionality relationship studies indicate that MOF-coated nanostructures dramatically impact the biological features of the contained plasmids through different embedding structures. The plasmids are homogeneously distributed within the heterogeneous nanoarchitecture and protected from enzymatic degradation. In addition, the plasmid-MOF structure exhibits excellent loading capability, pH-responsive release, and affinity for plasmid binding. Through in vitro assays it was found that the superior MOF vector can greatly enhance cellular endocytosis and endo/lysosomal escape of sheltered plasmids, resulting in successful knock-in of GFP-tagged paxillin genomic sequences in cancer cell lines with high transfection potency compared to our previous studies. Thus, the development of new cost-effective approaches for MOF-based intracellular delivery systems offers an attractive option for overcoming the physiological barriers to CRISPR/Cas9 delivery, which shows great potential for investigating paxillin-associated focal adhesions and signal regulation.
Collapse
Affiliation(s)
- Chang Liu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Xiaoyu Xu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Oliver Koivisto
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Faculty of Science and Engineering, Cell biology, Åbo Akademi University, FI-20520 Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
4
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000-2012. [PMID: 31879772 PMCID: PMC7038947 DOI: 10.1093/nar/gkz1197] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Lennart Randau
- Philipps-Universität Marburg, Faculty of Biology, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| |
Collapse
|
5
|
A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Sci Rep 2019; 9:9872. [PMID: 31285520 PMCID: PMC6614396 DOI: 10.1038/s41598-019-46318-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems on low-copy-number plasmids. Thousands of TA loci have since been identified on chromosomes, plasmids and mobile elements in bacteria and archaea with diverse roles in bacterial physiology and in maintenance of genetic elements. Here, we identified and characterised a plasmid mediated type II TA system in Enterobacteriaceae as a member of the ParDE super family. This system (hereafter, ParDEI) is distributed among IncI and IncF-type antibiotic resistance and virulence plasmids found in avian and human-source Escherichia coli and Salmonella. It is found that ParDEI is a plasmid stability and stress response module that increases tolerance of aminoglycoside, quinolone and β-lactam antibiotics in E. coli by ~100–1,000-fold, and thus to levels beyond those achievable in the course of antibiotic therapy for human infections. ParDEI also confers a clear survival advantage at 42 °C and expression of the ParEI toxin in trans induces the SOS response, inhibits cell division and promotes biofilm formation. This transmissible high-level antibiotic tolerance is likely to be an important factor in the success of the IncI and IncF plasmids which carry it and the important pathogens in which these are resident.
Collapse
|
6
|
Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab Eng 2019; 54:180-190. [DOI: 10.1016/j.ymben.2019.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/28/2022]
|
7
|
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol Cell 2018; 70:768-784. [PMID: 29398446 DOI: 10.1016/j.molcel.2018.01.003] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 12/01/2022]
Abstract
Bacterial toxin-antitoxin (TA) modules are abundant genetic elements that encode a toxin protein capable of inhibiting cell growth and an antitoxin that counteracts the toxin. The majority of toxins are enzymes that interfere with translation or DNA replication, but a wide variety of molecular activities and cellular targets have been described. Antitoxins are proteins or RNAs that often control their cognate toxins through direct interactions and, in conjunction with other signaling elements, through transcriptional and translational regulation of TA module expression. Three major biological functions of TA modules have been discovered, post-segregational killing ("plasmid addiction"), abortive infection (bacteriophage immunity through altruistic suicide), and persister formation (antibiotic tolerance through dormancy). In this review, we summarize the current state of the field and highlight how multiple levels of regulation shape the conditions of toxin activation to achieve the different biological functions of TA modules.
Collapse
Affiliation(s)
- Alexander Harms
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ditlev Egeskov Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Namiko Mitarai
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Niels Bohr Institute, Department of Physics, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
8
|
Karimi S, Ahl D, Vågesjö E, Holm L, Phillipson M, Jonsson H, Roos S. In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence. PLoS One 2016; 11:e0151969. [PMID: 27002525 PMCID: PMC4803345 DOI: 10.1371/journal.pone.0151969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus reuteri is a symbiont that inhabits the gastrointestinal (GI) tract of mammals, and several strains are used as probiotics. After introduction of probiotic strains in a complex ecosystem like the GI tract, keeping track of them is a challenge. The main objectives of this study were to introduce reporter proteins that would enable in vivo and in vitro detection of L. reuteri and increase knowledge about its interactions with the host. We describe for the first time cloning of codon-optimized reporter genes encoding click beetle red luciferase (CBRluc) and red fluorescent protein mCherry in L. reuteri strains ATCC PTA 6475 and R2LC. The plasmid persistence of mCherry-expressing lactobacilli was evaluated by both flow cytometry (FCM) and conventional plate count (PC), and the plasmid loss rates measured by FCM were lower overall than those determined by PC. Neutralization of pH and longer induction duration significantly improved the mCherry signal. The persistency, dose-dependent signal intensity and localization of the recombinant bacteria in the GI tract of mice were studied with an in vivo imaging system (IVIS), which allowed us to detect fluorescence from 6475-CBRluc-mCherry given at a dose of 1×1010 CFU and luminescence signals at doses ranging from 1×105 to 1×1010 CFU. Both 6475-CBRluc-mCherry and R2LC-CBRluc were localized in the colon 1 and 2 h after ingestion, but the majority of the latter were still found in the stomach, possibly reflecting niche specificity for R2LC. Finally, an in vitro experiment showed that mCherry-producing R2LC adhered efficiently to the intra cellular junctions of cultured IPEC-J2 cells. In conclusion, the two reporter genes CBRluc and mCherry were shown to be suitable markers for biophotonic imaging (BPI) of L. reuteri and may provide useful tools for future studies of in vivo and in vitro interactions between the bacteria and the host.
Collapse
Affiliation(s)
- Shokoufeh Karimi
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Evelina Vågesjö
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Hans Jonsson
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
10
|
Wieteska Ł, Skulimowski A, Cybula M, Szemraj J. Toxins vapC and pasB from prokaryotic TA modules remain active in mammalian cancer cells. Toxins (Basel) 2014; 6:2948-61. [PMID: 25271785 PMCID: PMC4210878 DOI: 10.3390/toxins6102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022] Open
Abstract
Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line.
Collapse
Affiliation(s)
- Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Aleksander Skulimowski
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Magdalena Cybula
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
11
|
Loftie-Eaton W, Tucker A, Norton A, Top EM. Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence. Appl Environ Microbiol 2014; 80:5439-46. [PMID: 24973062 PMCID: PMC4136099 DOI: 10.1128/aem.00793-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/18/2014] [Indexed: 11/20/2022] Open
Abstract
The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Allison Tucker
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA Departments of Mathematics and Statistics, University of Idaho, Moscow, Idaho, USA
| | - Ann Norton
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
12
|
Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. MICROBIOLOGY-SGM 2014; 160:2253-2263. [PMID: 25063046 DOI: 10.1099/mic.0.079335-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmid's accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Anton Kurakov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
13
|
Sato T, Yokota SI, Uchida I, Okubo T, Usui M, Kusumoto M, Akiba M, Fujii N, Tamura Y. Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations. Front Microbiol 2013; 4:125. [PMID: 23745120 PMCID: PMC3662882 DOI: 10.3389/fmicb.2013.00125] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022] Open
Abstract
Fluoroquinolone resistance can cause major clinical problems. Here, we investigated fluoroquinolone resistance mechanisms in a clinical Escherichia coli isolate, HUE1, which had no mutations quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV. HUE1 demonstrated MICs that exceeded the breakpoints for ciprofloxacin, levofloxacin, and norfloxacin. HUE1 harbored oqxAB and qnrS1 on distinct plasmids. In addition, it exhibited lower intracellular ciprofloxacin concentrations and higher mRNA expression levels of efflux pumps and their global activators than did reference strains. The genes encoding AcrR (local AcrAB repressor) and MarR (MarA repressor) were disrupted by insertion of the transposon IS3-IS629 and a frameshift mutation, respectively. A series of mutants derived from HUE1 were obtained by plasmid curing and gene knockout using homologous recombination. Compared to the MICs of the parent strain HUE1, the fluoroquinolone MICs of these mutants indicated that qnrS1, oqxAB, acrAB, acrF, acrD, mdtK, mdfA, and tolC contributed to the reduced susceptibility to fluoroquinolone in HUE1. Therefore, fluoroquinolone resistance in HUE1 is caused by concomitant acquisition of QnrS1 and OqxAB and overexpression of AcrAB–TolC and other chromosome-encoded efflux pumps. Thus, we have demonstrated that QRDR mutations are not absolutely necessary for acquiring fluoroquinolone resistance in E. coli.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Loftie-Eaton W, Rawlings DE. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 2011; 67:15-34. [PMID: 22037393 DOI: 10.1016/j.plasmid.2011.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/16/2022]
Abstract
Plasmids of IncQ-family are distinguished by having a unique strand-displacement mechanism of replication that is capable of functioning in a wide variety of bacterial hosts. In addition, these plasmids are highly mobilizable and therefore very promiscuous. Common features of the replicons have been used to identify IncQ-family plasmids in DNA sequence databases and in this way several unstudied plasmids have been compared to more well-studied IncQ plasmids. We propose that IncQ plasmids can be divided into four subgroups based on a number of mutually supportive criteria. The most important of these are the amino acid sequences of their three essential replication proteins and the observation that the replicon of each subgroup has become fused to four different lineages of mobilization genes. This review of IncQ-family plasmid diversity has highlighted several events in the evolution of these plasmids and raised several questions for further research.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | |
Collapse
|
15
|
Gómez FA, Cárdenas C, Henríquez V, Marshall SH. Characterization of a functional toxin-antitoxin module in the genome of the fish pathogen Piscirickettsia salmonis. FEMS Microbiol Lett 2011; 317:83-92. [PMID: 21241361 DOI: 10.1111/j.1574-6968.2011.02218.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This is the first report of a functional toxin-antitoxin (TA) locus in Piscirickettsia salmonis. The P. salmonis TA operon (ps-Tox-Antox) is an autonomous genetic unit containing two genes, a regulatory promoter site and an overlapping putative operator region. The ORFs consist of a toxic ps-Tox gene (P. salmonis toxin) and its upstream partner ps-Antox (P. salmonis antitoxin). The regulatory promoter site contains two inverted repeat motifs between the -10 and -35 regions, which may represent an overlapping operator site, known to mediate transcriptional auto-repression in most TA complexes. The Ps-Tox protein contains a PIN domain, normally found in prokaryote TA operons, especially those of the VapBC and ChpK families. The expression in Escherichia coli of the ps-Tox gene results in growth inhibition of the bacterial host confirming its toxicity, which is neutralized by coexpression of the ps-Antox gene. Additionally, ps-Tox is an endoribonuclease whose activity is inhibited by the antitoxin. The bioinformatic modelling of the two putative novel proteins from P. salmonis matches with their predicted functional activity and confirms that the active site of the Ps-Tox PIN domain is conserved.
Collapse
Affiliation(s)
- Fernando A Gómez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
16
|
Meyer R. Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid 2009; 62:57-70. [PMID: 19465049 PMCID: PMC2752045 DOI: 10.1016/j.plasmid.2009.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/21/2022]
Abstract
The IncQ plasmids have a broader host-range than any other known replicating element in bacteria. Studies on the replication and conjugative mobilization of these plasmids, which have mostly been focused on the nearly identical RSF1010 and R1162, are summarized with a view to understanding how this broad host-range is achieved. Several significant features of IncQ plasmids emerge from these studies: (1) initiation of replication, involving DnaA-independent activation of the origin and a dedicated primase, is strictly host-independent. (2) The plasmids can be conjugatively mobilized by a variety of different type IV transporters, including those engaged in the secretion of proteins involved in pathogenesis. (3) Stability is insured by a combination of high copy-number and modulated gene expression to reduce metabolic load.
Collapse
Affiliation(s)
- Richard Meyer
- Institute for Cell and Molecular Biology, University of Texas at Austin, 78712-0162, USA.
| |
Collapse
|
17
|
Comparative biology of two natural variants of the IncQ-2 family plasmids, pRAS3.1 and pRAS3.2. J Bacteriol 2009; 191:6436-46. [PMID: 19684126 DOI: 10.1128/jb.00864-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids pRAS3.1 and pRAS3.2 are two closely related, natural variants of the IncQ-2 plasmid family that have identical plasmid backbones except for two differences. Plasmid pRAS3.1 has five 6-bp repeat sequences in the promoter region of the mobB gene and four 22-bp iterons in its oriV region, whereas pRAS3.2 has only four 6-bp repeats and three 22-bp iterons. Plasmid pRAS3.1 was found to have a higher copy number than pRAS3.2, and we show that the extra 6-bp repeat results in an increase in mobB and downstream mobA/repB expression. Placement of repB (primase) behind an arabinose-inducible promoter in trans resulted in an increase in repB expression and an approximately twofold increase in the copy number of plasmids with identical numbers of 22-bp iterons. The pRAS3 plasmids were shown to have a previously unrecognized toxin-antitoxin plasmid stability module within their replicons. The ability of the pRAS3 plasmids to mobilize the oriT regions of two other plasmids of the IncQ-2 family, pTF-FC2 and pTC-F14, suggested that the mobilization proteins pRAS3 are relaxed and can mobilize oriT regions with substantially different sequences. Plasmids pRAS3.1 and pRAS3.2 were highly incompatible with plasmids pTF-FC2 and pTC-F14, and this incompatibility was removed on inactivation of an open reading frame situated downstream of the mobCDE mobilization genes rather than being due to the 22-bp oriV-associated iterons. We propose that the pRAS3 plasmids represent a third, gamma incompatibility group within the IncQ-2 family plasmids.
Collapse
|
18
|
Matcher GF, Rawlings DE. The effect of the location of the proteic post-segregational stability system within the replicon of plasmid pTF-FC2 on the fine regulation of plasmid replication. Plasmid 2009; 62:98-107. [PMID: 19481568 DOI: 10.1016/j.plasmid.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
The broad host-range IncQ-2 family plasmid, pTF-FC2, is a mobilizable, medium copy number plasmid that lacks an active partitioning system. Plasmid stability is enhanced by a toxin-antitoxin (TA) system known as pas (plasmid addiction system) that is located within the replicon between the repB (primase) and the repA (helicase) and repC (DNA-binding) genes. The discovery of a closely related IncQ-2 plasmid, pRAS3, with a completely different TA system located between the repB and repAC genes raised the question of whether the location of pas within the replicon had an effect on the plasmid in addition to its ability to act as a TA system. In this work we demonstrate that the presence of the strongly expressed, autoregulated pas operon within the replicon resulted in an increase in the expression of the downstream repAC genes when autoregulation was relieved. While deletion of the pas module did not affect the average plasmid copy number, a pas-containing plasmid exhibited increased stability compared with a pas deletion plasmid even when the TA system was neutralized. It is proposed that the location of a strongly expressed, autoregulated operon within the replicon results in a rapid, but transient, expression of the repAC genes that enables the plasmid to rapidly restore its normal copy number should it fall below a threshold.
Collapse
Affiliation(s)
- Gwynneth F Matcher
- Department of Microbiology, University of Stellenbosch, Matieland, South Africa
| | | |
Collapse
|
19
|
Presence of a family of plasmids (29 to 65 kilobases) with a 26-kilobase common region in different strains of the sulfur-oxidizing bacterium Acidithiobacillus caldus. Appl Environ Microbiol 2008; 74:4300-8. [PMID: 18515486 DOI: 10.1128/aem.00864-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three large cryptic plasmids from different isolates of Acidithiobacillus caldus were rescued by using an in vitro transposition system that delivers a kanamycin-selectable marker and an Escherichia coli plasmid origin of replication. The largest of the plasmids, the 65-kb plasmid pTcM1, was isolated from a South African A. caldus strain, MNG. This plasmid was sequenced and compared to that of pTcF1 (39 kb, from strain "f," South Africa) and pC-SH12 (29 kb, from strain C-SH12, Australia). With the exception of a 2.7-kb insertion sequence, pC-SH12 appears to represent the DNA common to all three plasmids and includes a number of accessory genes plus the plasmid "backbone" containing the replication region. The two larger plasmids carry, in addition, a number of insertion sequences of the ISL3 family and a composite transposon related to the Tn21 subfamily containing a highly mosaic region within the borders of the inverted repeats. Genes coding for arsenic resistance, plasmid mobilization, plasmid stability, and a putative restriction-modification system occur within these mosaic regions.
Collapse
|
20
|
Cherny I, Overgaard M, Borch J, Bram Y, Gerdes K, Gazit E. Structural and thermodynamic characterization of the Escherichia coli RelBE toxin-antitoxin system: indication for a functional role of differential stability. Biochemistry 2007; 46:12152-63. [PMID: 17924660 DOI: 10.1021/bi701037e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RelE and RelB proteins constitute the RNA interferase (toxin) and its cognate inhibitor (antitoxin) components of the Escherichia coli relBE toxin-antitoxin system. Despite the well-described functionality and physiological activity of this system in E. coli, no structural study was performed on the folding and stability of the protein pair in solution. Here we structurally and thermodynamically characterize the RelBE system components from E. coli in solution, both separately and in their complexed state. The RelB antitoxin, an alpha-helical protein according to circular dichroism and infrared spectroscopy, forms oligomers in solution, exhibits high thermostability with a TM of 58.5 degrees C, has a considerable heat resistance, and has high unfolding reversibility. In contrast, the RelE toxin includes a large portion of antiparallel beta-sheets, displays lower thermostability with a TM of 52.5 degrees C, and exhibits exceptional sensitivity to heat. Complex formation, accompanied by a structural transition, leads to a 12 degrees C increase in the TM and substantial heat resistance. Moreover, in vivo interaction and protein footprint experiments indicate that the C-terminal part of RelB is responsible for RelB-RelE interaction, being protease sensitive in its free state, while it becomes protected from proteolysis when complexed with RelE. Overall, our findings support the notion that RelB lacks a well-organized hydrophobic core in solution whereas RelE is a well-folded protein. Furthermore, our results support that RelB protein from E. coli is similar to ParD and CcdA antitoxins in both fold and thermodynamic properties. The differential folding state of the proteins is discussed in the context of their physiological activities.
Collapse
Affiliation(s)
- Izhack Cherny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Fialho AM, Stevens FJ, Das Gupta TK, Chakrabarty AM. Beyond host–pathogen interactions: microbial defense strategy in the host environment. Curr Opin Biotechnol 2007; 18:279-86. [PMID: 17451932 DOI: 10.1016/j.copbio.2007.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 03/10/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Many extracellular pathogenic bacteria colonize human or animal bodies through evasion of the host immune system, a process called host-pathogen interaction. What happens when other intruders try to invade the same host and try to establish themselves in the same niche is largely unknown. In one well-studied case, Pseudomonas aeruginosa is known to secrete the protein azurin as a weapon against such invaders as cancers, parasites and viruses. The production of such weapons by pathogenic bacteria could provide important insights into how a pathogen responds in the post-colonization state to impede other intruders for its own survival. Moreover, these molecules might find use in the pharmaceutical industry as next-generation therapeutics.
Collapse
Affiliation(s)
- Arsenio M Fialho
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Tecnico, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
22
|
de la Cueva-Méndez G, Pimentel B. Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 2007; 8:458-64. [PMID: 17471262 PMCID: PMC1866204 DOI: 10.1038/sj.embor.7400957] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 03/13/2007] [Indexed: 11/09/2022] Open
Abstract
Plasmids are units of extrachromosomal genetic inheritance found in all kingdoms of life. They replicate autonomously and undergo stable propagation in their hosts. Despite their small size, plasmid replication and gene expression constitute a metabolic burden that compromises their stable maintenance in host cells. This pressure has driven the evolution of strategies to increase plasmid stability--a process accelerated by the ability of plasmids to transfer horizontally between cells and to exchange genetic material with their host and other resident episomal DNAs. These abilities drive the adaptability and diversity of plasmids and their host cells. Indeed, survival functions found in plasmids have chromosomal homologues that have an essential role in cellular responses to stress. An analysis of these functions in the prokaryotic plasmid R1, and of their intricate interrelationships, reveals remarkable overall similarities with other gene- and cell-survival strategies found within and beyond the prokaryotic world.
Collapse
|
23
|
Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ. The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol Rev 2006; 30:841-52. [PMID: 17064283 DOI: 10.1111/j.1574-6976.2006.00038.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While newly developed technologies have revolutionized the classical approaches to combating infectious diseases, the difficulties associated with developing novel antimicrobials mean that these technologies have not yet been used to introduce new compounds into the market. The new technologies, including genomics and structural biology, open up exciting possibilities for the discovery of antibiotics. However, a substantial effort to pursue research, and moreover to incorporate the results into the production chain, is required in order to bring new antimicrobials to the final user. In the current scenario of emerging diseases and the rapid spread of antibiotic resistance, an active policy to support these requirements is vital. Otherwise, many valuable programmes may never be fully developed for lack of "interest" and funds (private and public). Will we react in time to avoid potential disaster?
Collapse
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Coram NJ, van Zyl LJ, Rawlings DE. Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879. Appl Environ Microbiol 2005; 71:7515-22. [PMID: 16269793 PMCID: PMC1287648 DOI: 10.1128/aem.71.11.7515-7522.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented.
Collapse
Affiliation(s)
- Nicolette J Coram
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | |
Collapse
|
25
|
Rawlings DE. The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 2005; 53:137-47. [PMID: 15737401 DOI: 10.1016/j.plasmid.2005.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/09/2004] [Accepted: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Two plasmids, pTF-FC2 and pTC-F14, that belong to the IncQ-like plasmid family were isolated from two related bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, respectively. The backbone regions of the two plasmids share a sufficiently high amount of homology to indicate that they must have originated from the same ancestral plasmid. Although some of their replication proteins could complement each other, the plasmids have evolved sufficiently for their replicons to have become compatible. This compatibility has occurred by changes in the iteron sequence, RepC (iteron binding protein) specificity and the regulation properties of the RepB primase. Two of the five mobilization genes have remained highly conserved, whereas the other three genes appear to have evolved such that each plasmid is mobilized most efficiently by a different self-transmissible plasmid. Plasmids pTF-FC2 and pTC-F14 do not appear to compete at the level of mobilization. The antitoxins of the toxin-antitoxin (TA) plasmid stability systems were partly able to neutralize the toxins of the other plasmid and also to partly cross-regulate the TA systems of the other plasmid with the antitoxin of pTF-FC2 being the most effective cross-regulator. Other aspects of the evolution of the two plasmids are described and the danger of making the assumption that incompatibly of IncQ-like plasmids is a reflection of the degree of relatedness of two plasmids is discussed.
Collapse
Affiliation(s)
- Douglas E Rawlings
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
26
|
Abstract
Transcription of the P1 plasmid addiction operon, a prototypical toxin-antitoxin system, is negatively autoregulated by the products of the operon. The Phd repressor-antitoxin protein binds to 8-bp palindromic Phd-binding sites in the promoter region and thereby represses transcription. The toxin, Doc, mediates cooperative interactions between adjacent Phd-binding sites and thereby enhances repression. Here, we describe a homologous operon from Salmonella enterica serovar Typhimurium which has the same pattern of regulation but an altered repressor-operator specificity. This difference in specificity maps to the seventh amino acid of the repressor and to the symmetric first and eighth positions of the corresponding palindromic repressor-binding sites. Thus, the repressor-operator interface has coevolved so as to retain the interaction while altering the specificity. Within an alignment of homologous repressors, the seventh amino acid of the repressor is highly variable, indicating that evolutionary changes in repressor specificity may be common in this protein family. We suggest that the robust properties of the negative feedback loop, the fuzzy recognition in the operator-repressor interface, and the duplication and divergence of the repressor-binding sites have facilitated the speciation of this repressor-operator interface. These three features may allow the repressor-operator system to percolate within a nearly neutral network of single-step mutations without the necessity of invoking simultaneous mutations, low-fitness intermediates, or other improbable or rate-limiting mechanisms.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35758, USA
| | | |
Collapse
|
27
|
Abstract
The P1 plasmid addiction operon (a classic toxin-antitoxin system) encodes Phd, an unstable 73-amino-acid repressor-antitoxin protein, and Doc, a stable toxin. It was previously shown by deletion analysis that the N terminus of Phd was required for repressor activity and that the C terminus was required for antitoxin activity. Since only a quarter of the protein or less was required for both activities, it was hypothesized that Phd might have a modular organization. To further test the modular hypothesis, we constructed and characterized a set of 30 point mutations in the third and fourth quarters of Phd. Four mutations (PhdA36H, V37A, I38A, and F44A) had major defects in repressor activity. Five mutations (PhdD53A, D53R, E55A, F56A, and F60A) had major defects in antitoxin activity. As predicted by the modular hypothesis, point mutations affecting each activity belonged to disjoint, rather than overlapping, sets and were separated rather than interspersed within the linear sequence. A final deletion experiment demonstrated that the C-terminal 24 amino acid residues of Phd (preceded by a methionine) retained full antitoxin activity.
Collapse
Affiliation(s)
- James Estle McKinley
- Department of Biological Sciences, University of Alabama in Huntsville, Wilson Hall, Room 258, 301 Sparkman Dr., Huntsville, AL 35758, USA
| | | |
Collapse
|
28
|
Gardner MN, Rawlings DE. Evolution of compatible replicons of the related IncQ-like plasmids, pTC-F14 and pTF-FC2. MICROBIOLOGY-SGM 2004; 150:1797-1808. [PMID: 15184566 DOI: 10.1099/mic.0.26951-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two closely related but compatible plasmids of the IncQ-2alpha and IncQ-2beta groups, pTF-FC2 and pTC-F14, were discovered in two acidiphilic chemolithotrophic bacteria. Cross-complementation and cross-regulation experiments by the replication proteins were carried out to discover what changes were necessary when the plasmids evolved to produce two incompatibility groups. The requirement of a pTC-F14 oriV for a RepC DNA-binding protein was plasmid specific, whereas the requirement for the RepA helicase and RepB primase was less specific and could be complemented by the IncQ-2alpha plasmid pTC-FC2, and the IncQ-1beta plasmid pIE1108. None of the IncQ-1alpha plasmid replication proteins could complement the pTC-F14 oriV, and pTC-F14 and RSF1010 were incompatible. This incompatibility was associated with the RepC replication protein and was not due to iteron incompatibility. Replication of pTC-F14 took place from a 5.7 kb transcript that originated upstream of the mobB gene located within the region required for mobilization. A pTC-F14 mobB-lacZ fusion was regulated by the pTC-F14 repB gene product and was plasmid specific, as it was not regulated by the RepB proteins of pTF-FC2 or the IncQ-1alpha and IncQ-1beta plasmids. Plasmid pTC-F14 appears to have evolved independently functioning iterons and a plasmid-specific RepC-binding protein; it also has a major replication transcript that is independently regulated from that of pTF-FC2. However, the RepA and RepB proteins have the ability to function with either replicon.
Collapse
Affiliation(s)
- Murray N Gardner
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Douglas E Rawlings
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|