1
|
Xiao Y, Xiang W, Gao D, Zheng B, Wang Z, Rong D, Bayram H, Ghiladi RA, Lorimer GH, Xie Z, Wang J. hmuSTUV operon positively regulates the alginate gene cluster to mediate the pathogenicity of Pseudomonas donghuensis HYS. Int J Biol Macromol 2025; 306:141430. [PMID: 40010467 DOI: 10.1016/j.ijbiomac.2025.141430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Pseudomonas donghuensis HYS is highly virulent to Caenorhabditis elegans, but with mechanistic details that are not fully understood. The hmuSTUV operon was reported to participate in the synthesis of heme in Pseudomonas. However, the exact role of the hmuSTUV operon in Pseudomonas virulence has not been elucidated. In this study, we report for the first time that the hmuSTUV operon in P. donghuensis HYS causes host virulence, and that hmuS was a key gene for the toxicity of this operon. Furthermore, RNA-seq data showed that hmuS deletion inhibited alginate gene expression, thereby inhibiting biofilm formation. The hmuSTUV operon and alginate gene cluster are conserved in Pseudomonas. By constructing mutant strains carrying GFP, we found that the hmuS deletion reduced colonisation of HYS to the host gut. Moreover, the expression of the alginate gene cluster was controlled by the construction of a L-arabinose-inducible promoter. hmuS positively regulated alginate gene cluster expression, mediating bacterial virulence against C. elegans. In addition, HYS originating from the East Lake of Wuhan City was more pathogenic to zebrafish than any other pathogenic Pseudomonas, through impairment of zebrafish neurodevelopment and locomotor ability, by colonizing to the zebrafish brain. In conclusion, the hmuSTUV operon positively regulated the alg gene cluster, thereby disabling bacterial biofilm formation and colonisation to mediate bacterial pathogenicity to the host. These novel findings revealed the critical interaction between the hmuSTUV operon and the alg gene cluster in the bacterial virulence of Pseudomonas, providing new insights into Pseudomonas pathogenicity.
Collapse
Affiliation(s)
- Yaqian Xiao
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wang Xiang
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bowen Zheng
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Zhiqian Wang
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Jun Wang
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zhang H, Zhang Y, Li L, Huang S, Ma W, Xu B, Ng HY, Kim DH, Kang S, Shi X. An innovative high-rate biofilm-based process: Biopolymer production and recovery from wastewater organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124800. [PMID: 40056594 DOI: 10.1016/j.jenvman.2025.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
In this study, a novel high-rate moving bed biofilm reactor (MBBR) was constructed to enhance wastewater COD bio-conversion and biopolymer recovery with a hydraulic retention time (HRT) of 1.0 h and an organic loading rate (OLR) of 4.8 kg COD·m-3·d-1. A superior specific COD reduction rate of 4.1 kg COD·m-3·d-1 was obtained. The settleability analyses showed that within a settling time of 30 min, a low effluent suspended solids (SS) concentration (40.6 mg/L) with a high biomass recovery rate (83.3%) was achieved. From the recovered biomass, a remarkably higher alginate-like exopolymer (ALE) yield (274.2-385.1 mg/g VSS) was extracted as compared with seeding sludge (148.3 mg/g VSS). In addition, high protein/polysaccharide ratios of 8.5-12.4 were revealed owing to the short HRT condition. Moreover, key functional genes involving classic ALE synthesis were fully detected in such mixed-cultured bioprocess through metagenomic sequencing. Overall, this study offers a proof of concept that bio-refinery of organics into value-added biopolymers could provide a promising direction for the transformation of wastewater treatment plants from energy/resource-consuming factories to resource-recovery factories.
Collapse
Affiliation(s)
- Haifeng Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Yi Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Lin Li
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Shujuan Huang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Weiwei Ma
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Boyan Xu
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - How Yong Ng
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Dong-Hoon Kim
- Department of Smart City Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Xueqing Shi
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China.
| |
Collapse
|
3
|
Felton SM, Akula N, Kolling GL, Azadi P, Black I, Kumar A, Heiss C, Capobianco J, Uknalis J, Papin JA, Berger BW. Applying a polysaccharide lyase from Stenotrophomonas maltophilia to disrupt alginate exopolysaccharide produced by Pseudomonas aeruginosa clinical isolates. Appl Environ Microbiol 2025; 91:e0185324. [PMID: 39670718 PMCID: PMC11784403 DOI: 10.1128/aem.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa is considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment, P. aeruginosa undergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment for P. aeruginosa infection. Previously, we demonstrated polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia strain k279a can catalyze the degradation of multiple polyuronides in vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent of P. aeruginosa alginate, suggesting that Smlt1473 could have potential application against multidrug-resistant P. aeruginosa and perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate from P. aeruginosa. Additionally, we show that tested P. aeruginosa strains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degrade P. aeruginosa alginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCE Pseudomonas aeruginosa is a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronic P. aeruginosa infection. As a result, colonization with P. aeruginosa is the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen for P. aeruginosa infection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoid P. aeruginosa clinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producing P. aeruginosa, as well as have the potential to reduce P. aeruginosa EPS in non-clinical settings.
Collapse
Affiliation(s)
- Samantha M. Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Nikki Akula
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ambrish Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Joseph Capobianco
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Joseph Uknalis
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Alrata L, Abdulsattar D, Madrigal S, Pyeatte SR, Zaghloul M, Abu-Amer W, Arif B, Alhamad T, Remedi M, Lin Y, Zayed MA. Alginate Formulation for Wound Healing Applications. Adv Wound Care (New Rochelle) 2024. [PMID: 39531216 DOI: 10.1089/wound.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Significance: Alginate, sourced from seaweed, holds significant importance in industrial and biomedical domains due to its versatile properties. Its chemical composition, primarily comprising β-D-mannuronic acid and α-L-guluronic acid, governs its physical and biological attributes. This polysaccharide, extracted from brown algae and bacteria, offers diverse compositions impacting key factors such as molecular weight, flexibility, solubility, and stability. Recent Advances: Commercial extraction methods yield soluble sodium alginate essential for various biomedical applications. Extraction processes involve chemical treatments converting insoluble alginic acid salts into soluble forms. While biosynthesis pathways in bacteria and algae share similarities, differences in enzyme utilization and product characteristics are noted. Critical Issues: Despite its widespread applicability, challenges persist regarding alginate's stability, biodegradability, and bioactivity. Further understanding of its interactions in complex biological environments and the optimization of extraction and synthesis processes are imperative. Additionally, concerns regarding immune responses to alginate-based implants necessitate thorough investigation. Future Directions: Future research endeavors aim to enhance alginate's stability and bioactivity, facilitating its broader utilization in regenerative medicine and therapeutic interventions. Novel approaches focusing on tailored hydrogel formations, advanced drug delivery systems, and optimized cellular encapsulation techniques hold promise. Continued exploration of alginate's potential in tissue engineering and wound healing, alongside efforts to address critical issues, will drive advancements in biomedical applications.
Collapse
Affiliation(s)
- Louai Alrata
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dahlia Abdulsattar
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabrina Madrigal
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sophia R Pyeatte
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed Zaghloul
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wahid Abu-Amer
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Batool Arif
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tarek Alhamad
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Remedi
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiing Lin
- Department of Surgery, Section of Transplant Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- CardioVascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Surgical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Valdes O, Bustos D, Guzmán L, Muñoz-Vera M, Urra G, Castro RI, Morales-Quintana L. The Controlled Release of Abscisic Acid (ABA) Utilizing Alginate-Chitosan Gel Blends: A Synergistic Approach for an Enhanced Small-Molecule Delivery Controller. Gels 2024; 10:185. [PMID: 38534603 DOI: 10.3390/gels10030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The integration of abscisic acid (ABA) into a chitosan-alginate gel blend unveils crucial insights into the formation and stability of these two substances. ABA, a key phytohormone in plant growth and stress responses, is strategically targeted for controlled release within these complexes. This study investigates the design and characterization of this novel controlled-release system, showcasing the potential of alginate-chitosan gel blends in ABA delivery. Computational methods, including molecular dynamics simulations, are employed to analyze the structural effects of microencapsulation, offering valuable insights into complex behavior under varying conditions. This paper focuses on the controlled release of ABA from these complexes, highlighting its strategic importance in drug delivery systems and beyond. This controlled release enables targeted and regulated ABA delivery, with far-reaching implications for pharmaceuticals, agriculture, and plant stress response studies. While acknowledging context dependency, the paper suggests that the liberation or controlled release of ABA holds promise in applications, urging further research and experimentation to validate its utility across diverse fields. Overall, this work significantly contributes to understanding the characteristics and potential applications of chitosan-alginate complexes, marking a noteworthy advancement in the field of controlled-release systems.
Collapse
Affiliation(s)
- Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca 3460000, Chile
| | - Marcelo Muñoz-Vera
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile
| | - Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile
| |
Collapse
|
6
|
Chowdhury-Paul S, Martínez-Ortíz IC, Pando-Robles V, Moreno S, Espín G, Merino E, Núñez C. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach. PLoS One 2023; 18:e0286440. [PMID: 37967103 PMCID: PMC10651043 DOI: 10.1371/journal.pone.0286440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.
Collapse
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Iliana C. Martínez-Ortíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Bustos D, Guzmán L, Valdés O, Muñoz-Vera M, Morales-Quintana L, Castro RI. Development and Evaluation of Cross-Linked Alginate-Chitosan-Abscisic Acid Blend Gel. Polymers (Basel) 2023; 15:3217. [PMID: 37571107 PMCID: PMC10420979 DOI: 10.3390/polym15153217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Abscisic acid (ABA) has been proposed to play a significant role in the ripening of nonclimacteric fruit, stomatal opening, and response to abiotic stresses in plants, which can adversely affect crop growth and productivity. The biological effects of ABA are dependent on its concentration and signal transduction pathways. However, due to its susceptibility to the environment, it is essential to find a suitable biotechnological approach to coat ABA for its application. One promising approach is to utilize alginate and chitosan, two natural polysaccharides known for their strong affinity for water and their ability to act as coating agents. In this study, an alginate-chitosan blend was employed to develop an ABA cover. To achieve this, an alginate-chitosan-abscisic acid (ALG-CS-ABA) blend was prepared by forming ionic bonds or complexes with calcium ions, or through dual cross-linking. This was done by dripping a homogeneous solution of alginate-chitosan and ABA into a calcium chloride solution, resulting in the formation of the blend. By combining the unique properties of alginate, chitosan, and ABA, the resulting ALG-CS-ABA blend can potentially offer enhanced stability, controlled release, and improved protection of ABA. These characteristics make it a promising biotechnological approach for various applications, including the targeted delivery of ABA in agricultural practices or in the development of innovative plant-based products. Further evaluation and characterization of the ALG-CS-ABA blend will provide valuable insights into its potential applications in the fields of biomedicine, agriculture, and tissue engineering.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (D.B.); (O.V.)
- Laboratorio de Bioinformática y Química Computacional (LBQC), Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747–721, Talca 3460000, Chile;
| | - Oscar Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (D.B.); (O.V.)
| | - Marcelo Muñoz-Vera
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile;
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile
| | - Ricardo I. Castro
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile
| |
Collapse
|
8
|
Zina R, Cunha E, Serrano I, Silva E, Tavares L, Oliveira M. Nisin Z Potential for the Control of Diabetic Foot Infections Promoted by Pseudomonas aeruginosa Persisters. Antibiotics (Basel) 2023; 12:antibiotics12050794. [PMID: 37237697 DOI: 10.3390/antibiotics12050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cells. These are a subpopulation of phenotypic variants highly tolerant to antibiotics for which new therapeutic alternatives are urgently needed, such as those based on antimicrobial peptides. This study aimed to evaluate the inhibitory effect of nisin Z on P. aeruginosa DFI persisters. To induce the development of a persister state in both planktonic suspensions and biofilms, P. aeruginosa DFI isolates were exposed to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ciprofloxacin, respectively. After RNA extraction from CCCP-induced persisters, transcriptome analysis was performed to evaluate the differential gene expression between the control, persisters, and persister cells exposed to nisin Z. Nisin Z presented a high inhibitory effect against P. aeruginosa persister cells but was unable to eradicate them when present in established biofilms. Transcriptome analysis revealed that persistence was associated with downregulation of genes related to metabolic processes, cell wall synthesis, and dysregulation of stress response and biofilm formation. After nisin Z treatment, some of the transcriptomic changes induced by persistence were reversed. In conclusion, nisin Z could be considered as a potential complementary therapy for treating P. aeruginosa DFI, but it should be applied as an early treatment or after wound debridement.
Collapse
Affiliation(s)
- Rafaela Zina
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Elisabete Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat Commun 2022; 13:6523. [PMID: 36414617 PMCID: PMC9681761 DOI: 10.1038/s41467-022-34101-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Bacteria have the potential to translocate between sites in the human body, but the dynamics and consequences of within-host bacterial migration remain poorly understood. Here we investigate the link between gut and lung Pseudomonas aeruginosa populations in an intensively sampled ICU patient using a combination of genomics, isolate phenotyping, host immunity profiling, and clinical data. Crucially, we show that lung colonization in the ICU was driven by the translocation of P. aeruginosa from the gut. Meropenem treatment for a suspected urinary tract infection selected for elevated resistance in both the gut and lung. However, resistance was driven by parallel evolution in the gut and lung coupled with organ specific selective pressures, and translocation had only a minor impact on AMR. These findings suggest that reducing intestinal colonization of Pseudomonas may be an effective way to prevent lung infections in critically ill patients.
Collapse
|
10
|
Zheng Z, Dai A, Liu Y, Li T. Sustainable alginate lyases catalyzed degradation of bio-based carbohydrates. Front Chem 2022; 10:1008010. [PMID: 36157028 PMCID: PMC9493027 DOI: 10.3389/fchem.2022.1008010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Alginate is a water-soluble and acidic polysaccharide derived from the cell wall and intercellular substance of brown algae. It is widely distributed in brown algae, such as Laminaria, Sargassum, and Macrocystis, etc. Alginate lyase can catalytically degrade alginate in a β-eliminating manner, and its degradation product-alginate oligosaccharide (AOS) has been widely used in agriculture, medicine, cosmetics and other fields due to its wide range of biological activities. This article is mainly to make a brief introduction to the classification, source and application of alginate lyase. We hope this minireview can provide some inspirations for its development and utilization.
Collapse
|
11
|
Gheorghita AA, Wolfram F, Whitfield GB, Jacobs HM, Pfoh R, Wong SSY, Guitor AK, Goodyear MC, Berezuk AM, Khursigara CM, Parsek MR, Howell PL. The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis. J Biol Chem 2022; 298:101560. [PMID: 34990713 PMCID: PMC8829089 DOI: 10.1016/j.jbc.2021.101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francis Wolfram
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Holly M Jacobs
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven S Y Wong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Allison K Guitor
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mara C Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alison M Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Inoue A, Ojima T. Functional identification of the 4-deoxy-L-erythro-5-hexoseulose uronate reductase from a brown alga, Saccharina japonica. Biochem Biophys Res Commun 2021; 545:112-118. [PMID: 33548623 DOI: 10.1016/j.bbrc.2021.01.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
We previously reported the alginate lyase, SjAly, from a brown alga, Saccharina japonica, providing the first experimental evidence for a functional alginate-degradation enzyme in brown algae. 4-deoxy-L-erythro-5-hexoseulose uronate (DEHU), derived from an unsaturated monosaccharide, was identified as the minimum degradation product produced by SjAly-mediated lysis of alginate. DEHU was hitherto reported to be reduced to 2-keto-3-deoxy-gluconate (KDG) by a DEHU-specific reductase with NAD(P)H in alginate-assimilating organisms and its metabolism in alginate-producing organisms is unknown. Here, we report the functional identification of a DEHU reductase, SjRed, in S. japonica. Among the 14 tested compounds, only DEHU was used as a substrate and was converted to KDG in the presence of NADPH. Optimum temperature, pH, and KCl concentration required for SjRed activity were determined to be 25 °C, 7.2, and 100 mM, respectively. SjRed consists of 341 amino acid residues and is proposed to be a member of the aldo-keto reductase superfamily. Sequencing of SjRed revealed that it is composed of at least three exons. These results indicate the existence of an enzyme that reduces DEHU to KDG in S. japonica. This is the first report on the functional identification of a DEHU-reductase in alginate-producing organisms.
Collapse
Affiliation(s)
- Akira Inoue
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.
| | - Takao Ojima
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
13
|
Irmscher T, Roske Y, Gayk I, Dunsing V, Chiantia S, Heinemann U, Barbirz S. Pantoea stewartii WceF is a glycan biofilm-modifying enzyme with a bacteriophage tailspike-like fold. J Biol Chem 2021; 296:100286. [PMID: 33450228 PMCID: PMC7949094 DOI: 10.1016/j.jbc.2021.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022] Open
Abstract
Pathogenic microorganisms often reside in glycan-based biofilms. Concentration and chain length distribution of these mostly anionic exopolysaccharides (EPS) determine the overall biophysical properties of a biofilm and result in a highly viscous environment. Bacterial communities regulate this biofilm state via intracellular small-molecule signaling to initiate EPS synthesis. Reorganization or degradation of this glycan matrix, however, requires the action of extracellular glycosidases. So far, these were mainly described for bacteriophages that must degrade biofilms for gaining access to host bacteria. The plant pathogen Pantoea stewartii (P. stewartii) encodes the protein WceF within its EPS synthesis cluster. WceF has homologs in various biofilm forming plant pathogens of the Erwinia family. In this work, we show that WceF is a glycosidase active on stewartan, the main P. stewartii EPS biofilm component. WceF has remarkable structural similarity with bacteriophage tailspike proteins (TSPs). Crystal structure analysis showed a native trimer of right-handed parallel β-helices. Despite its similar fold, WceF lacks the high stability found in bacteriophage TSPs. WceF is a stewartan hydrolase and produces oligosaccharides, corresponding to single stewartan repeat units. However, compared with a stewartan-specific glycan hydrolase of bacteriophage origin, WceF showed lectin-like autoagglutination with stewartan, resulting in notably slower EPS cleavage velocities. This emphasizes that the bacterial enzyme WceF has a role in P. stewartii biofilm glycan matrix reorganization clearly different from that of a bacteriophage exopolysaccharide depolymerase.
Collapse
Affiliation(s)
- Tobias Irmscher
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany; Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Yvette Roske
- Crystallography, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Igor Gayk
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Valentin Dunsing
- Physikalische Zellbiochemie, Universität Potsdam, Potsdam, Germany
| | | | - Udo Heinemann
- Crystallography, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität, Berlin, Germany.
| | | |
Collapse
|
14
|
Jeong HR, Yoo JS, Choi YL, Jang YS, Lee YS. Characterization of an organic solvent-tolerant polysaccharide lyase from Microbulbifer thermotolerans DAU221. Int J Biol Macromol 2020; 169:452-462. [PMID: 33358946 DOI: 10.1016/j.ijbiomac.2020.12.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
Alginate and its derivatives are annually produced approximately 30,000 tons or more and are applied to various industries as they are natural polymers. The global market for alginate and its derivatives has been growing steadily. There is little research compared to other enzymes produced through biomass degradation or modification. An alginate lyase, MtAl138, from Microbulbifer thermotolerans DAU221 was cloned and identified in Escherichia coli BL21 (DE3). MtAl138 contains a highly conserved motif (R538TELR, Q607IH609, and YFKAGVY716NQ), which indicates that it belongs to the polysaccharide lyase family 7 (PL7). MtAl138, with a molecular weight of 77 kDa worked optimally at 45 °C and pH 7.4. MtAl138 showed twice as much activity as when there was no NaCl when there was between 100 and 600 mM NaCl. Moreover, its activity increased in organic solvents such as benzene, hexane, methanol, and toluene. Based on the thin layer chromatography analyses, MtAl38 is an endo-type enzyme that produces di-, tri-, or tetrasaccharides from polyG and polyM. This study provided that MtAl138 is an endoenzyme that showed outstanding enzymatic activity at concentrated salt solutions and organic solvents, which makes it a reasonably attractive enzyme for use in various industries.
Collapse
Affiliation(s)
- Hae-Rin Jeong
- Department of Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Ju-Soon Yoo
- Department of Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Yong-Lark Choi
- Department of Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Yu-Sin Jang
- Department of Agricultural Chemistry and Food Science Technology, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea; Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea.
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan 49315, Republic of Korea; Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
15
|
Sun M, Sun C, Li T, Li K, Yan S, Yin H. Characterization of a novel bifunctional mannuronan C-5 epimerase and alginate lyase from Pseudomonas mendocina. sp. DICP-70. Int J Biol Macromol 2020; 150:662-670. [DOI: 10.1016/j.ijbiomac.2020.02.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/15/2022]
|
16
|
Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles. Int J Mol Sci 2019; 20:ijms20184565. [PMID: 31540110 PMCID: PMC6770906 DOI: 10.3390/ijms20184565] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilm causes severe antibiotic resistance. An extracellular polymeric substance (EPS) is the main component in the bacterial biofilm. Alginate is a key EPS component in the biofilm of Pseudomonas aeruginosa and responsible for surface adhesion and stabilization of biofilm. Alginate lyase has emerged as an efficient therapeutic strategy targeting to degrade the alginate in the biofilm of P. aeruginosa. However, the application of this enzyme is limited by its poor stability. In this study, chitosan nanoparticles (CS-NPs) were synthesized using low molecular weight chitosan and alginate lyase Aly08 was immobilized on low molecular weight chitosan nanoparticles (AL-LMW-CS-NPs). As a result, the immobilization significantly enhanced the thermal stability and reusability of Aly08. In addition, compared with free Aly08, the immobilized AL-LMW-CS-NPs exhibited higher efficiency in inhibiting biofilm formation and interrupting the established mature biofilm of P. aeruginosa, which could reduce its biomass and thickness confirmed by confocal microscopy. Moreover, the biofilm disruption greatly increased the antibiotic sensitivity of P. aeruginosa. This research will contribute to the further development of alginate lyase as an anti-biofilm agent.
Collapse
|
17
|
Inoue A, Ojima T. Functional identification of alginate lyase from the brown alga Saccharina japonica. Sci Rep 2019; 9:4937. [PMID: 30894645 PMCID: PMC6426991 DOI: 10.1038/s41598-019-41351-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/07/2019] [Indexed: 11/26/2022] Open
Abstract
Despite the progress in massive gene analysis of brown algal species, no alginate-degrading enzyme from brown alga has been identified, impeding the understanding of alginate metabolism in brown alga. In the current study, we identified and characterized alginate lyase from Saccharina japonica using a protein-based approach. First, cDNA library was prepared from the S. japonica sporophyte. Expression screening was then performed; the encoding gene was identified and cloned; and the recombinant enzyme was purified and characterized. Alginate lyase production in algal tissues was evaluated by western blotting. The identified alginate lyase, SjAly (359 amino acids, with a predicted N-terminal secretion signal of 27 residues), is encoded by an open reading frame comprising seven exons. Recombinant SjAly exhibited endolytic alginate lyase activity, specifically toward stretches of consecutive β-D-mannuronic acid units. The optimum temperature, pH, and NaCl concentration were 30 °C, pH 8.0, and 100 mM, respectively. SjAly exhibited pronounced activity below 20 °C, the S. japonica growth temperature. SjAly was highly expressed in the blade but not the stipe and rhizoid. The data indicate that S. japonica possesses at least one active alginate lyase. This is the first report of a functional alginate lyase from brown alga, the major natural alginate producer.
Collapse
Affiliation(s)
- Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan.
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| |
Collapse
|
18
|
Effects of PslG on the Surface Movement of Pseudomonas aeruginosa. Appl Environ Microbiol 2018; 84:AEM.00219-18. [PMID: 29728385 DOI: 10.1128/aem.00219-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023] Open
Abstract
PslG attracted a lot of attention recently due to its great potential abilities in inhibiting biofilms of Pseudomonas aeruginosa However, how PslG affects biofilm development still remains largely unexplored. Here, we focused on the surface motility of bacterial cells, which is critical for biofilm development. We studied the effects of PslG on bacterial surface movement in early biofilm development at a single-cell resolution by using a high-throughput bacterial tracking technique. The results showed that compared with no exogenous PslG addition, when PslG was added to the medium, bacterial surface movement was significantly (4 to 5 times) faster and proceeded in a more random way with no clear preferred direction. A further study revealed that the fraction of walking mode increased when PslG was added, which then resulted in an elevated average speed. The differences of motility due to PslG addition led to a clear distinction in patterns of bacterial surface movement and retarded microcolony formation greatly. Our results provide insight into developing new PslG-based biofilm control techniques.IMPORTANCE Biofilms of Pseudomonas aeruginosa are a major cause for hospital-acquired infections. They are notoriously difficult to eradicate and pose serious health hazards to human society. So, finding new ways to control biofilms is urgently needed. Recent work on PslG showed that PslG might be a good candidate for inhibiting/disassembling biofilms of Pseudomonas aeruginosa through Psl-based regulation. However, to fully explore PslG functions in biofilm control, a better understanding of PslG-Psl interactions is needed. Toward this end, we examined the effects of PslG on the surface movement of Pseudomonas aeruginosa in this work. The significance of our work is in greatly enhancing our understanding of the inhibiting mechanism of PslG on biofilms by providing a detailed picture of bacterial surface movement at a single-cell level, which will allow a full understanding of PslG abilities in biofilm control and thus present potential applications in biomedical fields.
Collapse
|
19
|
Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides. Proc Natl Acad Sci U S A 2018; 115:E4870-E4879. [PMID: 29735649 PMCID: PMC6003464 DOI: 10.1073/pnas.1801336115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capsules are critical virulence determinants for bacterial pathogens. They are composed of capsular polysaccharides (CPSs) with diverse structures, whose assembly on the cell surface is often powered by a conserved ABC transporter. Current capsule-assembly models include a contiguous trans-envelope channel directing nascent CPSs from the transporter to the cell surface. This conserved apparatus is an attractive target for antivirulence antimicrobial development. This work describes a CPS depolymerizing lyase enzyme found in the Burkholderiales and unique structural features that define its mechanism, CPS specificity, and evolution to function in the periplasm in a noncatabolic role. The activity of this enzyme provides evidence that CPS assembled in an ABC transporter-dependent system is exposed to periplasm during translocation to the cell surface. Capsules are surface layers of hydrated capsular polysaccharides (CPSs) produced by many bacteria. The human pathogen Salmonella enterica serovar Typhi produces “Vi antigen” CPS, which contributes to virulence. In a conserved strategy used by bacteria with diverse CPS structures, translocation of Vi antigen to the cell surface is driven by an ATP-binding cassette (ABC) transporter. These transporters are engaged in heterooligomeric complexes proposed to form an enclosed translocation conduit to the cell surface, allowing the transporter to power the entire process. We identified Vi antigen biosynthesis genetic loci in genera of the Burkholderiales, which are paradoxically distinguished from S. Typhi by encoding VexL, a predicted pectate lyase homolog. Biochemical analyses demonstrated that VexL is an unusual metal-independent endolyase with an acidic pH optimum that is specific for O-acetylated Vi antigen. A 1.22-Å crystal structure of the VexL-Vi antigen complex revealed features which distinguish common secreted catabolic pectate lyases from periplasmic VexL, which participates in cell-surface assembly. VexL possesses a right-handed parallel β-superhelix, of which one face forms an electropositive glycan-binding groove with an extensive hydrogen bonding network that includes Vi antigen acetyl groups and confers substrate specificity. VexL provided a probe to interrogate conserved features of the ABC transporter-dependent export model. When introduced into S. Typhi, VexL localized to the periplasm and degraded Vi antigen. In contrast, a cytosolic derivative had no effect unless export was disrupted. These data provide evidence that CPS assembled in ABC transporter-dependent systems is actually exposed to the periplasm during envelope translocation.
Collapse
|
20
|
Zhang Q, Howell PL, Overkleeft HS, Filippov DV, van der Marel GA, Codée JDC. Chemical synthesis of guanosine diphosphate mannuronic acid (GDP-ManA) and its C-4-O-methyl and C-4-deoxy congeners. Carbohydr Res 2017; 450:12-18. [PMID: 28822279 DOI: 10.1016/j.carres.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Abstract
Described is the first synthesis of guanosine diphosphate mannuronic acid (GDP-ManA), the sugar donor used by algae and bacteria for the production of alginate, an anionic polysaccharide composed of β-d-mannuronic acid (ManA) and α-l-guluronic acid (GulA). Understanding the biosynthesis of these polyanionic polysaccharides on the molecular level, opens up avenues to use and modulate the biosynthesis machinery for biotechnological and therapeutic applications. The synthesis reported here delivers multi-milligram amounts of the GDP-ManA donor that can be used to study the polymerase (Alg8 in Pseudomonas aeruginosa) that generates the poly-ManA chain. Also reported is the assembly of two close analogues of GDP-ManA: the first bears a C-4-O-methyl group, while the second has been deoxygenated at this position. Both molecules may be used as "chain stoppers" in future enzymatic ManA polymerisation reactions. The crucial pyrophosphate linkage of the GDP-mannuronic acids has been constructed by the phosphorylation of the appropriate ManA-1-phosphates with a guanosine phosphoramidite.
Collapse
Affiliation(s)
- Qingju Zhang
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Herman S Overkleeft
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dmitri V Filippov
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BHA. Biological function of a polysaccharide degrading enzyme in the periplasm. Sci Rep 2016; 6:31249. [PMID: 27824067 PMCID: PMC5099689 DOI: 10.1038/srep31249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate polymers are industrially and medically important. For instance, a polysaccharide, alginate (from seaweed), is widely used in food, textile and pharmaceutical industries. Certain bacteria also produce alginate through membrane spanning multi-protein complexes. Using Pseudomonas aeruginosa as a model organism, we investigated the biological function of an alginate degrading enzyme, AlgL, in alginate production and biofilm formation. We showed that AlgL negatively impacts alginate production through its enzymatic activity. We also demonstrated that deletion of AlgL does not interfere with polymer length control, epimerization degree or stability of the biosynthesis complex, arguing that AlgL is a free periplasmic protein dispensable for alginate production. This was further supported by our protein-stability and interaction experiments. Interestingly, over-production of AlgL interfered with polymer length control, suggesting that AlgL could be loosely associated with the biosynthesis complex. In addition, chromosomal expression of algL enhanced alginate O-acetylation; both attachment and dispersal stages of the bacterial biofilm lifecycle were sensitive to the level of O-acetylation. Since this modification also protects the pathogen against host defences and enhances other virulence factors, chromosomal expression of algL could be important for the pathogenicity of this organism. Overall, this work improves our understanding of bacterial alginate production and provides new knowledge for alginate production and disease control.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - M Fata Moradali
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ali Goudarztalejerdi
- Department of Pathobiology, School of Paraveterinary Science, Bu-Ali Sina University, Hamadan, Iran
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, Wellington, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
23
|
Yue MM, Gong WW, Qiao Y, Ding H. A method for efficient expression of Pseudomonas aeruginosa alginate lyase in Pichia pastoris. Prep Biochem Biotechnol 2016; 46:165-70. [PMID: 25569244 DOI: 10.1080/10826068.2014.996233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As an eco-friendly biocatalyst for alginate hydrolysis, bacteria-derived alginate lyase (AlgL) has been widely used in research and industries to produce oligosaccharides. However, the cost of AlgL enzyme production remains high due to the low expression and difficulty in purification from bacterial cells. In this study we report an effective method to overexpress the Pseudomonas aeruginosa AlgL (paAlgL) enzyme in Pichia pastoris. Fused with a secretory peptide, the recombinant paAlgL was expressed extracellularly and purified from the culture supernatant through a simple process. The purified recombinant enzyme is highly specific for alginate sodium with a maximal activity of 2,440 U/mg. The enzymatic activity remained stable below 45°C and at pH between 4 and 10. The recombinant paAlgL was inhibited by Zn(2+), Cu(2+), and Fe(2+) and promoted by Co(2+) and Ca(2+). Interestingly, we also found that the recombinant paAlgL significantly enhanced the antimicrobial activity of antibiotics ampicillin and kanamycin against Pseudomonas aeruginosa. Our results introduce a method for efficient AlgL production, the characterization, and a new feature of the recombinant paAlgL as an enhancer of antibiotics against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Michael M Yue
- a Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Wendy W Gong
- b Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Yu Qiao
- a Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Hongbiao Ding
- a Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing , China
| |
Collapse
|
24
|
Inoue A, Anraku M, Nakagawa S, Ojima T. Discovery of a Novel Alginate Lyase from Nitratiruptor sp. SB155-2 Thriving at Deep-sea Hydrothermal Vents and Identification of the Residues Responsible for Its Heat Stability. J Biol Chem 2016; 291:15551-63. [PMID: 27231344 DOI: 10.1074/jbc.m115.713230] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Extremophiles are expected to represent a source of enzymes having unique functional properties. The hypothetical protein NIS_0185, termed NitAly in this study, was identified as an alginate lyase-homolog protein in the genomic database of ϵ-Proteobacteria Nitratiruptor sp. SB155-2, which was isolated from deep-sea hydrothermal vents at a water depth of 1,000 m. Among the characterized alginate lyases in the polysaccharide lyase family 7 (PL-7), the amino acid sequence of NitAly showed the highest identity (39%) with that of red alga Pyropia yezoensis alginate lyase PyAly. Recombinant NitAly (rNitAly) was successfully expressed in Escherichia coli Purified rNitAly degraded alginate in an endolytic manner. Among alginate block types, polyM was preferable to polyG and polyMG as a substrate, and its end degradation products were mainly tri-, tetra-, and penta-saccharides. The optimum temperature and pH values were 70 °C and around 6, respectively. A high concentration of NaCl (0.8-1.4 m) was required for maximum activity. In addition, a 50% loss of activity was observed after incubation at 67 °C for 30 min. Heat stability was decreased in the presence of 5 mm DTT, and Cys-80 and Cys-232 were identified as the residues responsible for heat stability but not lyase activity. Introducing two cysteines into PyAly based on homology modeling using Pseudomonas aeruginosa alginate lyase PA1167 as the template enhanced its heat stability. Thus, NitAly is a functional alginate lyase, with its unique optimum conditions adapted to its environment. These insights into the heat stability of NitAly could be applied to improve that of other PL-7 alginate lyases.
Collapse
Affiliation(s)
- Akira Inoue
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Moe Anraku
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Satoshi Nakagawa
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Takao Ojima
- From the Laboratory of Marine Biotechnology and Microbiology, Division of Applied Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
25
|
Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 2016; 100:2141-51. [PMID: 26767986 DOI: 10.1007/s00253-015-7247-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023]
Abstract
Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.
Collapse
|
26
|
A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity. Enzyme Microb Technol 2015; 77:8-13. [DOI: 10.1016/j.enzmictec.2015.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
|
27
|
Li S, Wang L, Han F, Gong Q, Yu W. Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine Shewanella sp. Kz7. J Biochem 2015; 159:77-86. [PMID: 26232404 DOI: 10.1093/jb/mvv076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/28/2015] [Indexed: 12/29/2022] Open
Abstract
Alginate, the most abundant carbohydrate in brown macroalgae, is widely used in the food and pharmaceutical industries. Recently, alginate has attracted increasing attention, as it may serve as an alternative biomass for the production of biofuel. The degradation of alginate into monomeric units is the prerequisite for bioethanol production. All known oligoalginate lyases belong to the polysaccharide lyase (PL) family 7, 14, 15 and 17, and most of them preferred to degrade the polyM blocks to yield 4-deoxy-l-erythro-5-hexoseulose uronic acid as the primary product. In this study, we cloned an oligoalginate lyase gene, oalS6, from Shewanella sp. Kz7 and expressed it in Escherichia coli. The PL family 6 oligoalginate lyase (OalS6) has no significant sequence similarity with other known oligoalginate lyases. OalS6 contains a chondroitinase-like domain and was assigned to the PL family 6. This lyase is an exo-type oligoalginate lyase and prefer to depolymerize polyG block into 2, 4, 5, 6-tetrahydroxytetrahydro-2H-pyran-2-carboxylic acid. All of these results indicate that OalS6 is a novel oligoalginate lyase that is structurally and functionally different from other known oligoalginate lyases. This finding provides new insights into the development of biofuel processing biotechnologies from seaweed.
Collapse
Affiliation(s)
- Shangyong Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Linna Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Feng Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qianhong Gong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
28
|
Abstract
The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. This study provides new insights into the molecular mechanisms of the synthesis of the unique polysaccharide, alginate, which not only is an important virulence factor of the opportunistic human pathogen Pseudomonas aeruginosa but also has, due to its material properties, many applications in medicine and industry. Unraveling the assembly and composition of the alginate-synthesizing and envelope-spanning multiprotein complex will be of tremendous significance for the scientific community. We identified a protein-protein interaction network inside the multiprotein complex and studied its relevance with respect to alginate polymerization/modification as well as the c-di-GMP-mediated activation mechanism. A relationship between alginate polymerization and modification was shown. Due to the role of alginate in pathogenesis as well as its unique material properties harnessed in numerous applications, results obtained in this study will aid the design and development of inhibitory drugs as well as the commercial bacterial production of tailor-made alginates.
Collapse
|
29
|
Wang Y, Hay ID, Rehman ZU, Rehm BHA. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2015; 99:7253-65. [PMID: 25921805 DOI: 10.1007/s00253-015-6591-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121-124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
30
|
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6:637-50. [PMID: 24034361 PMCID: PMC3815931 DOI: 10.1111/1751-7915.12076] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
31
|
Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:3264-72. [PMID: 23503314 DOI: 10.1128/aem.00460-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.
Collapse
|
32
|
Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex. Appl Environ Microbiol 2013; 79:2002-11. [PMID: 23335756 DOI: 10.1128/aem.03960-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AlgE is a monomeric 18-stranded β-barrel protein required for secretion of the extracellular polysaccharide alginate in Pseudomonas aeruginosa. To assess the molecular mechanism of alginate secretion, AlgE was subjected to site-specific and FLAG epitope insertion mutagenesis. Except for β-strands 6 and 10, epitope insertions into the transmembrane β-strands abolished localization of AlgE to the outer membrane. Interestingly, an epitope insertion into β-strand 10 produced alginate and was only detectable in outer membranes isolated from cells grown on solid media. The deletion of nine C-terminal amino acid residues destabilized AlgE. Replacement of amino acids that constitute the highly electropositive pore constriction showed that individual amino acid residues have a specific function in alginate secretion. Two of the triple mutants (K47E+R353A+R459E and R74E+R362A+R459E) severely reduced alginate production. Mutual stability analysis using the algE deletion mutant PDO300ΔalgE(miniCTX) showed the periplasmic alginate biosynthesis proteins AlgK and AlgX were completely destabilized, while the copy number of the inner membrane c-di-GMP receptor Alg44 was reduced. Chromosomal integration of algE restored AlgK, AlgX, and Alg44, providing evidence for a multiprotein complex that spans the cell envelope. Periplasmic turn 4 of AlgE was identified as an important region for maintaining the stability of the putative multiprotein complex.
Collapse
|
33
|
Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 2012; 57:137-45. [PMID: 23070175 DOI: 10.1128/aac.01789-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 2 decades of study support the hypothesis that alginate lyases are promising therapeutic candidates for treating mucoid Pseudomonas aeruginosa infections. In particular, the enzymes' ability to degrade alginate, a key component of mucoid biofilm matrix, has been the presumed mechanism by which they disrupt biofilms and enhance antibiotic efficacy. The systematic studies reported here show that, in an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy with tobramycin are completely decoupled from catalytic activity. In fact, equivalent antibiofilm effects can be achieved with bovine serum albumin or simple amino acids. These results provide new insights into potential mechanisms of alginate lyase therapeutic activity, and they should motivate a careful reexamination of the fundamental assumptions underlying interest in enzymatic biofilm dispersion.
Collapse
|
34
|
In Lee S, Choi SH, Lee EY, Kim HS. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2. Appl Microbiol Biotechnol 2012; 95:1643-53. [DOI: 10.1007/s00253-012-4266-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
|
35
|
Wolfram F, Arora K, Robinson H, Neculai AM, Yip P, Howell PL. Expression, purification, crystallization and preliminary X-ray analysis of Pseudomonas aeruginosa AlgL. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:584-7. [PMID: 22691793 PMCID: PMC3374518 DOI: 10.1107/s1744309112012808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/23/2012] [Indexed: 11/10/2022]
Abstract
The periplasmic alginate lyase AlgL is essential for the synthesis and export of the exopolysaccharide alginate in Pseudomonas sp. and also plays a role in its depolymerization. P. aeruginosa PAO1 AlgL has been overexpressed and purified and diffraction-quality crystals were grown using the hanging-drop vapour-diffusion method. The crystals grew as thin plates, with unit-cell parameters a = 56.4, b = 59.6, c = 102.1 Å, α = β = γ = 90°. The AlgL crystals exhibited the symmetry of space group P2(1)2(1)2(1) and diffracted to a minimum d-spacing of 1.64 Å. Based on the Matthews coefficient (V(M) = 2.20 Å(3) Da(-1)), one molecule is estimated to be present in the asymmetric unit.
Collapse
Affiliation(s)
- Francis Wolfram
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Kritica Arora
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ana Mirela Neculai
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Patrick Yip
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
36
|
Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. ACTA ACUST UNITED AC 2012; 39:613-21. [DOI: 10.1007/s10295-011-1055-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Abstract
Alginates are polysaccharides that are used as thickening agents, stabilizers, and emulsifiers in various industries. These biopolymers are produced by fermentation with a limited understanding of the processes occurring at the cellular level. The objective of this study was to evaluate the effects of agitation rate and inlet sucrose concentrations (ISC) on alginate production and the expression of the genes encoding for alginate-lyases (algL) and the catalytic subunit of the alginate polymerase complex (alg8) in chemostat cultures of Azotobacter vinelandii ATCC 9046. Increased alginate production (2.4 g l−1) and a higher specific alginate production rate (0.1 g g−1 h−1) were obtained at an ISC of 15 g l−1. Carbon recovery of about 100% was obtained at an ISC of 10 g l−1, whereas it was close to 50% at higher ISCs, suggesting that cells growing at lower sucrose feed rates utilize the carbon source more efficiently. In each of the steady states evaluated, an increase in algL gene expression was not related to a decrease in alginate molecular weight, whereas an increase in the molecular weight of alginate was linked to higher alg8 gene expression, demonstrating a relationship between the alg8 gene and alginate polymerization in A. vinelandii for the first time. The results obtained provide a possible explanation for changes observed in the molecular weight of alginate synthesized and this knowledge can be used to build a recombinant strain able to overexpress alg8 in order to produce alginates with higher molecular weights.
Collapse
|
37
|
|
38
|
Alipour M, Dorval C, Suntres ZE, Omri A. Bismuth-ethanedithiol incorporated in a liposome-loaded tobramycin formulation modulates the alginate levels in mucoid Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2011; 63:999-1007. [PMID: 21718282 DOI: 10.1111/j.2042-7158.2011.01304.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study examined the antibacterial activity, alginate modulation, and deposition of a tobramycin bismuth-ethanedithiol (Tob-Bi) conventional (free) or vesicle-entrapped (lipo) formulation against two mucoid Pseudomonas aeruginosa clinical isolates. METHODS The inhibitory, bactericidal and biofilm eradication concentrations (in presence or absence of alginate lyase) were determined. The modulation of alginate was assessed by the carbazole assay and fluorescent-labelling of live alginate-producing biofilms by confocal microscopy. The deposition of the formulations was assessed using the immunogold-labelling technique, transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). KEY FINDINGS The inhibitory and bactericidal concentrations for lipo Tob-Bi compared with free Tob-Bi were reduced in all strains by 2- to 8-fold, and 2- to 32-fold, respectively. The biofilm eradication concentrations for lipo Tob-Bi compared with free Tob-Bi were reduced by 4- to 32-fold in the mucoid strains. The addition of alginate lyase transiently enhanced eradication for one mucoid strain only. The alginate levels were attenuated by more than half, and free Tob-Bi fared better than lipo Tob-Bi determined by the carbazole assay. Under confocal microscopy, alginate lyase reduced alginate levels and detached mucoid biofilms. Free and lipo Tob-Bi did not detach the bacteria from the surface, but attenuated alginate levels. Tobramycin was detected by immunogold-labelling inside the bacterium, but EDS did not detect bismuth deposits. CONCLUSIONS These findings substantiate a role in which tobramycin, bismuth, and alginate lyase play in eradicating mucoid P. aeruginosa growth and modulate alginate levels.
Collapse
Affiliation(s)
- Misagh Alipour
- Department of Biomolecular Sciences, Laurentian University, Sudbury Medical Sciences Division, Sudbury, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Membrane topology of outer membrane protein AlgE, which is required for alginate production in Pseudomonas aeruginosa. Appl Environ Microbiol 2010; 76:1806-12. [PMID: 20097812 DOI: 10.1128/aem.02945-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous opportunistic human pathogen Pseudomonas aeruginosa secretes a viscous extracellular polysaccharide, called alginate, as a virulence factor during chronic infection of patients with cystic fibrosis. In the present study, it was demonstrated that the outer membrane protein AlgE is required for the production of alginate in P. aeruginosa. An isogenic marker-free algE deletion mutant was constructed. This strain was incapable of producing alginate but did secrete alginate degradation products, indicating that polymerization occurs but that the alginate chain is subsequently degraded during transit through the periplasm. Alginate production was restored by introducing the algE gene. The membrane topology of the outer membrane protein AlgE was assessed by site-specific insertions of FLAG epitopes into predicted extracellular loop regions.
Collapse
|
40
|
Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J Bacteriol 2009; 192:643-56. [PMID: 19933359 DOI: 10.1128/jb.00700-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triacylglycerols (TAGs), wax esters (WEs), and polyhydroxyalkanoates (PHAs) are the major hydrophobic compounds synthesized in bacteria and deposited as cytoplasmic inclusion bodies when cells are cultivated under imbalanced growth conditions. The intracellular occurrence of these compounds causes high costs for downstream processing. Alcanivorax species are able to produce extracellular lipids when the cells are cultivated on hexadecane or pyruvate as the sole carbon source. In this study, we developed a screening procedure to isolate lipid export-negative transposon-induced mutants of bacteria of the genus Alcanivorax for identification of genes required for lipid export by employing the dyes Nile red and Solvent Blue 38. Three transposon-induced mutants of A. jadensis and seven of A. borkumensis impaired in lipid secretion were isolated. All isolated mutants were still capable of synthesizing and accumulating these lipids intracellularly and exhibited no growth defect. In the A. jadensis mutants, the transposon insertions were mapped in genes annotated as encoding a putative DNA repair system specific for alkylated DNA (Aj17), a magnesium transporter (Aj7), and a transposase (Aj5). In the A. borkumensis mutants, the insertions were mapped in genes encoding different proteins involved in various transport processes, like genes encoding (i) a heavy metal resistance (CZCA2) in mutant ABO_6/39, (ii) a multidrug efflux (MATE efflux) protein in mutant ABO_25/21, (iii) an alginate lyase (AlgL) in mutants ABO_10/30 and ABO_19/48, (iv) a sodium-dicarboxylate symporter family protein (GltP) in mutant ABO_27/29, (v) an alginate transporter (AlgE) in mutant ABO_26/1, or (vi) a two-component system protein in mutant ABO_27/56. Site-directed MATE, algE, and algL gene disruption mutants, which were constructed in addition, were also unable to export neutral lipids and confirmed the phenotype of the transposon-induced mutants. The putative localization of the different gene products and their possible roles in lipid excretion are discussed. Beside this, the composition of the intra- and extracellular lipids in the wild types and mutants were analyzed in detail.
Collapse
|
41
|
An QD, Zhang GL, Wu HT, Zhang ZC, Zheng GS, Luan L, Murata Y, Li X. Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. J Appl Microbiol 2009; 106:161-70. [PMID: 19054241 DOI: 10.1111/j.1365-2672.2008.03988.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
AIMS To examine algino-oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its elicitor and antibacterial activity. METHODS AND RESULTS Algino-oligosaccharide production from alginate was carried out using alginase obtained from a newly isolated Flavobacterium sp. LXA. When alginase was partially purified by dual ammonium sulfate precipitation and used for alginate degradation, the viscosity loss correlated well with the release of reducing terminals. The optimal temperature and pH for alginate degradation was 40 degrees C and pH 7.0, respectively. When alginate was added at an initial concentration of more than 0.8%, the maximal degradation rate of alginate was obtained. Under these optimal reaction conditions and with partially purified alginase, the average degrees of polymerization (DP) of alginate-degraded products was about 6.0, which favoured algino-oligosaccharide production. The algino-oligosaccharides showed an elicitor activity stimulating the accumulation of phytoalexin and inducing phenylalanine ammonia lyase in soybean cotyledon, and antimicrobial activity on Pseudomonas aeruginosa. CONCLUSIONS Algino-oligosaccharide could be degraded from alginate by the partially purified alginase and its maximal bioactivity occurred on the oligosaccharide with average DP 6.8. SIGNIFICANCE AND IMPACT OF THE STUDY Algino-oligosaccharide was first reported to have elicitor and antibacterial activity and have potential as a biological agent for protection against plant or human disease.
Collapse
Affiliation(s)
- Q-D An
- Department of Chemical and Material Engineering, Dalian College of Light Industry, Dalian, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Keiski CL, Yip P, Robinson H, Burrows LL, Howell PL. Expression, purification, crystallization and preliminary X-ray analysis of Pseudomonas fluorescens AlgK. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:415-8. [PMID: 17565185 PMCID: PMC2335008 DOI: 10.1107/s1744309107016880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/04/2007] [Indexed: 11/11/2022]
Abstract
AlgK is an outer-membrane lipoprotein involved in the biosynthesis of alginate in Pseudomonads and Azotobacter vinelandii. A recombinant form of Pseudomonas fluorescens AlgK with a C-terminal polyhistidine affinity tag has been expressed and purified from the periplasm of Escherichia coli cells and diffraction-quality crystals of AlgK have been grown using the hanging-drop vapour-diffusion method. The crystals grow as flat plates with unit-cell parameters a = 79.09, b = 107.85, c = 119.15 A, beta = 96.97 degrees. The crystals exhibit the symmetry of space group P2(1) and diffract to a minimum d-spacing of 2.5 A at Station X29 of the National Synchrotron Light Source, Brookhaven National Laboratory. On the basis of the Matthews coefficient (V(M) = 2.53 A3 Da(-1)), four protein molecules are estimated to be present in the asymmetric unit.
Collapse
Affiliation(s)
- Carrie-Lynn Keiski
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick Yip
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Lori L. Burrows
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Correspondence e-mail:
| |
Collapse
|
44
|
Fong JCN, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 2007; 189:2319-30. [PMID: 17220218 PMCID: PMC1899372 DOI: 10.1128/jb.01569-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and vps-II coding regions, separated by an intergenic region. In this study, we generated in-frame deletions of the five genes located in the vps intergenic region, termed rbmB to -F (rugosity and biofilm structure modulators B to F) in the rugose genetic background, and characterized the mutants for rugose colony development and biofilm formation. Deletion of rbmB, which encodes a protein with low sequence similarity to polysaccharide hydrolases, resulted in an increase in colony corrugation and accumulation of exopolysaccharides relative to the rugose variant. RbmC and its homolog Bap1 are predicted to encode proteins with carbohydrate-binding domains. The colonies of the rbmC bap1 double deletion mutant and bap1 single deletion mutant exhibited a decrease in colony corrugation. Furthermore, the rbmC bap1 double deletion mutant was unable to form biofilms at the air-liquid interface after 2 days, while the biofilms formed on solid surfaces detached readily. Although the colony morphology of rbmDEF mutants was similar to that of the rugose variant, their biofilm structure and cell aggregation phenotypes were different than those of the rugose variant. Taken together, these results indicate that vps intergenic region genes encode proteins that are involved in biofilm matrix production and maintenance of biofilm structure and stability.
Collapse
Affiliation(s)
- Jiunn C N Fong
- Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
45
|
Remminghorst U, Rehm BHA. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 2006; 28:1701-12. [PMID: 16912921 DOI: 10.1007/s10529-006-9156-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 12/23/2022]
Abstract
Alginate is a polysaccharide belonging to the family of linear (unbranched), non-repeating copolymers, consisting of variable amounts of beta-D-mannuronic acid and its C5-epimer alpha- L-guluronic acid linked via beta-1,4-glycosidic bonds. Like DNA, alginate is a negatively charged polymer, imparting material properties ranging from viscous solutions to gel-like structures in the presence of divalent cations. Bacterial alginates are synthesized by only two bacterial genera, Pseudomonas and Azotobacter, and have been extensively studied over the last 40 years. While primarily synthesized in form of polymannuronic acid, alginate undergoes chemical modifications comprising acetylation and epimerization, which occurs during periplasmic transfer and before final export through the outer membrane. Alginate with its unique material properties and characteristics has been increasingly considered as biomaterial for medical applications. The genetic modification of alginate producing microorganisms could enable biotechnological production of new alginates with unique, tailor-made properties, suitable for medical and industrial applications.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
46
|
Bryers JD, Ratner BD. Biomaterials approaches to combating oral biofilms and dental disease. BMC Oral Health 2006; 6 Suppl 1:S15. [PMID: 16934116 PMCID: PMC2147597 DOI: 10.1186/1472-6831-6-s1-s15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Possibilities for biomaterials to impact the dental caries epidemic are reviewed with emphasis placed on novel delivery biomaterials and new therapeutic targets.
Collapse
Affiliation(s)
- James D Bryers
- Department of Bioengineering, Biomaterials (UWEB) Center, University of Washington, Seattle, WA 98195, USA
- University of Washington Engineered Biomaterials (UWEB) Center, University of Washington, Seattle, WA 98195, USA
| | - Buddy D Ratner
- Department of Bioengineering, Biomaterials (UWEB) Center, University of Washington, Seattle, WA 98195, USA
- University of Washington Engineered Biomaterials (UWEB) Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Remminghorst U, Rehm BHA. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 2006; 72:298-305. [PMID: 16391057 PMCID: PMC1352289 DOI: 10.1128/aem.72.1.298-305.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Deltaalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. (1)H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
48
|
Bakkevig K, Sletta H, Gimmestad M, Aune R, Ertesvåg H, Degnes K, Christensen BE, Ellingsen TE, Valla S. Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular environment. J Bacteriol 2006; 187:8375-84. [PMID: 16321942 PMCID: PMC1317005 DOI: 10.1128/jb.187.24.8375-8384.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate is an industrially widely used polysaccharide produced by brown seaweeds and as an exopolysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter. The polymer is composed of the two sugar monomers mannuronic acid and guluronic acid (G), and in all these bacteria the genes encoding 12 of the proteins essential for synthesis of the polymer are clustered in the genome. Interestingly, 1 of the 12 proteins is an alginate lyase (AlgL), which is able to degrade the polymer down to short oligouronides. The reason why this lyase is associated with the biosynthetic complex is not clear, but in this paper we show that the complete lack of AlgL activity in Pseudomonas fluorescens in the presence of high levels of alginate synthesis is toxic to the cells. This toxicity increased with the level of alginate synthesis. Furthermore, alginate synthesis became reduced in the absence of AlgL, and the polymers contained much less G residues than in the wild-type polymer. To explain these results and other data previously reported in the literature, we propose that the main biological function of AlgL is to degrade alginates that fail to become exported out of the cell and thereby become stranded in the periplasmic space. At high levels of alginate synthesis in the absence of AlgL, such stranded polymers may accumulate in the periplasm to such an extent that the integrity of the cell is lost, leading to the observed toxic effects.
Collapse
Affiliation(s)
- Karianne Bakkevig
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|