1
|
Gannon AD, Matlack J, Darch SE. Exploring aggregation genes in a P. aeruginosa chronic infection model. J Bacteriol 2025; 207:e0042924. [PMID: 39660900 PMCID: PMC11784459 DOI: 10.1128/jb.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Bacterial aggregates are observed in both natural and artificial environments. In the context of disease, aggregates have been isolated from chronic and acute infections. Pseudomonas aeruginosa (Pa) aggregates contribute significantly to chronic infections, particularly in the lungs of people with cystic fibrosis (CF). Unlike the large biofilm structures observed in vitro, Pa in CF sputum forms smaller aggregates (~10-1,000 cells), and the mechanisms behind their formation remain underexplored. This study aims to identify genes essential and unique to Pa aggregate formation in a synthetic CF sputum media (SCFM2). We cultured Pa strain PAO1 in SCFM2 and LB, both with and without mucin, and used RNA sequencing (RNA-seq) to identify differentially expressed genes. The presence of mucin revealed 13 significantly differentially expressed (DE) genes, predominantly downregulated, with 40% encoding hypothetical proteins unique to aggregates. Using high-resolution microscopy, we assessed the ability of mutants to form aggregates. Notably, no mutant exhibited a completely planktonic phenotype. Instead, we identified multiple spatial phenotypes described as "normal," "entropic," or "impaired." Entropic mutants displayed tightly packed, raft-like structures, while impaired mutants had loosely packed cells. Predictive modeling linked the prioritized genes to metabolic shifts, iron acquisition, surface modification, and quorum sensing. Co-culture experiments with wild-type PAO1 revealed further spatial heterogeneity and the ability to "rescue" some mutant phenotypes, suggesting cooperative interactions during growth. This study enhances our understanding of Pa aggregate biology, specifically the genes and pathways unique to aggregation in CF-like environments. Importantly, it provides insights for developing therapeutic strategies targeting aggregate-specific pathways. IMPORTANCE This study identifies genes essential for the formation of Pseudomonas aeruginosa (Pa) aggregates in cystic fibrosis (CF) sputum, filling a critical gap in understanding their specific biology. Using a synthetic CF sputum model (SCFM2) and RNA sequencing, 13 key genes were identified, whose disruption led to distinct spatial phenotypes observed through high-resolution microscopy. The addition of wild-type cells either rescued the mutant phenotype or increased spatial heterogeneity, suggesting cooperative interactions are involved in aggregate formation. This research advances our knowledge of Pa aggregate biology, particularly the unique genes and pathways involved in CF-like environments, offering valuable insights for developing targeted therapeutic strategies against aggregate-specific pathways.
Collapse
Affiliation(s)
- Alexa D. Gannon
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jenet Matlack
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Bao Y, Zhao S, Wu N, Yuan Y, Ruan L, He J. Degradation of Atrazine by an Anaerobic Microbial Consortium Enriched from Soil of an Herbicide-Manufacturing Plant. Curr Microbiol 2024; 81:117. [PMID: 38492090 DOI: 10.1007/s00284-024-03624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
Atrazine is an important herbicide that has been widely used for weed control in recent decades. However, with the extensive use of atrazine, its residue seriously pollutes the environment. Therefore, the microbial degradation and detoxification of atrazine have received extensive attention. To date, the aerobic degradation pathway of atrazine has been well studied; however, little is known about its anaerobic degradation in the environment. In this study, an anaerobic microbial consortium capable of efficiently degrading atrazine was enriched from soil collected from an herbicide-manufacturing plant. Six metabolites including hydroxyatrazine, deethylatrazine, N-isopropylammelide, deisopropylatrazine, cyanuric acid, and the novel metabolite 4-ethylamino-6-isopropylamino-1,3,5-triazine (EIPAT) were identified, and two putative anaerobic degradation pathways of atrazine were proposed: a hydrolytic dechlorination pathway is similar to that seen in aerobic degradation, and a novel pathway initiated by reductive dechlorination. During enrichment, Denitratisoma, Thiobacillus, Rhodocyclaceae_unclassified, Azospirillum, and Anaerolinea abundances significantly increased, dominating the enriched consortium, indicating that they may be involved in atrazine degradation. These findings provide valuable evidence for elucidating the anaerobic catabolism of atrazine and facilitating anaerobic remediation of residual atrazine pollution.
Collapse
Affiliation(s)
- Yixuan Bao
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shiyu Zhao
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ningning Wu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ye Yuan
- Cuiying Honors College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Luyao Ruan
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Li M, Wu J, Liu W, Li Y, Zhao F, Tan H. Characterization and novel pathway of atrazine catabolism by Agrobacterium rhizogenes AT13 and its potential for environmental bioremediation. CHEMOSPHERE 2023; 319:137980. [PMID: 36716941 DOI: 10.1016/j.chemosphere.2023.137980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Agrobacterium rhizogenes AT13, a novel bacterial strain that was isolated from contaminated soil, could utilize atrazine as the sole nitrogen, thereby degrading it. Optimization of the degradation reaction using a Box-Behnken design resulted in 99.94% atrazine degradation at pH 8.57, with an inoculum size of 3.10 × 109 CFU/mL and a concentration of 50 mg/L atrazine. Ultra-high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (UPLC-ESI-HRMS), liquid chromatography tandem mass spectrometry (LC-MS/MS) and high performance liquid chromatography (HPLC) analyses identified and quantified six reported metabolites and a novel metabolite (2-hydroxypropazine) from atrazine degradation by AT13. On the basis of these metabolites, we propose an atrazine degradation pathway that includes dichlorination, hydroxylation, deamination, dealkylation and methylation reactions. The toxicity of the degradation products was evaluated by Toxicity Estimation Software Tool (T.E.S.T). Bioaugmentation of atrazine-polluted soils/water with strain AT13 significantly improved the atrazine removal rate. Thus, AT13 has potential applications in bioremediation.
Collapse
Affiliation(s)
- Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Menghao Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Jingjing Wu
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Wei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
4
|
Yu Z, Dai Y, Li T, Gu W, Yang Y, Li X, Peng P, Yang L, Li X, Wang J, Su Z, Li X, Xu M, Zhang H. A Novel Pathway of Chlorimuron-Ethyl Biodegradation by Chenggangzhangella methanolivorans Strain CHL1 and Its Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms23179890. [PMID: 36077288 PMCID: PMC9456165 DOI: 10.3390/ijms23179890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorimuron-ethyl is a widely used herbicide in agriculture. However, uncontrolled chlorimuron-ethyl application causes serious environmental problems. Chlorimuron-ethyl can be effectively degraded by microbes, but the underlying molecular mechanisms are not fully understood. In this study, we identified the possible pathways and key genes involved in chlorimuron-ethyl degradation by the Chenggangzhangella methanolivorans strain CHL1, a Methylocystaceae strain with the ability to degrade sulfonylurea herbicides. Using a metabolomics method, eight intermediate degradation products were identified, and three pathways, including a novel pyrimidine-ring-opening pathway, were found to be involved in chlorimuron-ethyl degradation by strain CHL1. Transcriptome sequencing indicated that three genes (atzF, atzD, and cysJ) are involved in chlorimuron-ethyl degradation by strain CHL1. The gene knock-out and complementation techniques allowed for the functions of the three genes to be identified, and the enzymes involved in the different steps of chlorimuron-ethyl degradation pathways were preliminary predicted. The results reveal a previously unreported pathway and the key genes of chlorimuron-ethyl degradation by strain CHL1, which have implications for attempts to enrich the biodegradation mechanism of sulfonylurea herbicides and to construct engineered bacteria in order to remove sulfonylurea herbicide residues from environmental media.
Collapse
Affiliation(s)
- Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Basic Medical College, Shenyang Medical College, Shenyang 100034, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Pai Peng
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Lijie Yang
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (M.X.); (H.Z.)
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (M.X.); (H.Z.)
| |
Collapse
|
5
|
Tassoulas LJ, Elias MH, Wackett LP. Discovery of an ultraspecific triuret hydrolase (TrtA) establishes the triuret biodegradation pathway. J Biol Chem 2020; 296:100055. [PMID: 33172891 PMCID: PMC7948467 DOI: 10.1074/jbc.ra120.015631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
Triuret (carbonyldiurea) is an impurity found in industrial urea fertilizer (<0.1% w/w) that is applied, worldwide, around 300 million pounds each year on agricultural lands. In addition to anthropogenic sources, endogenous triuret has been identified in amoeba and human urine, the latter being diagnostic for hypokalemia. The present study is the first to describe the metabolic breakdown of triuret, which funnels into biuret metabolism. We identified the gene responsible for triuret decomposition (trtA) in bacterial genomes, clustered with biuH, which encodes biuret hydrolase and has close protein sequence homology. TrtA is a member of the isochorismatase-like hydrolase (IHL) protein family, similarly to BiuH, and has a catalytic efficiency (kcat/KM) of 6 x 105 M−1s−1, a KM for triuret of 20 μM, and exquisite substrate specificity. Indeed, TrtA has four orders of magnitude less activity with biuret. Crystal structures of TrtA in apo and holo form were solved and compared with the BiuH structure. The high substrate selectivity was found to be conveyed by second shell residues around each active site. Mutagenesis of residues conserved in TrtA to the alternate consensus found in BiuHs revealed residues critical to triuret hydrolase activity but no single mutant evolved more biuret activity, and likely a combination of mutations is required to interconvert between TrtA, BiuH functions. TrtA-mediated triuret metabolism is relatively rare in recorded genomes (1–2%), but is largely found in plant-associated, nodulating, and endophytic bacteria. This study suggests functions for triuret hydrolase in certain eukaryotic intermediary processes and prokaryotic intermediary or biodegradative metabolism
Collapse
Affiliation(s)
- Lambros J Tassoulas
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, Minnesota, USA; BioTechnology Institute, University of Minnesota, St Paul, Minnesota, USA
| | - Mikael H Elias
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, Minnesota, USA; BioTechnology Institute, University of Minnesota, St Paul, Minnesota, USA
| | - Lawrence P Wackett
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, Minnesota, USA; BioTechnology Institute, University of Minnesota, St Paul, Minnesota, USA.
| |
Collapse
|
6
|
Berdejo D, Pagán E, Merino N, Pagán R, García-Gonzalo D. Incubation with a Complex Orange Essential Oil Leads to Evolved Mutants with Increased Resistance and Tolerance. Pharmaceuticals (Basel) 2020; 13:E239. [PMID: 32916977 PMCID: PMC7557841 DOI: 10.3390/ph13090239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Emergence of strains with increased resistance/tolerance to natural antimicrobials was evidenced after cyclic exposure to carvacrol, citral, and (+)-limonene oxide. However, no previous studies have reported the development of resistance and tolerance to complex essential oils (EOs). This study seeks to evaluate the occurrence of Staphylococcus aureus strains resistant and tolerant to a complex orange essential oil (OEO) after prolonged cyclic treatments at low concentrations. Phenotypic characterization of evolved strains revealed an increase of minimum inhibitory and bactericidal concentration for OEO, a better growth fitness in presence of OEO, and an enhanced survival to lethal treatments, compared to wild-type strain. However, no significant differences (p > 0.05) in cross-resistance to antibiotics were observed. Mutations in hepT and accA in evolved strains highlight the important role of oxidative stress in the cell response to OEO, as well as the relevance of the cell membrane in the cell response to these natural antimicrobials. This study demonstrates the emergence of S. aureus strains that are resistant and tolerant to EO (Citrus sinensis). This phenomenon should be taken into account to assure the efficacy of natural antimicrobials in the design of food preservation strategies, in cleaning and disinfection protocols, and in clinical applications against resistant bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), C/ Miguel Servet, 177, 50013 Zaragoza, Spain; (D.B.); (E.P.); (N.M.); (R.P.)
| |
Collapse
|
7
|
A Bacillus Spore-Based Display System for Bioremediation of Atrazine. Appl Environ Microbiol 2020; 86:AEM.01230-20. [PMID: 32680864 DOI: 10.1128/aem.01230-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Owing to human activities, a large number of organic chemicals, including petroleum products, industrial solvents, pesticides, herbicides (including atrazine [ATR]), and pharmaceuticals, contaminate soil and aquatic environments. Remediation of these pollutants by conventional approaches is both technically and economically challenging. Bacillus endospores are highly resistant to most physical assaults and are capable of long-term persistence in soil. Spores can be engineered to express, on their surface, important enzymes for bioremediation purposes. We have developed a Bacillus thuringiensis spore platform system that can display a high density of proteins on the spore surface. The spore surface-tethered enzymes exhibit enhanced activity and stability relative to free enzymes in soil and water environments. In this study, we evaluated a B. thuringiensis spore display platform as a bioremediation tool against ATR. The Pseudomonas sp. strain ADP atzA determinant, an ATR chlorohydrolase important to the detoxification of ATR, was expressed as a fusion protein linked to the attachment domain of the BclA spore surface nap layer protein and expressed in B. thuringiensis Spores from this strain are decorated with AtzA N-terminally linked on the surface of the spores. The recombinant spores were assayed for ATR detoxification in liquid and soil environments, and enzyme kinetics and stability were assessed. We successfully demonstrated the utility of this spore-based enzyme display system to detoxify ATR in water and laboratory soil samples.IMPORTANCE Atrazine is one of the most widely applied herbicides in the U.S. midwestern states. The long environmental half-life of atrazine has contributed to the contamination of surface water and groundwater by atrazine and its chlorinated metabolites. The toxic properties of ATR have raised public health and ecological concerns. However, remediation of ATR by conventional approaches has proven to be costly and inefficient. We developed a novel B. thuringiensis spore platform system that is capable of long-term persistence in soil and can be engineered to surface express a high density of enzymes useful for bioremediation purposes. The enzymes are stably attached to the surface of the spore exosporium layer. The spore-based system will likely prove useful for remediation of other environmental pollutants as well.
Collapse
|
8
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
9
|
Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution. Appl Environ Microbiol 2020; 86:AEM.01964-19. [PMID: 31676480 DOI: 10.1128/aem.01964-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cyanuric acid is an industrial chemical produced during the biodegradation of s-triazine pesticides. The biodegradation of cyanuric acid has been elucidated using a single model system, Pseudomonas sp. strain ADP, in which cyanuric acid hydrolase (AtzD) opens the s-triazine ring and AtzEG deaminates the ring-opened product. A significant question remains as to whether the metabolic pathway found in Pseudomonas sp. ADP is the exception or the rule in bacterial genomes globally. Here, we show that most bacteria utilize a different pathway, metabolizing cyanuric acid via biuret. The new pathway was determined by reconstituting the pathway in vitro with purified enzymes and by mining more than 250,000 genomes and metagenomes. We isolated soil bacteria that grow on cyanuric acid as a sole nitrogen source and showed that the genome from a Herbaspirillum strain had a canonical cyanuric acid hydrolase gene but different flanking genes. The flanking gene trtB encoded an enzyme that we show catalyzed the decarboxylation of the cyanuric acid hydrolase product, carboxybiuret. The reaction generated biuret, a pathway intermediate further transformed by biuret hydrolase (BiuH). The prevalence of the newly defined pathway was determined by cooccurrence analysis of cyanuric acid hydrolase genes and flanking genes. Here, we show the biuret pathway was more than 1 order of magnitude more prevalent than the original Pseudomonas sp. ADP pathway. Mining a database of over 40,000 bacterial isolates with precise geospatial metadata showed that bacteria with concurrent cyanuric acid and biuret hydrolase genes were distributed throughout the United States.IMPORTANCE Cyanuric acid is produced naturally as a contaminant in urea fertilizer, and it is used as a chlorine stabilizer in swimming pools. Cyanuric acid-degrading bacteria are used commercially in removing cyanuric acid from pool water when it exceeds desired levels. The total volume of cyanuric acid produced annually exceeds 200 million kilograms, most of which enters the natural environment. In this context, it is important to have a global understanding of cyanuric acid biodegradation by microbial communities in natural and engineered systems. Current knowledge of cyanuric acid metabolism largely derives from studies on the enzymes from a single model organism, Pseudomonas sp. ADP. In this study, we obtained and studied new microbes and discovered a previously unknown cyanuric acid degradation pathway. The new pathway identified here was found to be much more prevalent than the pathway previously established for Pseudomonas sp. ADP. In addition, the types of environment, taxonomic prevalences, and geospatial distributions of the different cyanuric acid degradation pathways are described here.
Collapse
|
10
|
Fernandes AFT, Wang P, Staley C, Aparecida Silva Moretto J, Miguel Altarugio L, Chagas Campanharo S, Guedes Stehling E, Jay Sadowsky M. Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil. Microbes Environ 2020; 35:ME19143. [PMID: 32269200 PMCID: PMC7308567 DOI: 10.1264/jsme2.me19143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil microbiota using a 6-step pathway. The aim of the present study was to investigate whether application of atrazine to soil changes the soil bacterial community. We used 16S rRNA gene sequencing and qPCR to elucidate the microbial community structure and assess the abundance of the atrazine degradation genes atzA, atzD, and trzN in a Brazilian soil. The results obtained showed that the relative abundance of atzA and trzN, encoding triazine-initiating metabolism in Gram-negative and -positive bacteria, respectively, increased in soil during the first weeks following the application of atrazine. In contrast, the abundance of atzD, encoding cyanuric acid amidohydrolase-the fourth step in the pathway-was not related to the atrazine treatment. Moreover, the overall soil bacterial community showed no significant changes after the application of atrazine. Despite this, we observed increases in the relative abundance of bacterial families in the 4th and 8th weeks following the atrazine treatment, which may have been related to higher copy numbers of atzA and trzN, in part due to the release of nitrogen from the herbicide. The present results revealed that while the application of atrazine may temporarily increase the quantities of the atzA and trzN genes in a Brazilian Red Latosol soil, it does not lead to significant and long-term changes in the bacterial community structure.
Collapse
Affiliation(s)
- Ana Flavia Tonelli Fernandes
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
| | - Ping Wang
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
| | - Christopher Staley
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
| | - Jéssica Aparecida Silva Moretto
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
| | - Lucas Miguel Altarugio
- Department of Soil Science ESALQ, University of São Paulo, 11 Pádua Dias Avenue, Piracicaba, SP 13418–260, Brazil
| | - Sarah Chagas Campanharo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
| | - Eliana Guedes Stehling
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue s/n, Ribeirão Preto, SP 14040–903, Brazil
| | - Michael Jay Sadowsky
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, 55108 Saint Paul, MN 55108, USA
- Department of Soil, Water, & Climate, 1991 Upper Buford Circle and Department of Plant and Microbial Biology, 1479 Gortner Avenue—University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
A novel decarboxylating amidohydrolase involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP. PLoS One 2018; 13:e0206949. [PMID: 30399173 PMCID: PMC6219798 DOI: 10.1371/journal.pone.0206949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 11/19/2022] Open
Abstract
Cyanuric acid is a common environmental contaminant and a metabolic intermediate in the catabolism of s-triazine compounds, including atrazine and other herbicides. Cyanuric acid is catabolized via a number of bacterial pathways, including one first identified in Pseudomonas sp. strain ADP, which is encoded by a single, five-gene operon (atzDGEHF) found on a self-transmissible plasmid. The discovery of two of the five genes (atzG and atzH) was reported in 2018 and although the function of atzG was determined, the role of atzH was unclear. Here, we present the first in vitro reconstruction of the complete, five-protein cyanuric acid catabolism pathway, which indicates that AtzH may be an amidase responsible for converting 1,3-dicarboxyurea (the AtzE product) to allophanate (the AtzF substrate). We have solved the AtzH structure (a DUF3225 protein from the NTF2 superfamily) and used it to predict the substrate-binding pocket. Site-directed mutagenesis experiments suggest that two residues (Tyr22 and Arg46) are needed for catalysis. We also show that atzH homologs are commonly found in Proteobacteria associated with homologs of the atzG and atzE genes. The genetic context of these atzG-atzE-atzH clusters imply that they have a role in the catabolism of nitrogenous compounds. Moreover, their presence in many genomes in the absence of homologs of atzD and atzF suggests that the atzG-atzE-atzH cluster may pre-date the evolution of the cyanuric acid catabolism operon.
Collapse
|
12
|
Esquirol L, Peat TS, Wilding M, Liu JW, French NG, Hartley CJ, Onagi H, Nebl T, Easton CJ, Newman J, Scott C. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. J Biol Chem 2018. [PMID: 29523689 DOI: 10.1074/jbc.ra118.001996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead it catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2β2 heterotetramer with a previously unidentified 68-amino acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction.
Collapse
Affiliation(s)
- Lygie Esquirol
- From the Biocatalysis and Synthetic Biology Team and.,the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Matthew Wilding
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and.,CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Jian-Wei Liu
- From the Biocatalysis and Synthetic Biology Team and
| | | | | | - Hideki Onagi
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Thomas Nebl
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Christopher J Easton
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Colin Scott
- From the Biocatalysis and Synthetic Biology Team and .,Synthetic Biology Future Science Platform, CSIRO Land and Water, Canberra, Australian Capital Territory 2601
| |
Collapse
|
13
|
Esquirol L, Peat TS, Wilding M, Lucent D, French NG, Hartley CJ, Newman J, Scott C. Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841. PLoS One 2018; 13:e0192736. [PMID: 29425231 PMCID: PMC5806882 DOI: 10.1371/journal.pone.0192736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 11/24/2022] Open
Abstract
Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is bound in the active site by a hydrogen bonding network that imparts high substrate specificity. The structure of the inactive Cys175Ser BiuH variant with substrate bound in the active site revealed that an active site cysteine (Cys175), aspartic acid (Asp36) and lysine (Lys142) form a catalytic triad, which is consistent with biochemical studies of BiuH variants. Finally, molecular dynamics simulations highlighted the presence of three channels from the active site to the enzyme surface: a persistent tunnel gated by residues Val218 and Gln215 forming a potential substrate channel and two smaller channels formed by Val28 and a mobile loop (including residues Phe41, Tyr47 and Met51) that may serve as channels for co-product (ammonia) or co-substrate (water).
Collapse
Affiliation(s)
- Lygie Esquirol
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas S. Peat
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria, Australia
| | - Del Lucent
- Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Nigel G. French
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
| | - Carol J. Hartley
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria, Australia
| | - Colin Scott
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
14
|
Structure and function of urea amidolyase. Biosci Rep 2018; 38:BSR20171617. [PMID: 29263142 PMCID: PMC5770610 DOI: 10.1042/bsr20171617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022] Open
Abstract
Urea is the degradation product of a wide range of nitrogen containing bio-molecules. Urea amidolyase (UA) catalyzes the conversion of urea to ammonium, the essential first step in utilizing urea as a nitrogen source. It is widely distributed in fungi, bacteria and other microorganisms, and plays an important role in nitrogen recycling in the biosphere. UA is composed of urea carboxylase (UC) and allophanate hydrolase (AH) domains, which catalyze sequential reactions. In some organisms UC and AH are encoded by separated genes. We present here structure of the Kluyveromyces lactis UA (KlUA). The structure revealed that KlUA forms a compact homo-dimer with a molecular weight of 400 kDa. Structure inspired biochemical experiments revealed the mechanism of its reaction intermediate translocation, and that the KlUA holo-enzyme formation is essential for its optimal activity. Interestingly, previous studies and ours suggest that UC and AH encoded by separated genes probably do not form a KlUA-like complex, consequently they might not catalyze the urea to ammonium conversion as efficiently.
Collapse
|
15
|
Lin Y, Boese CJ, St Maurice M. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent. Protein Sci 2016; 25:1812-24. [PMID: 27452902 DOI: 10.1002/pro.2990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.
Collapse
Affiliation(s)
- Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Cody J Boese
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201.
| |
Collapse
|
16
|
Zhang Z, Zhang J, Zheng Q, Kong C, Li Z, Zhang H, Ma J. Theoretical investigation on binding process of allophanate to allophanate hydrolase. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Dutta A, Vasudevan V, Nain L, Singh N. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 51:24-34. [PMID: 26479154 DOI: 10.1080/03601234.2015.1080487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.
Collapse
Affiliation(s)
- Anirban Dutta
- a Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Venugopal Vasudevan
- b Defence Research and Development Establishment , Gwalior , Madhya Pradesh , India
| | - Lata Nain
- c Division of Microbiology, ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Neera Singh
- a Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute , New Delhi , India
| |
Collapse
|
18
|
X-Ray Structure and Mutagenesis Studies of the N-Isopropylammelide Isopropylaminohydrolase, AtzC. PLoS One 2015; 10:e0137700. [PMID: 26390431 PMCID: PMC4577212 DOI: 10.1371/journal.pone.0137700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/19/2015] [Indexed: 12/01/2022] Open
Abstract
The N-isopropylammelide isopropylaminohydrolase from Pseudomonas sp. strain ADP, AtzC, provides the third hydrolytic step in the mineralization of s-triazine herbicides, such as atrazine. We obtained the X-ray crystal structure of AtzC at 1.84 Å with a weak inhibitor bound in the active site and then used a combination of in silico docking and site-directed mutagenesis to understand the interactions between AtzC and its substrate, isopropylammelide. The substitution of an active site histidine residue (His249) for an alanine abolished the enzyme’s catalytic activity. We propose a plausible catalytic mechanism, consistent with the biochemical and crystallographic data obtained that is similar to that found in carbonic anhydrase and other members of subtype III of the amidohydrolase family
Collapse
|
19
|
Peat TS, Newman J, Balotra S, Lucent D, Warden AC, Scott C. The structure of the hexameric atrazine chlorohydrolase AtzA. ACTA ACUST UNITED AC 2015; 71:710-20. [PMID: 25760618 PMCID: PMC4356373 DOI: 10.1107/s1399004715000619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/12/2015] [Indexed: 12/05/2022]
Abstract
The structure of atrazine chlorohydrolase (AtzA) is presented and is used to reinterpret data from genetic, biochemical and evolutionary studies, providing insight into why this recently evolved enzyme appears to be poorly adapted for its physiological substrate compared with the alternative metal-dependent atrazine dechlorinase TrzN. Atrazine chlorohydrolase (AtzA) was discovered and purified in the early 1990s from soil that had been exposed to the widely used herbicide atrazine. It was subsequently found that this enzyme catalyzes the first and necessary step in the breakdown of atrazine by the soil organism Pseudomonas sp. strain ADP. Although it has taken 20 years, a crystal structure of the full hexameric form of AtzA has now been obtained. AtzA is less well adapted to its physiological role (i.e. atrazine dechlorination) than the alternative metal-dependent atrazine chlorohydrolase (TrzN), with a substrate-binding pocket that is under considerable strain and for which the substrate is a poor fit.
Collapse
Affiliation(s)
- T S Peat
- CSIRO Biomedical Manufacturing, Parkville, Australia
| | - J Newman
- CSIRO Biomedical Manufacturing, Parkville, Australia
| | - S Balotra
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - D Lucent
- Division of Engineering and Physics, Wilkes University, Wilkes-Barr, Pennsylvania, USA
| | - A C Warden
- CSIRO Land and Water Flagship, Black Mountain, Canberra, Australia
| | - C Scott
- CSIRO Biomedical Manufacturing, Parkville, Australia
| |
Collapse
|
20
|
Fernandes AFT, da Silva MBP, Martins VV, Miranda CES, Stehling EG. Isolation and characterization of a Pseudomonas aeruginosa from a virgin Brazilian Amazon region with potential to degrade atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13974-13978. [PMID: 25035056 DOI: 10.1007/s11356-014-3316-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The use of pesticides to increase agricultural production can result in the contamination of the environment, causing changes in the genetic structure of organisms and in the loss of biodiversity. This practice is also inducing changes in the rainforest ecosystem. In this work, a Pseudomonas aeruginosa isolated from a preservation soil area of the Brazilian Amazon Forest, without usage of any pesticide, was evaluated for its potential to degrade atrazine. This isolate presented all responsible genes (atzA, atzB, atzC, atzD, atzE, and atzF) for atrazine mineralization and demonstrated capacity to use atrazine as a nitrogen source, having achieved a reduction of 44 % of the initial concentration of atrazine after 24 h. These results confirm gene dispersion and/or a possible contamination of the area with the herbicide, which reinforces global concern of the increase and intensive use of pesticides worldwide.
Collapse
Affiliation(s)
- Ana Flavia Tonelli Fernandes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP-Ribeirão Preto, Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-903
| | | | | | | | | |
Collapse
|
21
|
X-ray structure of the amidase domain of AtzF, the allophanate hydrolase from the cyanuric acid-mineralizing multienzyme complex. Appl Environ Microbiol 2014; 81:470-80. [PMID: 25362066 DOI: 10.1128/aem.02783-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of the allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, provides the final hydrolytic step for the mineralization of s-triazines, such as atrazine and cyanuric acid. Indeed, the action of AtzF provides metabolic access to two of the three nitrogens in each triazine ring. The X-ray structure of the N-terminal amidase domain of AtzF reveals that it is highly homologous to allophanate hydrolases involved in a different catabolic process in other organisms (i.e., the mineralization of urea). The smaller C-terminal domain does not appear to have a physiologically relevant catalytic function, as reported for the allophanate hydrolase of Kluyveromyces lactis, when purified enzyme was tested in vitro. However, the C-terminal domain does have a function in coordinating the quaternary structure of AtzF. Interestingly, we also show that AtzF forms a large, ca. 660-kDa, multienzyme complex with AtzD and AtzE that is capable of mineralizing cyanuric acid. The function of this complex may be to channel substrates from one active site to the next, effectively protecting unstable metabolites, such as allophanate, from solvent-mediated decarboxylation to a dead-end metabolic product.
Collapse
|
22
|
Lavrov KV, Novikov AD, Ryabchenko LE, Yanenko AS. Expression of acylamidase gene in Rhodococcus erythropolis strains. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414090087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Balotra S, Newman J, French NG, Briggs LJ, Peat TS, Scott C. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:310-5. [PMID: 24598916 PMCID: PMC3944691 DOI: 10.1107/s2053230x13034705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/27/2013] [Indexed: 11/17/2022]
Abstract
The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P21, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.
Collapse
Affiliation(s)
- Sahil Balotra
- Ecosystem Sciences, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Janet Newman
- Materials, Science and Engineering, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Nigel G French
- Ecosystem Sciences, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Lyndall J Briggs
- Ecosystem Sciences, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Thomas S Peat
- Materials, Science and Engineering, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin Scott
- Ecosystem Sciences, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
24
|
Lavrov KV, Yanenko AS. Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413070090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Abstract
Allophanate hydrolase converts allophanate to ammonium and carbon dioxide. It is conserved in many organisms and is essential for their utilization of urea as a nitrogen source. It also has important functions in a newly discovered eukaryotic pyrimidine nucleic acid precursor degradation pathway, the yeast-hypha transition that several pathogens utilize to escape the host defense, and an s-triazine herbicide degradation pathway recently emerged in many soil bacteria. We have determined the crystal structure of the Kluyveromyces lactis allophanate hydrolase. Together with structure-directed functional studies, we demonstrate that its N and C domains catalyze a two-step reaction and contribute to maintaining a dimeric form of the enzyme required for their optimal activities. Our studies also provide molecular insights into their catalytic mechanism. Interestingly, we found that the C domain probably catalyzes a novel form of decarboxylation reaction that might expand the knowledge of this common reaction in biological systems.
Collapse
Affiliation(s)
- Chen Fan
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi Li
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiyong Yin
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Xiang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
26
|
Lin Y, St. Maurice M. The structure of allophanate hydrolase from Granulibacter bethesdensis provides insights into substrate specificity in the amidase signature family. Biochemistry 2013; 52:690-700. [PMID: 23282241 PMCID: PMC3568674 DOI: 10.1021/bi301242m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH(3) and CO(2). AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cis-Ser-Lys catalytic triad. In this study, the first structures of AH from Granulibacter bethesdensis were determined, with and without the substrate analogue malonate, to 2.2 and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr(299) and Arg(307), are within hydrogen bonding distance of a carboxylate moiety of malonate. Both Tyr(299) and Arg(307) were mutated, and the resulting modified enzymes revealed >3 order of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr(299) and Arg(307) serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser(172). The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.
Collapse
Affiliation(s)
- Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Martin St. Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA,To whom correspondence should be addressed: Marquette University, Department of Biological Sciences, PO Box 1881, Milwaukee, WI 53201 Ph: 414 288 2087, Fax: 414 288 7357,
| |
Collapse
|
27
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
28
|
Burns KE, McAllister FE, Schwerdtfeger C, Mintseris J, Cerda-Maira F, Noens EE, Wilmanns M, Hubbard SR, Melandri F, Ovaa H, Gygi SP, Darwin KH. Mycobacterium tuberculosis prokaryotic ubiquitin-like protein-deconjugating enzyme is an unusual aspartate amidase. J Biol Chem 2012; 287:37522-9. [PMID: 22942282 DOI: 10.1074/jbc.m112.384784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.
Collapse
Affiliation(s)
- Kristin E Burns
- Department of Microbiology, New York University, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A novel hydrolase identified by genomic-proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16. Appl Environ Microbiol 2011; 77:8754-64. [PMID: 22003008 DOI: 10.1128/aem.06162-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a K(m) and a V(max) for linuron of 5.8 μM and 0.16 nmol min⁻¹, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria.
Collapse
|
30
|
Cameron SM, Durchschein K, Richman JE, Sadowsky MJ, Wackett LP. A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism. ACS Catal 2011; 2011:1075-1082. [PMID: 21897878 PMCID: PMC3166513 DOI: 10.1021/cs200295n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biuret is an intermediate in the bacterial metabolism of s-triazine ring compounds and is occasionally used as a ruminant feed supplement. We used bioinformatics to identify a biuret hydrolase, an enzyme that has previously resisted efforts to stabilize, purify and characterize. This newly discovered enzyme is a member of the cysteine hydrolase superfamily, a family of enzymes previously not found to be involved in s-triazine metabolism. The gene from Rhizobium leguminosarum bv. viciae strain 3841 encoding biuret hydrolase was synthesized, transformed into Escherichia coli, and expressed. The enzyme was purified and found to be stable. Biuret hydrolase catalyzed the hydrolysis of biuret to allophanate and ammonia. The k(cat)/K(M) of 1.7 × 10(5) M(-1)s(-1) and the relatively low K(M) of 23 ± 4 μM together suggested that this enzyme acts uniquely on biuret physiologically. This is supported by the fact that of the 34 substrate analogs of biuret tested, only two demonstrated reactivity, both at less than 5% of the rate determined for biuret. Biuret hydrolase does not react with carboxybiuret, the product of the enzyme immediately preceding biuret hydrolase in the metabolic pathway for cyanuric acid. This suggests an unusual metabolic strategy of an enzymatically-produced intermediate undergoing non-enzymatic decarboxylation to produce the substrate for the next enzyme in the pathway.
Collapse
Affiliation(s)
- Stephan M. Cameron
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Jack E. Richman
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael J. Sadowsky
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
31
|
Jason Krutz L, Shaner DL, Weaver MA, Webb RM, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ. Agronomic and environmental implications of enhanced s-triazine degradation. PEST MANAGEMENT SCIENCE 2010; 66:461-481. [PMID: 20127867 DOI: 10.1002/ps.1909] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.
Collapse
Affiliation(s)
- L Jason Krutz
- United States Department of Agriculture, Agriculture Research Service, Crop Production Systems Research Unit, Stoneville, MS 38776, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Scott C, Jackson CJ, Coppin CW, Mourant RG, Hilton ME, Sutherland TD, Russell RJ, Oakeshott JG. Catalytic improvement and evolution of atrazine chlorohydrolase. Appl Environ Microbiol 2009; 75:2184-91. [PMID: 19201959 PMCID: PMC2663207 DOI: 10.1128/aem.02634-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/31/2009] [Indexed: 11/20/2022] Open
Abstract
The atrazine chlorohydrolase AtzA has evolved within the past 50 years to catalyze the hydrolytic dechlorination of the herbicide atrazine. It is of wide research interest for two reasons: first, catalytic improvement of the enzyme would facilitate its application in bioremediation, and second, because of its recent evolution, it presents a rare opportunity to examine the early stages in the acquisition of new catalytic activities. Using a structural model of the AtzA-atrazine complex, a region of the substrate-binding pocket was targeted for combinatorial randomization. Identification of improved variants through this process informed the construction of a variant AtzA enzyme with 20-fold improvement in its k(cat)/K(m) value compared with that of the wild-type enzyme. The reduction in K(m) observed in the AtzA variants has allowed the full kinetic profile for the AtzA-catalyzed dechlorination of atrazine to be determined for the first time, revealing the hitherto-unreported substrate cooperativity in AtzA. Since substrate cooperativity is common among deaminases, which are the closest structural homologs of AtzA, it is possible that this phenomenon is a remnant of the catalytic activity of the evolutionary progenitor of AtzA. A catalytic mechanism that suggests a plausible mechanistic route for the evolution of dechlorinase activity in AtzA from an ancestral deaminase is proposed.
Collapse
Affiliation(s)
- Colin Scott
- CSIRO Entomology, G.P.O. Box 1700, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang PF, Yep A, Kenyon GL, McLeish MJ. Using directed evolution to probe the substrate specificity of mandelamide hydrolase. Protein Eng Des Sel 2008; 22:103-10. [DOI: 10.1093/protein/gzn073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Govantes F, Porrúa O, García-González V, Santero E. Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb Biotechnol 2008; 2:178-85. [PMID: 21261912 PMCID: PMC3815838 DOI: 10.1111/j.1751-7915.2008.00073.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Atrazine is an herbicide of the s‐triazine family that is used primarily as a nitrogen source by degrading microorganisms. While many catabolic pathways for xenobiotics are subjected to catabolic repression by preferential carbon sources, atrazine utilization is repressed in the presence of preferential nitrogen sources. This phenomenon appears to restrict atrazine elimination in nitrogen‐fertilized soils by indigenous organisms or in bioaugmentation approaches. The mechanisms of nitrogen control have been investigated in the model strain Pseudomonas sp. ADP. Expression of atzA, atzB ad atzC, involved in the conversion of atrazine in cyanuric acid, is constitutive. The atzDEF operon, encoding the enzymes responsible for cyanuric acid mineralization, is a target for general nitrogen control. Regulation of atzDEF involves a complex interplay between the global regulatory elements of general nitrogen control and the pathway‐specific LysR‐type regulator AtzR. In addition, indirect evidence suggests that atrazine transport may also be a target for nitrogen regulation in this strain. The knowledge about regulatory mechanisms may allow the design of rational bioremediation strategies such as biostimulation using carbon sources or the use of mutant strains impaired in the assimilation of nitrogen sources for bioaugmentation.
Collapse
Affiliation(s)
- Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain.
| | | | | | | |
Collapse
|
35
|
Krutz LJ, Burke IC, Reddy KN, Zablotowicz RM. Evidence for cross-adaptation between s-triazine herbicides resulting in reduced efficacy under field conditions. PEST MANAGEMENT SCIENCE 2008; 64:1024-1030. [PMID: 18473320 DOI: 10.1002/ps.1601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND Enhanced atrazine degradation has been observed in agricultural soils from around the globe. Soils exhibiting enhanced atrazine degradation may be cross-adapted with other s-triazine herbicides, thereby reducing their control of sensitive weed species. The aims of this study were (1) to determine the field persistence of simazine in atrazine-adapted and non-adapted soils, (2) to compare mineralization of ring-labeled (14)C-simazine and (14)C-atrazine between atrazine-adapted and non-adapted soils and (3) to evaluate prickly sida control with simazine in atrazine-adapted and non-adapted soils. RESULTS Pooled over two pre-emergent (PRE) application dates, simazine field persistence was 1.4-fold lower in atrazine-adapted than in non-adapted soils. For both simazine and atrazine, the mineralization lag phase was 4.3-fold shorter and the mineralization rate constant was 3.5-fold higher in atrazine-adapted than in non-adapted soils. Collectively, the persistence and mineralization data confirm cross-adaptation between these s-triazine herbicides. In non-adapted soils, simazine PRE at the 15 March and 17 April planting dates reduced prickly sida density at least 5.4-fold compared with the no simazine PRE treatment. Conversely, in atrazine-adapted soils, prickly sida densities were not statistically different between simazine PRE and no simazine PRE at either planting date, thereby indicating reduced simazine efficacy in atrazine-adapted soils. CONCLUSIONS Results demonstrate the potential for cross-adaptation among s-triazine herbicides and the subsequent reduction in the control of otherwise sensitive weed species.
Collapse
Affiliation(s)
- L Jason Krutz
- United States Department of Agriculture, Agricultural Research Service, Southern Weed Science Research Unit, PO Box 350, Stoneville, MS 38776, USA.
| | | | | | | |
Collapse
|
36
|
Krutz LJ, Shaner DL, Accinelli C, Zablotowicz RM, Henry WB. Atrazine dissipation in s-triazine-adapted and nonadapted soil from Colorado and Mississippi: implications of enhanced degradation on atrazine fate and transport parameters. JOURNAL OF ENVIRONMENTAL QUALITY 2008; 37:848-857. [PMID: 18453406 DOI: 10.2134/jeq2007.0448] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Soil bacteria have developed novel metabolic abilities resulting in enhanced atrazine degradation. Consequently, there is a need to evaluate the effects of enhanced degradation on parameters used to model atrazine fate and transport. The objectives of this study were (i) to screen Colorado (CO) and Mississippi (MS) atrazine-adapted and non-adapted soil for genes that code for enzymes able to rapidly catabolize atrazine and (ii) to compare atrazine persistence, Q(10), beta, and metabolite profiles between adapted and non-adapted soils. The atzABC and/or trzN genes were detected only in adapted soil. Atrazine's average half-life in adapted soil was 10-fold lower than that of the non-adapted soil and 18-fold lower than the USEPA estimate of 3 to 4 mo. Q(10) was greater in adapted soil. No difference in beta was observed between soils. The accumulation and persistence of mono-N-dealkylated metabolites was lower in adapted soil; conversely, under suboptimal moisture levels in CO adapted soil, hydroxyatrazine concentrations exceeded 30% of the parent compounds' initial mass. Results indicate that (i) enhanced atrazine degradation and atzABC and/or trzN genes are likely widespread across the Western and Southern corn-growing regions of the USA; (ii) persistence of atrazine and its mono-N-dealkylated metabolites is significantly reduced in adapted soil; (iii) hydroxyatrazine can be a major degradation product in adapted soil; and (iv) fate, transport, and risk assessment models that assume historic atrazine degradation pathways and persistence estimates will likely overpredict the compounds' transport potential in adapted soil.
Collapse
Affiliation(s)
- L Jason Krutz
- Southern Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, MS 38776, USA.
| | | | | | | | | |
Collapse
|
37
|
Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 2008; 74:3559-72. [PMID: 18390676 DOI: 10.1128/aem.02722-07] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196(T)) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.
Collapse
|
38
|
Limbut W, Loyprasert S, Thammakhet C, Thavarungkul P, Tuantranont A, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Kanatharana P. Microfluidic conductimetric bioreactor. Biosens Bioelectron 2007; 22:3064-71. [PMID: 17289366 DOI: 10.1016/j.bios.2007.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 12/19/2006] [Accepted: 01/10/2007] [Indexed: 01/09/2023]
Abstract
A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea-urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1-10 mM (r=0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P<0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused.
Collapse
Affiliation(s)
- Warakorn Limbut
- Biophysics Research Unit of Biosensors and Biocurrents, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shapir N, Cheng G, Sadowsky MJ, Wackett LP. Purification and characterization of TrzF: biuret hydrolysis by allophanate hydrolase supports growth. Appl Environ Microbiol 2006; 72:2491-5. [PMID: 16597948 PMCID: PMC1449057 DOI: 10.1128/aem.72.4.2491-2495.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of alpha(2) and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.
Collapse
Affiliation(s)
- Nir Shapir
- Department of Biochemistry, Molecular Biology and Biophysics, 140 Gortner Lab, 1479 Gortner Ave., University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
40
|
Cheng G, Shapir N, Sadowsky MJ, Wackett LP. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism. Appl Environ Microbiol 2005; 71:4437-45. [PMID: 16085834 PMCID: PMC1183272 DOI: 10.1128/aem.71.8.4437-4445.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biochemistry, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|